ON STRONGLY DECOMPOSABLE OPERATORS

I. ERDÉLYI AND SHENG-WANG WANG
ON STRONGLY DECOMPOSABLE OPERATORS

I. ERDELYI AND WANG SHENGWANG

A strongly decomposable operator, as defined by C. Apostol, is a bounded linear operator T which, for every spectral maximal space Y, induces two decomposable operators: the restriction $T|Y$ and the coinduced T/Y on the quotient space X/Y. In this paper, we give some necessary and sufficient conditions for an operator to be strongly decomposable.

Throughout the paper, T is a bounded linear operator acting on an abstract Banach space X over the field \mathbb{C} of complex numbers. T^* denotes the conjugate of T on the dual space X^*. For a set S, S^c is the complement, \overline{S} is the closure, S^w is the weak*-closure in X^*, S^\perp is the annihilator of $S \subset X$ in X^*, $\overline{\perp}S$ is the annihilator of $S \subset X^*$ in X and $\text{Int } S$ represents the interior of S. We write $\sigma(T)$ for the spectrum, $\rho(T)$ for the resolvent set of T and $R(\cdot; T)$ for the resolvent operator. If T is endowed with the single valued extension property (SVEP), then for any $x \in X$, $\sigma_T(x)$ denotes the local spectrum. For $S \subset \mathbb{C}$, we shall extensively use the spectral manifold

$$X_T(S) = \{x \in X : \sigma_T(x) \subset S\}.$$

We say that T satisfies condition α, if

(a) T has the SVEP, and (b) $X_T(F)$ is closed for every closed $F \subset \mathbb{C}$.

Two special types of subspaces, invariant under the given operator T, enter the theory of decomposable operators: (1) spectral maximal spaces [7]; (2) analytically invariant subspaces [9].

1. Proposition. Let Y be a spectral maximal space of T.

(i) [9, Proposition 1] If T has the SVEP then, for any $x \in X$,

$$\sigma_T(x) = [\sigma_T(x) \cap \sigma(T|Y)] \cup \sigma_T(\hat{x}), \quad \hat{x} = x + Y, \hat{T} = T/Y.$$

(ii) [2, Lemma 1.4]. If T is decomposable, then

$$\sigma(T/Y) = \overline{\sigma(T) - \sigma(T|Y)}.$$

(iii) [7, Theorem 2.3]. If T satisfies condition α, then $Y = X_T[\sigma(T|Y)]$.

(iv) [3, Proposition 1.3.2]. If $Z \subset Y$ is a spectral maximal space of T, then Y/Z is a spectral maximal space of T/Z.
(v) [7, Lemma 2.1]. If \(T \) is decomposable and \(G \subset \mathbb{C} \) is open, then \(\sigma(T) \cap G \neq \emptyset \) implies that \(X_T(G) \neq \{0\} \).

(vi) [7, Theorem 2.3]. If \(T \) satisfies condition \(\alpha \), then for every closed \(F \subset \mathbb{C} \), \(X_T(F) \) is a spectral maximal space of \(T \) and

\[
\sigma[T|X_T(F)] \subset F.
\]

(vii) [12, Corollary 1(c)]. For \(T \) decomposable and for any closed \(F \subset \mathbb{C} \),

\[
\sigma[T/X_T(F)] \subset (\text{Int } F)^c.
\]

(viii) [8, Theorem 1]. If \(T \) is decomposable then, for every closed \(F \subset \mathbb{C} \), \(X_T(F^c)^\perp \) is a spectral maximal space of \(T^* \) and \(X_T(F^c)^\perp = X_{T^*}(F) \).

(ix) [9, Theorem 2]. If \(T \) has the SVEP, then \(Y \) is analytically invariant under \(T \).

Remark. More generally than in the original versions, properties (iii) and (vi) hold without the restriction of \(T \) being decomposable.

