INJECTIVE BANACH LATTICES WITH STRONG ORDER UNITS

GERHARD GIERZ
INJECTIVE BANACH LATTICES WITH STRONG ORDER UNITS

GERHARD GIERZ

In this note it is shown that a Banach lattice with a strong order unit is injective (i.e. has the Hahn-Banach extension property for positive linear operators) if and only if \(E \) is a finite \(m \)-sum of spaces of the form \(C(X, l^n_\infty) \), where \(X \) is compact and extremally disconnected and where \(l^n_\infty \) denotes \(\mathbb{R}^n \) with the \(L \)-norm.

0. Introduction. In 1950–1952, a certain type of Banach space, called a \(P_1 \)-space, appeared in the literature. A \(P_1 \)-space is a Banach space \(G \) having the following extension property for linear maps:

Every bounded linear map \(\varphi: F \to G \) defined on a linear subspace \(F \subseteq E \) allows an extension \(\psi: E \to G \) such that \(\|\varphi\| = \|\psi\| \).

The classical Hahn-Banach theorem says that the one-dimensional space \(\mathbb{R} \) is a \(P_1 \)-space. From 1950–1952, D. B. Goodner [Go 50], L. A. Nachbin [Na 50] and J. L. Kelley [Ke 52] showed that a Banach space \(G \) is a \(P_1 \)-space if and only if \(G \) is isometrically isomorphic to a space of the form \(C(X) \), where \(X \) is an extremally disconnected compact topological space. One may say that \(P_1 \)-spaces are obtained by “spreading the real line continuously across a compact space.”

If one applies these ideas to Banach lattices, then of course one would wish to consider only positive linear maps \(\varphi \) and only linear sublattices \(F \subseteq E \).

Definition. A Banach lattice \(G \) is called injective provided that for every Banach lattice \(E \), for every linear sublattice \(F \subseteq E \) and for every bounded positive linear map \(\varphi: F \to G \) there is a positive linear extension \(\psi: E \to G \) such that \(\|\varphi\| = \|\psi\| \).

In 1975 H. P. Lotz [Lo 75] proved that all Banach lattices of the form \(C(X) \), \(X \) extremally disconnected and compact, are injective. But the class of injective Banach lattices exceeds the class of \(P_1 \)-spaces: Lotz also showed that \(AL \)-spaces, i.e., spaces of the form \(L_\lambda(\mu) \), are injective. Also in 1975, D. I. Cartwright [Ca 75] gave, among other results, a characterization of finite-dimensional injective Banach lattices: They are exactly the \(m \)-sums of finite-dimensional \(AL \)-spaces. As it turned out, injective Banach lattices in general are obtained by “spreading \(AL \)-spaces continuously...
across an extremally disconnected compact space,” i.e., by sections in certain bundles (see [Ha 77] and [Gi 77]). As bundle representations are sometimes viewed as “complicated,” this representation may not seem to be satisfactory. However, in this note we shall see that the bundle representation may be reduced to a much nicer description of injective Banach lattices if we require in addition a strong order unit. We shall prove the following main result.

Theorem. Let G be a Banach lattice. Then the following statements are equivalent:

(i) G is injective and has a strong order unit.

(ii) G is isometrically isomorphic to $C(X_1, l_1^n) \oplus \cdots \oplus C(X_m, l_m^n)$ where $m \in \mathbb{N}$ and:

(a) X_i is an extremally disconnected compact space, $1 \leq i \leq m$.

(b) $l_i^n = (\mathbb{R}^n, \| \cdot \|); \|(x_1, \ldots, x_n)\|_1 = |x_1| + \cdots + |x_n|$.

(c) For $u_i \in C(X_i, l_i^n)$ we have

$$\|u_1 \oplus \cdots \oplus u_m\| = \max\{\|u_1\|, \ldots, \|u_m\|\}$$

$$= \sup\{\|u_i(x)\|_1 | 1 \leq i \leq n, x \in X_i\}.$$

For notations and results concerning Banach spaces and Banach lattices, we refer to [Sch 71 and 74]; fundamental results and definitions concerning bundles of Banach spaces and bundles of Banach lattices may be found in [Ho 75] and [Gi 77 and 81]. We shall only consider real Banach lattices. The word “compact” as used in this note contains Hausdorff separation. The symbol $\Gamma(p)$ always denotes the set of all continuous sections in a bundle $p: \mathcal{E} \to X$.

1. **The bundle representation.** The starting point of our investigation is the following theorem.

1.1. **Theorem.** Let G be a Banach lattice. Then G is injective if and only if it is isometrically isomorphic to the Banach lattice $\Gamma(p)$ of all sections in a bundle $p: \mathcal{E} \to X$ of AL-spaces such that:

(a) X is extremally disconnected and compact;

(b) if $\sigma \in \Gamma(p)$ then $x \mapsto \|\sigma(x)\|: X \to \mathbb{R}$ is continuous (i.e., $p: \mathcal{E} \to X$ has continuous norm);

(c) if $\sigma: U \to \mathcal{E}$ is a bounded continuous section defined on an open set $U \subseteq X$, then σ may be extended to a global continuous section $\tilde{\sigma}: X \to \mathcal{E}$.
Maybe a few words concerning bundles are in order. The space of all sections in a bundle in our case alternatively can be described as follows:

Let X be a compact space. For every $x \in X$ let E_x be a Banach lattice. Then spaces of sections $\Gamma(p)$ may be characterized by:

(i) $\Gamma(p)$ is a closed linear sublattice of $\Sigma_{x \in X} E_x = \{ \sigma \in \prod_{x \in X} E_x; \sup\{ \|\sigma(x)\|; x \in X \} < \infty \}$, equipped with the sup-norm;

(ii) if $x \in X$ and $\alpha \in E_x$ are given, then there is a $\sigma \in \Gamma(p)$ such that $\sigma(x) = \alpha$;

(iii) the mapping $x \mapsto \|\sigma(x)\|: X \to \mathbb{R}$ is upper semicontinuous for every $x \in X$;

(iv) given $f \in C(X)$ and $\sigma \in \Gamma(p)$, then $f \circ \sigma$ defined by $(f \circ \sigma)(x) = f(x) \circ \sigma(x)$ belongs to $\Gamma(p)$, too (i.e., $\Gamma(p)$ is a $C(X)$-module).

Hence, spaces of sections in bundles are nothing but upper semicontinuous function modules in the sense of F. Cunningham and N. M. Roy (see [CR74]).

Of course, being a bundle of AL-spaces means that the Banach lattices E_x, $x \in X$, are all AL-spaces. It should be clear how the conditions (a) and (b) translate to upper semicontinuous function modules. The translation of (1.1.(c)) is less obvious.

Let $U \subseteq X$ be open. Let us call an element $\sigma \in \prod_{x \in U} E_x$ a bounded continuous section provided that for every continuous function $f \in C(X)$ with support in U (i.e., for which $f(x) = 0$ for all $x \in X \setminus U$) the element $\sigma_f \in \prod_{x \in X} E_x$ defined by

$$\sigma_f(x) = \begin{cases} f(x) \circ \sigma(x), & x \in U, \\ 0, & x \notin U, \end{cases}$$

belongs to $\Gamma(p)$. For compact spaces X, this definition coincides with the definition of local sections normally given by bundles.

Now condition (1.1.(c)) translates as expected. Thus, instead of talking about bundles of Banach lattice modules, the reader may wish to consider upper semicontinuous function modules, which should be possible without major problems.

2. Some results on bundles of Banach lattices. In order to prove the theorem stated in the Introduction, we need four partial results, which may be interesting in themselves.

2.1. Proposition. Let $p: \mathcal{E} \to X$ be a bundle of Banach lattices, X compact, and assume that \mathcal{E} is Hausdorff. (This is especially the case if $x \mapsto \|\sigma(x)\|: X \to \mathbb{R}$ is continuous for every $\sigma \in \Gamma(p)$.) If $x \in X$ and if
0 < \alpha_1, \ldots, \alpha_n \in E_x are mutually orthogonal, then there is a neighborhood \(U \) of \(x \) and continuous sections \(\sigma_1, \ldots, \sigma_n \in \Gamma (p) \) such that \(\sigma_i (x) = \alpha_i, \sigma_i (y) \neq 0 \) and \(\sigma_i (y) \wedge \sigma_j (y) = 0 \) for all \(y \in U \) and all \(i \neq j \).