2. **Proposition.** Let \(Y \) be an analytically invariant subspace under \(T \). Then

(i) [9, Theorem 1]. \(T/Y \) has the SVEP (the converse property is also true).

(ii) [4, Lemma 3.4]. If \(T \) has the SVEP then, for every \(y \in Y \),

\[
\sigma_{T/Y}(y) = \sigma_T(y).
\]

(iii) [9, Theorem 3]. If \(T \) is decomposable then, for every open \(G \subset \mathbb{C} \), \(X_T(G) \) is analytically invariant under \(T \).

3. **Theorem.** The following assertions are equivalent:

(i) \(T \) is strongly decomposable;

(ii) (a) \(T \) satisfies condition \(\alpha \);

(b) for every spectral maximal space \(Y \) of \(T \) and any \(x \in X \),

\[
\sigma_{\hat{T}}(\hat{x}) = \sigma_T(x) - \sigma(T|Y), \quad \hat{T} = T/Y, \quad \hat{x} = x + Y;
\]

(c) for every special maximal space \(Y \) of \(T \) and any open \(G \subset \mathbb{C} \), \(G \cap \sigma(T|Y) \neq \emptyset \) implies that \(X_T[G \cap \sigma(T|Y)] \neq \{0\} \).

Proof. (i) \(\Rightarrow \) (ii). (a) is evident. (b). (1) implies

\[
\sigma_{\hat{T}}(\hat{x}) \supset \sigma_T(x) - [\sigma_T(x) \cap \sigma(T|Y)] = \sigma_T(x) - \sigma(T|Y)
\]
and hence
\[\sigma_f(x) \supset \sigma(x) - \sigma(T|Y). \]

To obtain the opposite inclusion, for \(x \in X \), put
\[F = \sigma(x) \cup (T|Y) \]
and for the decomposable \(T|X \), use (2) and (3) as follows:
\[\sigma(\bar{T}|X) = \sigma(T|X) \subset F - \sigma(T|Y) \]
\[= \sigma(x) - \sigma(T|Y). \]

By (5), \(x \in X \) and hence \(\hat{x} = x + Y \in X \). Consequently,
\[\sigma(\hat{x}) \subset \sigma(\bar{T}|X) \subset \sigma(x) - \sigma(T|Y) \]
and this establishes (4).

Since \(T|Y \) is decomposable, (c) is a consequence of Proposition 1 (v).

(ii) \Rightarrow (i): Let \(Y \) be a spectral maximal space of \(T \). By (a) and Proposition 1 (iii), \(Y \) has a representation \(Y = X \sigma(T|Y) \).

Let \(G \subset C \) be open and put \(Z = X \sigma(T|Y) \). We shall prove inclusion
\[G \cap \sigma(T|Y) \subset \sigma(T|Y \cap Z). \]

If \(G \cap \sigma(T|Y) = \emptyset \), then (6) is evident. Therefore, assume
\[G \cap \sigma(T|Y) \neq \emptyset. \]

Let \(\lambda_0 \in G \cap \sigma(T|Y) \) and let \(\delta_0 \subset G \) be a neighborhood of \(\lambda_0 \). Then, since \(\delta_0 \cap (T|Y) \neq \emptyset \), (c) implies that \(X[\delta_0 \cap \sigma(T|Y)] \neq \emptyset \) and hence
\[\sigma(T|X) \neq \emptyset. \]

Let \(\lambda_1 \in \sigma(T|X[\delta_0 \cap \sigma(T|Y)]) \). Then \(\lambda_1 \in \bar{\delta}_0 \) and it follows from
\[X[\bar{\delta}_0 \cap \sigma(T|Y)] \subset X[\bar{G} \cap \sigma(T|Y)] = X[\sigma(T|Y)] \cap Z = Y \cap Z \]
that \(\lambda_1 \in \bar{\delta}_0 \cap \sigma(T|Y \cap Z) \). Thus,
\[\bar{\delta}_0 \cap \sigma(T|Y \cap Z) \neq \emptyset \]
and since \(\delta_0 \) is an arbitrary neighborhood of \(\lambda_0 \), we must have \(\lambda_0 \in \sigma(T|Y \cap Z) \). By the definition of \(\lambda_0 \), inclusion (6) holds. Finally, we shall conclude the proof by showing that \(T|Y \) is decomposable. The subspace \(W = Y \cap Z \) is a spectral maximal space of \(T \). By denoting \(\bar{T} = T/W \) and for \(x \in Y \), \(\bar{x} = x + W \), with the help of condition (b) and inclusion (6),
we obtain successively

\begin{equation}
\sigma_{\hat{T}}(\hat{x}) = \sigma_T(x) - \rho(T|W) \subseteq \sigma_T(x) - [G \cap \sigma(T|Y)] \\
\subseteq \sigma(T|Y) - [G \cap \sigma(T|Y)] = \sigma(T|Y) - G \subseteq G^c.
\end{equation}

Since \(Y \) is a spectral maximal space of \(T \) and \(W \) is a spectral maximal space of \(T|Y \), Proposition 1 (iv) implies \(Y/W \) is a spectral maximal space of \(T/W \). Then, with the help of (7) and [13, Theorem 1.1 (g)], we obtain

\[
\sigma[\hat{T}|(Y/W)] = \bigcup_{\hat{x} \in Y/W} \sigma_{\hat{T}}(\hat{x}) \subseteq G^c.
\]

Consequently, \(T|Y \) is decomposable by [5, Theorem 12] and [1] (or [11]), (see also [10]).

If one slightly strengthens condition (b) in Theorem 3, then (c) becomes redundant.

4. THEOREM. The following assertions are equivalent:

(I) \(T \) is strongly decomposable;

(II) (A) \(T \) satisfies condition \(\alpha \);

(B) for every closed \(F \subseteq \mathcal{C} \), and each \(x \in X \),

\begin{equation}
\sigma_{\hat{T}}(\hat{x}) = \sigma_T(x) - F
\end{equation}

where \(\hat{T} = T/X_T(F) \), \(\hat{x} = x + X_T(F) \).

(III) (A) \(T \) satisfies condition \(\alpha \);

(C) For every pair \(F_1, F_2 \) of closed sets in \(\mathcal{C} \),

\begin{equation}
\sigma[(T/Y_2)|X_T(F_1 \cup F_2)/Y_2] \subseteq F_1, \quad \text{where } Y_2 = X_T(F_2).
\end{equation}

Proof. (I) \(\Rightarrow \) (III). Let \(F_1, F_2 \) be closed in \(\mathcal{C} \). Since \(T \) is strongly decomposable, \(T|X_T(F_1 \cup F_2) \) is decomposable. Let \(G_1, G_2 \) be open sets in \(\mathcal{C} \) such that \(F_1 \cup F_2 \subseteq G_1 \cup G_2 \), \(F_1 \subseteq G_1 \) and \(G_2 \cap F_1 = \emptyset \). For \(x \in X_T(F_1 \cup F_2) \), we have a representation

\[x = x_1 + x_2 \quad \text{with } x_i \in X_T(F_1 \cup F_2) \cap X_T(\overline{G_i}), \ i = 1, 2. \]

It follows from

\[\sigma_T(x_2) \subseteq (F_1 \cup F_2) \cap G_2 = F_2 \cap \overline{G_2} \subseteq F_2 \]

that \(x_2 \in X_T(F_2) = Y_2. \)