Proof. Pick any sequence of sections \(\tau_1, \ldots, \tau_n \in \Gamma (p) \) such that \(\tau_i (x) = \alpha_i \) for all \(i \). We then define the sections \(\sigma_i \) by

\[
\sigma_i = \tau_i - \tau_i \wedge (\tau_1 \vee \cdots \vee \tau_{i-1} \vee \tau_{i+1} \vee \cdots \vee \tau_n).
\]

Then, for \(i \neq j \) we have

\[
\sigma_i \wedge \sigma_j = \left(\tau_i - \tau_i \wedge (\tau_1 \vee \cdots \vee \tau_{i-1} \vee \tau_{i+1} \vee \cdots \vee \tau_n) \right) \wedge \left(\tau_j - \tau_j \wedge (\tau_1 \vee \cdots \vee \tau_{j-1} \vee \tau_{j+1} \vee \cdots \vee \tau_n) \right) \\
\leq (\tau_i - \tau_i \wedge \tau_j) \wedge (\tau_j - \tau_i \wedge \tau_j) \\
= (\tau_i \wedge \tau_j) - (\tau_i \wedge \tau_j) = 0.
\]

On the other hand, \(0 \leq \sigma_i \) as \(\tau_i \geq \tau_i \wedge (\tau_1 \vee \cdots \vee \tau_{i-1} \vee \tau_{i+1} \vee \cdots \vee \tau_n) \) and therefore the \(\sigma_i \) are all positive and pairwise orthogonal. Moreover, \(\sigma_i (x) = \alpha_i \). As the \(\alpha_i \) are mutually orthogonal, we have

\[
\sigma_i (x) = \tau_i (x) - \tau_i (x) \wedge (\tau_1 (x) \vee \cdots \vee \tau_{i-1} (x) \vee \tau_{i+1} (x) \vee \cdots \vee \tau_n (x)) \\
= \alpha_i - \alpha_i \wedge (\alpha_1 \vee \cdots \vee \alpha_{i-1} \vee \alpha_{i+1} \vee \cdots \vee \alpha_n) \\
= \alpha_i - 0 = \alpha_i.
\]

Finally, as \(\mathcal{E} \) is \(T_2 \) and as \(\sigma_i \) and 0 are continuous sections which do not agree at \(x \), we can find a neighborhood \(U \) of \(x \) such that \(\sigma_i (y) \neq 0 \) for all \(y \in U, 1 \leq i \leq n \).

2.2. PROPOSITION. Let \(\mathcal{E} \to X \) be a bundle of Banach lattices over a compact base space \(X \). Assume that

\(\mathcal{E} \)

(b) the mappings \(x \mapsto \| \sigma (x) \| : X \to \mathbf{R} \) are continuous for all \(\sigma \in \Gamma (p) \);

(c) if \(\sigma : U \to \mathcal{E}, U \subseteq X \) open, is a bounded continuous section, then \(\sigma \) may be extended to a global continuous section \(\tilde{\sigma} : X \to \mathcal{E} \).

Then the mapping \(\dim : X \to \mathbf{R} \cup \{ \infty \}; x \mapsto \dim E_x \) is continuous, where \(E_x = p^{-1}(x) \) is the stalk over \(x \in X \).

Proof. We already know from (2.1) or [Gi 81] that the mapping \(\dim \) is lower semicontinuous. Hence the sets of the form \(\{ x : \dim E_x \geq n \} \) are open and we have to show that they are closed, too. Thus, let

\[
U_n = \{ x : \dim E_x \geq n \}.
\]
Then for every $x_0 \in U_n$ there are $0 < \alpha_1, \ldots, \alpha_n \in E_{x_0}$ which are pairwise orthogonal with norm 1. We therefore can find a closed neighborhood $V \subseteq U_n$ of x_0 and continuous sections $\sigma_i \in \Gamma(p)$ with $\sigma_i \land \sigma_j = 0$ for $i \neq j$ and $\sigma_i(x_0) = \alpha_i$. As $x \mapsto ||\sigma_i(x)||$ is continuous and $||\sigma_i(x_0)|| = ||\alpha_i|| = 1$, we may assume $||\sigma_i(x)|| \geq \frac{1}{2}$ for all $x \in V$. Therefore the mapping $x \mapsto ||\sigma_i(x)||^{-1}: V \to \mathbb{R}$ is well defined and continuous. Extend this mapping to a continuous function $f_i: X \to \mathbb{R}$. Then $f_i(x_0) = 1$ and hence $(f_i \circ \sigma)(x_0) = \alpha_i$. We now define new sections τ_i by

$$\tau_i := f_i \circ \sigma_i, \quad 1 \leq i \leq n.$$

Clearly $||\tau_i(y)|| = 1$ for all $y \in V$. Hence we have proved:

Every $x_0 \in U_n$ has a neighborhood V such that there exist positive pairwise orthogonal continuous sections $\tau_1, \ldots, \tau_n \in \Gamma(p)$ satisfying $||\tau_i(y)|| = 1$ for all $y \in V$ and all $1 \leq i \leq n$.

We now let

$$\mathcal{F} = \{(V, \sigma_1, \ldots, \sigma_n): V \subseteq U_n, V \text{ open}, \sigma_i: V \to \mathcal{E} \text{ is a continuous section,}$$

$$\sigma_i \land \sigma_j = 0 \text{ for } i \neq j \text{ and } ||\sigma_i(y)|| = 1 \text{ for } y \in V \}.$$

We order \mathcal{F} by

$$(V, \sigma_1, \ldots, \sigma_n) \leq (W, \tau_1, \ldots, \tau_n) \iff V \subseteq W \text{ and } \tau_{i_v} = \sigma_i.$$

Apply Zorn's lemma to find a maximal element $(U, \sigma_1, \ldots, \sigma_n)$ of \mathcal{F}. We claim

(1) $U_n \subseteq \overline{U}$, as otherwise we would have $U_n \setminus \overline{U} \neq \emptyset$. Pick $x_0 \in U_n \setminus \overline{U}$ and apply (*) to obtain an open set $W \subseteq U_n \setminus \overline{U}$ and continuous sections $\rho_i: W \to \mathcal{E}$ which are positive, pairwise orthogonal and satisfy $||\rho_i(y)|| = 1$ for $y \in W$. Let $U' = U \cup W$ and define

$$\sigma'_i(x) = \begin{cases} \sigma_i(x), & x \in U, \\ \rho_i(x), & x \in W. \end{cases}$$

We obtain $(U, \sigma_1, \ldots, \sigma_n) < (U', \sigma'_1, \ldots, \sigma'_n)$, contradicting the maximality of $(U, \sigma_1, \ldots, \sigma_n)$.

(2) $\overline{U} \subseteq U_n$. By property (c) we can find extensions $\overline{\sigma}: \overline{U} \to \mathcal{E}$ of σ. Now (b) implies $\overline{\sigma}_i(y) \land \overline{\sigma}_j(y) = 0$ and $||\overline{\sigma}_i(y)|| = 1$ for all $i \neq j$, $y \in \overline{U}$. Especially, for every $y \in \overline{U}$ the elements $\overline{\sigma}_1(y), \ldots, \overline{\sigma}_n(y) \in E_y$ are linearly independent, showing $\dim E_y \geq n$, i.e., $\overline{U} \subseteq \overline{U}_n$.

Now (1) and (2) mean $U = U_n$, i.e., U_n is closed.
2.3. Proposition. Let \(p: \mathcal{E} \to X \) be a bundle of finite-dimensional Banach lattices over a compact base space \(X \) and assume (b) and (c) hold. Then there are finitely many (possibly empty) open and closed subsets \(U_1, \ldots, U_n \subseteq X \) which cover \(X \) and have the property that \(E_y \) is \(k \)-dimensional for every \(y \in U_k \), where \(E_y = p^{-1}(y) \) is the stalk over \(y \). Moreover, the Banach lattice \(\Gamma(p) \) of all continuous sections of \(p \) is, up to an equivalent norm, isomorphic to the Banach lattice \(C(U_1, \mathbb{R}) \oplus C(U_2, \mathbb{R}^2) \oplus \cdots \oplus C(U_n, \mathbb{R}^n) \). In addition, if all stalks are \(AL \)-spaces and if we equip \(\mathbb{R}^k \) with the norm \(\| \cdot \|_1 \) given by \(\| (x_1, \ldots, x_k) \| = |x_1| + \cdots + |x_k| \), then this isomorphism is in fact an isometry.

Proof. Firstly, note that for every open and closed subset \(U \subseteq X \) the Banach lattice \(\Gamma(p) \) is isometrically isomorphic with \(\Gamma(p|_U) \oplus \Gamma(p|_{U \cap V}) \), where \(\Gamma(p|_U) \) denotes the Banach lattice of all continuous sections \(\sigma: U \to \mathcal{E} \). Hence it is enough to consider the case where \(X = U_n \) and \(U_1 = \cdots = U_{n-1} = \emptyset \). In this case let \((U, \sigma_1, \ldots, \sigma_n) \) be a maximal element of \(\mathcal{F} \), where \(\mathcal{F} \) is defined as in the proof of (2.2). Then actually \(U = X \), as we saw in the proof of (2.2). Thus we can find continuous sections \(\sigma_1, \ldots, \sigma_n \in \Gamma(p) \) which are mutually orthogonal and satisfy \(\| \sigma_i(y) \| = 1 \) for all \(y \in X \). Define a map