Let \(\lambda_0 \notin \overline{G_1} \). Then \(\lambda_0 \in \rho(T|X_T[(F_1 \cup F_2) \cap \overline{G_1}]) \) and hence there is \(y \in X_T[(F_1 \cup F_2) \cap \overline{G_1}] \) verifying

\[(\lambda_0 - T)y = x_1. \]
By the natural homomorphism $X \to X/Y_2$, we obtain
\[(\lambda_0 - T/Y_2)\hat{\varphi} = \hat{x}_1 = \hat{x},\]
and hence $\lambda_0 - (T/Y_2)|_{X_T(F_1 \cup F_2)/Y_2}$ is surjective. Since T/Y_2 has the SVEP by Proposition 1 (vi), (ix) and Proposition 2 (i), we have $\lambda_0 \in \rho[(T/Y_2)|_{X_T(F_1 \cup F_2)/Y_2}]$ by [6, Theorem 2]. By the definition of λ_0, we have
\[\sigma[(T/Y_2)|_{X_T(F_1 \cup F_2)/Y_2}] \subset \overline{G_1},\]
and since $G_1 \supset F_1$ is arbitrary, inclusion (9) holds.

(III) \Rightarrow (II): Let $x \in X$ and $F \subset \mathbb{C}$ be closed. For $F_1 = \overline{\sigma_T(x) - F}$ and $Y = X_T(F)$, (9) implies
\[\sigma[(T/Y)|_{X_T(F_1 \cup F)/Y}] \subset F_1 = \overline{\sigma_T(x) - F}.\]
It follows from the definition of F_1 that $x \in X_T(F_1 \cup F)$. Consequently, for $\hat{x} = x + Y$ and $\hat{T} = T/Y$, we have
\[\sigma_{\hat{T}}(\hat{x}) \subset \sigma[\hat{T}|_{X_T(F_1 \cup F)/Y}] \subset \overline{\sigma_T(x) - F}.\]
On the other hand, it follows from Proposition 1 (i) that
\[\sigma_{\hat{T}}(\hat{x}) \supset \overline{\sigma_T(x) - \sigma(T|Y)} \supset \sigma_T(x) - F\]
and hence (8) holds.

(II) \Rightarrow (I). In view of Theorem 3, we only have to prove that, for every open G and spectral maximal space $Y = X_T[\sigma(T|Y)]$,
\[(10) \quad G \cap \sigma(T|Y) \neq \emptyset\]
implies that $X_T[\overline{G} \cap \sigma(T|Y)] \neq \{0\}$. Choose an open G verifying (10), denote $Z = X_T[\overline{G} \cap \sigma(T|Y)]$ and for $x \in X$, let $\hat{x} = x + Z$. If $Z = \{0\}$, then
\[(11) \quad \sigma_{\hat{T}}(\hat{x}) = \sigma_T(x), \quad \hat{T} = T/Z.\]
In view of (11), by hypothesis, we have
\[\sigma_T(x) = \sigma_{\hat{T}}(\hat{x}) = \overline{\sigma_T(x) - \overline{G} \cap \sigma(T|Y)}}\]
\[= \left[\sigma_T(x) - \overline{G}\right] \cup \left[\sigma_T(x) - \sigma(T|Y)\right].\]
Let $x \in Y$. Since $\sigma_T(x) \subset \sigma(T|Y)$, we have
\[\sigma_T(x) = \overline{\sigma_T(x) - G}\]
and hence
\[\sigma_T(x) \cap G = \emptyset.\]
Now, with the help of [13, Theorem 1.1 (g)], Proposition 1 (v), (ix) and Proposition 2 (ii), we obtain

\[
\sigma(T|_Y) \cap G = \bigcup_{x \in Y} \sigma_{\eta_Y}(x) \bigcap G = \bigcup_{x \in Y} \sigma_T(x) \bigcap G
\]

\[
= \bigcup_{x \in Y} \left[\sigma_T(x) \cap G \right] = \emptyset.
\]

But this contradicts hypothesis (10). Therefore, \(Z = X_T[\overline{G} \cap \sigma(T|_Y)] \neq \{0\} \).

Next, we shall obtain a characterization of a strongly decomposable operator in terms of the conjugate operator. First, we need some preparation.

5. Lemma. Given \(T \), let \(Y \) and \(Z \) be invariant subspaces of \(X \) with \(Z \subset Y \). Then

\[(T/Z)^*|_{(Y/Z)^\perp} \cong T^*|_{Y^\perp}. \]

Proof. The mapping \(X/Z \to X/Y \) is a continuous surjective homomorphism with kernel \(Y/Z \). Therefore, the quotient spaces \((X/Z)/(Y/Z) \) and \(X/Y \) are isomorphic. Given \(x \in X \), we use the following notations for the equivalent classes containing \(x \) in the corresponding quotient spaces:

\(\hat{x} \in X/Y, \tilde{x} \in X/Z, \check{x} \in (X/Z)/(Y/Z) \). Note that \(u \in \hat{x} \) iff \(u - x \in Y \) iff \((u - x)^\perp \in Y/Z \) iff \(\check{u} \in \check{x} \). Since

\[
\inf_{v \in \check{u}} \|v\| \leq \|u\|,
\]

we have

\[\|\hat{x}\| = \inf_{\check{u} \in \check{x}} \|\check{u}\| = \inf_{\check{u} \in \check{x}} \inf_{v \in \check{u}} \|v\| \leq \inf_{u \in \hat{x}} \|u\| = \|\hat{x}\|. \]

On the other hand, for every \(u \in \hat{x} \), \(\check{u} = u + Z \subset u + Y = \hat{x} \) and hence \(\check{u} \subset \check{x} \). Thus,

\[
\inf_{v \in \check{u}} \|v\| \geq \|\hat{x}\|
\]

and hence

\[\|\hat{x}\| \cong \inf_{\check{u} \in \check{x}} \inf_{v \in \check{u}} \|v\| \geq \|\hat{x}\|.
\]

Then, by (13) and (14), \(\|\check{x}\| \cong \|\hat{x}\| \). Thus, it follows from the isometrical isomorphisms

\[(X/Y)^* \cong Y^\perp, \quad [(X/Z)/(Y/Z)^* \cong (Y/Z)]^\perp \]

that the unitary equivalence (12) holds.
6. **Lemma.** If T is decomposable then, for every open $G \subset C$,

\[(15) \quad X_T(G^c)^\perp = \overline{X_{T^*}(G)^w}.\]

Proof. Let T be decomposable. By [14], for every closed $F \subset C$,

\[(16) \quad JX_T(F) = JX \cap X_{T^*}^*(F)\]

where J is the natural embedding of X into X^{**}. By Proposition 1 (viii) and the fact that T decomposable implies T^* decomposable,

\[(17) \quad X_{T^*}^*(F) = X_{T^*}^*(F^c)^\perp.\]

Relations (16) and (17) imply

\[X_T(F) = \perp X_{T^*}^*(F^c)\]

and hence, for $F = G^c$, (15) follows. \qed

7. **Lemma.** If T^* is decomposable then, for every open $G \subset C$, $\overline{X_{T^*}^*(G)^w}$ (i.e. the weak*-closure of $X_{T^*}^*(G)$) is analytically invariant under T^*.

Proof. Let $f^*: D \to X^*$ be analytic on an open $D \subset C$ and verify condition

\[(\lambda - T^*)f^*(\lambda) \in \overline{X_{T^*}^*(G)^w}\] on D.

We may assume D is connected. Put $F = G^c$, $Y = X_T(F)$, use Lemma 6, Proposition 1 (vii) and obtain successively

\[\sigma[T^*| \overline{X_{T^*}^*(G)^w}] = \sigma(T| Y^\perp) = \sigma[(T/Y)^*] = \sigma(T/Y) \subset (\text{Int } F)^c = \overline{G}.\]

First, assume $D \subset \overline{G}$. Then $D \subset G \subset \rho(T| Y)$ and, for every $x \in Y$, $\lambda \in D$, we have

\[
\langle x, f^*(\lambda) \rangle = \langle (\lambda - T)R(\lambda; T| Y)x, f^*(\lambda) \rangle = \langle R(\lambda; T| Y)x, (\lambda - T^*)f^*(\lambda) \rangle = 0.
\]

Since $x \in Y$ is arbitrary, $f^*(\lambda) \in Y^\perp = \overline{X_{T^*}^*(G)^w}$ on D.

Next, assume $D \not\subset \overline{G}$. Then, for $\lambda \in D - \overline{G}$, the resolvent operator $R[\lambda; T^*| \overline{X_{T^*}^*(G)^w}]$ is defined, and for $h^*(\lambda) = (\lambda - T^*)f^*(\lambda)$ we have

\[(\lambda - T^*)\{f^*(\lambda) - R[\lambda; T^*| \overline{X_{T^*}^*(G)^w}]h^*(\lambda)\} = 0.\]

Since T^* has the SVEP,

\[f^*(\lambda) = R[\lambda; T^*| \overline{X_{T^*}^*(G)^w}]h^*(\lambda) \in \overline{X_{T^*}^*(G)^w}\]

on $D - \overline{G}$, and $f^*(\lambda) \in \overline{X_{T^*}^*(G)^w}$ on D, by analytic continuation. \qed
8. THEOREM. The bounded operator \(T \) (resp. \(T^* \)) is strongly decomposable iff:

(i) \(T \) (resp. \(T^* \)) has the SVEP and for open \(G \subset \mathbb{C} \), \(T^* \mid X_T^*(G) \) (resp. \(T \mid X_T(G) \)) is decomposable;

(ii) for every pair \(G, H \) of open sets in \(\mathbb{C} \),

\[
X^*_T(G \cap H)^w = Y^*_T \cap \gamma^*(H)^w \quad \text{(resp. } X_T(G \cap H) = Y_T \cap \gamma(H))\]

Proof. We confine the proof to the operator \(T \), the proof concerning \(T^* \) being similar.

(only if): Assume \(T \) is strongly decomposable. Let \(G \subset \mathbb{C} \) be open, \(F = G^c \) and \(Z = X_T(F) \). The operator \((T/Z) \mid (X/Z) \) is decomposable. Then, by Lemma 6, \(X_T(F)^+ = X_T^*(G)^w \) and hence

\[
(X/Z)^* \cong X_T^*(G)^w.
\]

By [8, Theorem 2] and [12], \(T^* \mid X_T^*(G)^w \) is decomposable. Apply Lemma 5 to a closed \(F_1 \supset F \), and obtain

\[
\left[X_T(F_1)/Z \right]^+ \cong X_T(F_1)^+.
\]

Denote \(\tilde{T} = T/Z \), \(\tilde{X} = X/Z \). Before embarking on the proof of (ii), we shall show that

\[
\tilde{X}_T(F_1 - F) = X_T(F_1)/Z.
\]

In fact, if \(\tilde{x} \in \tilde{X}_T(F_1 - F) \), then \(\sigma_{\tilde{T}}(\tilde{x}) \subset \overline{F_1 - F} \) and hence, for every \(x \in \tilde{x} \),

\[
\sigma_T(x) \subset (\overline{F_1 - F}) \cup F = F_1.
\]

Therefore, \(\tilde{x} \in \tilde{X}_T(\overline{F_1 - F}) \) implies \(x \in X_T(F_1) \) and hence \(\tilde{x} \in X_T(F_1)/Z \). Conversely, if \(\tilde{x} \in X_T(F_1)/Z = X_T(F_1 - F \cup F)/Z \), then Theorem 4 (III, C) implies

\[
\sigma_{\tilde{T}}(\tilde{x}) \subset \sigma[\tilde{T} \mid X_T(\overline{F_1 - F} \cup F)/Z] \subset \overline{F_1 - F}
\]

and hence \(\tilde{x} \in \tilde{X}_T(\overline{F_1 - F}) \). Thus (21) is proved.

Now we are in a position to prove (ii). To simplify notation, put \(X' = (\tilde{X})^* \) and \(T' = (\tilde{T})^* \). Let \(H \) be open and let \(F_1 = G^c \cup H^c \). Then \(F_1 \supset F \) and \(\overline{F_1 - F} \subset H^c \). By Lemma 6, Lemma 5, (20), (21) and (19), we obtain successively:

\[
X_T^*(G \cap H)^w = X_T(F_1)^+ \cong [X_T(F_1)/Z]^+ = \tilde{X}_T(\overline{F_1 - F}) \supset [\tilde{X}_T(H^c)] \supset \overline{X_T(H)^w} = Y_T \cap \gamma^*(H)^w.
\]
For the last equality, we used the equivalence

\[T^* = \left[T/X_T(F) \right]^* = T^* | X_T^*(G)^w = T^* | Y^*. \]

To obtain the opposite inclusion, note that if \(x^* \in X_T^*(G \cap H) \), then

\[\sigma_{T^*}(x^*) = G \cap H \subset G \]

and hence \(x^* \in X_T^*(G) \subset Y^*. \) Since \(Y^* \) is analytically invariant under \(T^* \) (Lemma 7), in view of Proposition 2 (ii), we obtain

\[\sigma_{T^*|Y^*}(x^*) = \sigma_{T^*}(x^*) \subset H \]

and hence

\[x^* \in Y_{T^*|Y^*}(H) \subset Y_{T^*|Y^*}(H)^w. \]

Thus

\[X_T^*(G \cap H)^w \subset Y_{T^*|Y^*}(H)^w. \]

(if): Assume conditions (i) and (ii) are satisfied. Let \(F, F_1 \subset C \) be closed. Since \(X_T^*(C) = X^* \), we conclude that \(T^* \) is decomposable and hence \(T \) is decomposable by [14, Corollary 2.8]. Therefore, \(Z = X_T(F) \) is closed. Also \(T^* | X_T^*(F^c)^w \) is decomposable. Then, by Lemma 6,

\[T^* | X_T^*(F^c)^w = T^* | X_T(F) \perp \cong T^*, \]

where \(\tilde{T} = T/Z \) and \(T^* = (\tilde{T}^*)^* \). Thus \(T^* \) is decomposable and hence \(\tilde{T} \) is decomposable. Therefore, letting \(\tilde{X} = X/Z, \tilde{X}_T(F_1) \) is closed and

(22)

\[\sigma[\tilde{T} | \tilde{X}_T(F_1)] \subset F_1. \]

Put \(G = F^c, H = F_1^c \) and \(Y^* = X_T^*(G)^w \). It follows from Lemma 6 that

\[T^* | X_T(F \cup F_1) \perp = T^* | X_T^*(G \cap H)^w, \]

\[T^* | \tilde{X}_T(F_1) \perp \cong T^* | \tilde{Y}_{T^*|Y^*}(H)^w. \]

Then (18) implies

(23)

\[T^* | \tilde{X}_T(F_1) \perp \cong T^* | X_T(F \cup F_1) \perp. \]

By Lemma 5 we have

(24)

\[T^* [X_T(F \cup F_1)/Z] \perp \cong T^* | X_T(F \cup F_1) \perp. \]

Consequently, with the help of (24), (23) and (22), we obtain

\[\sigma[\tilde{T} | X_T(F \cup F_1)/Z] = \sigma[T^* [X_T(F \cup F_1)/Z] \perp] = \sigma[T^* | \tilde{X}_T(F_1) \perp] \]

\[= \sigma[\tilde{T} | \tilde{X}_T(F_1)] \subset F_1. \]
Thus, conditions (III) of Theorem 4 are satisfied and hence T is strongly decomposable.

Acknowledgement. The authors are indebted to the referee for the suggested improvements of Lemma 5 and Theorem 8.

References

Received June 4, 1982 and in revised form July 26, 1982.

TEMPLE UNIVERSITY
PHILADELPHIA, PA 19122
AND
NANJING UNIVERSITY
NANJING, CHINA
PACIFIC JOURNAL OF MATHEMATICS
EDITORS
DONALD BABBITT (Managing Editor)
University of California
Los Angeles, CA 90024
J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, CA 90089-1113
HUGO ROSSI
University of Utah
Salt Lake City, UT 84112
R. FINN and H. SAMELSON
Stanford University
Stanford, CA 94305
C. C. MOORE and ARTHUR OGUS
University of California
Berkeley, CA 94720
ASSOCIATE EDITORS
R. ARENS
(1906–1982)
E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSHIDA
SUPPORTING INSTITUTIONS
UNIVERSITY OF ARIZONA
UNIVERSITY OF OREGON
UNIVERSITY OF BRITISH COLUMBIA
UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA
UNIVERSITY OF HAWAII
MONTANA STATE UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF NEVADA, RENO
UNIVERSITY OF UTAH
NEW MEXICO STATE UNIVERSITY
WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph must be capable of being used separately as a synopsis of the entire paper. In particular it should contain no bibliographic references. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California 90024.

There are page-charges associated with articles appearing in the Pacific Journal of Mathematics. These charges are expected to be paid by the author's University, Government Agency or Company. If the author or authors do not have access to such Institutional support these charges are waived. Single authors will receive 50 free reprints; joint authors will receive a total of 100 free reprints. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $132.00 a year (6 Vol., 12 issues). Special rate: $66.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics ISSN 0030-8730 is published monthly by the Pacific Journal of Mathematics at P.O. Box 969, Carmel Valley, CA 93924. Application to mail at Second-class postage rates is pending at Carmel Valley, California, and additional mailing offices. Postmaster: Send address changes to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Copyright © 1984 by Pacific Journal of Mathematics
Robert A. Bekes, The range of convolution operators .. 257
Dennis K. Burke and Sheldon Davis, Subsets of ω^ω and generalized metric
spaces .. 273
Giovanni Emmanuele, A remark on a paper: “Common fixed points of
nonexpansive mappings by iteration” ... 283
I. Erdélyi and Sheng-Wang Wang, On strongly decomposable operators 287
Gerhard Gierz, Injective Banach lattices with strong order units 297
Maurizio Letizia, Quotients by complex conjugation of nonsingular
quadrics and cubics in P^3_C defined over R .. 307
P. H. Maserick and Franciszek Hugon Szafraniec, Equivalent definitions
of positive definiteness ... 315
Costel Peligrad and S. Rubinstein, Maximal subalgebras of C^*-crossed
products .. 325
Derek W. Robinson and Sadayuki Yamamuro, Hereditary cones, order
ideals and half-norms .. 335
Derek W. Robinson and Sadayuki Yamamuro, The Jordan decomposition
and half-norms .. 345
Richard Rochberg, Interpolation of Banach spaces and negatively curved
vector bundles ... 355
Dale Rolfsen, Rational surgery calculus: extension of Kirby’s theorem 377
Walter Iaan Seaman, Helicoids of constant mean curvature and their Gauss
maps ... 387
Diana Shelstad, Endoscopic groups and base change C/R 397
Jerrold Norman Siegel and Frank Williams, Numerical invariants of
homotopies into spheres ... 417
Alladi Sitaram, Some remarks on measures on noncompact semisimple Lie
groups .. 429
Teruhiko Soma, Atoroidal, irreducible 3-manifolds and 3-fold branched
coverings of S^3 ... 435
Jan de Vries, On the G-compactification of products 447
Hans Weber, Topological Boolean rings. Decomposition of finitely additive
set functions .. 471