\[
T: C(X, \mathbb{R}^n) \to \Gamma(p),
\]

\[
\tilde{f} \mapsto f_1\sigma_1 + \cdots + f_n\sigma_n
\]

where the \(f_i \) are the coordinate functions of \(\tilde{f} \). Then \(T \) is linear. Moreover, an easy calculation shows

\[
|F(\tilde{f})(x)| = |f_1\sigma_1 + \cdots + f_n\sigma_n|(x)
\]

\[
= |f_1(x) \circ \sigma_1(x) + \cdots + f_n(x)\sigma_n(x)|
\]

\[
= |f_1(x) \circ \sigma_1(x)| + \cdots + |f_n(x) \circ \sigma_n(x)|,
\]

as the \(\sigma_i \) are mutually orthogonal,

\[
= |f_1(x)| \circ \sigma_1(x) + \cdots + |f_n(x)| \circ \sigma_n(x), \quad \text{as } \sigma_i(x) \geq 0,
\]

\[
= T(|\tilde{f}|)(x).
\]

Thus \(T \) is a lattice homomorphism.

Next, equip \(\mathbb{R}^n \) with the \(l_1 \)-norm \(\| \cdot \|_1 \). Then \(T \) is a contraction. Let \(\tilde{f} \in C(X, \mathbb{R}^n) \). Then we have

\[
\| \tilde{f} \| = \sup_{x \in X} |f_1(x)| + \cdots + |f_n(x)|
\]
and

\[\| T(\vec{f}) \| = \| T(\vec{f}) \| = \| T(\vec{f}) \| = \sup_{x \in X} |f_1(x)| + \cdots + |f_n(x)| \| \sigma_n(x) \| \]

Note that the only inequality occurring in the computation becomes equality, providing that every stalk \(E_x \) is an \(AL \)-space. Moreover, for every \(\vec{f} \in C(X, \mathbb{R}^n) \) we have

\[\| T(\vec{f}) \| = \sup_{x \in X} |f_1(x)| + \cdots + |f_n(x)| \| \sigma_n(x) \| \]

(\text{as } 0 \leq a \leq b \text{ implies } \|a\| \leq \|b\| \text{ in every Banach lattice})

\[\| T(\vec{f}) \| = \sup_{x \in X} |f_1(x)| + \cdots + |f_n(x)| \| \sigma_n(x) \| \]

showing that

\[\| T(\vec{f}) \| \geq \max\{\|f_1\|, \ldots, \|f_n\|\} \geq (1/n) \| \vec{f} \|. \]

This last inequality yields the injectivity of \(T \) and shows that the norm on \(C(X, \mathbb{R}^n) \) and the norm on \(\Gamma(p) \) restricted to the image of \(T \) are equivalent. Especially \(C(X, \mathbb{R}^n) \) being a Banach space, the image of \(T \) is closed in \(\Gamma(p) \). It remains to show that the image of \(T \) is also dense in \(\Gamma(p) \). Clearly, \(T \) is a \(C(X) \)-module homomorphism and therefore the image of \(T \) is a \(C(X) \)-submodule of \(\Gamma(p) \). Moreover, as the \(\sigma_1(x), \ldots, \sigma_n(x) \) form a base of \(E_x \), we have \(E_x = \{ T(\vec{f})(x) : \vec{f} \in C(X, \mathbb{R}^n) \} \). Hence, the Stone-Weierstrass theorem for bundles (see [Ho 75]) shows that the image of \(T \) is dense in \(\Gamma(p) \).

3. The proof of the theorem. In this last section we shall give a proof of the theorem stated in the Introduction. Let us begin with an injective Banach lattice \(G \) having a strong order unit \(u \). Then every quotient of \(G \) has strong order unit, too. Represent \(G \) as the space of all sections in a bundle of \(AL \)-spaces. As the stalks of a bundle with compact
base space are always quotients of the space of all sections, we obtain that all the stalks of the bundle used in (1.1) are AL-spaces with strong order units. Now an AL-space with strong order unit (in fact, every Banach lattice with strong order unit) is, up to an equivalent norm, isomorphic to a Banach lattice of the form $C(Y)$, Y compact. For an AL-space this can only be true if it is finite dimensional. Hence all the stalks of the bundle used in (1.1) have to be finite dimensional. Now an application of (2.3) provides us with a proof of (i) \Rightarrow (ii).

To verify "(ii) \Rightarrow (i)" we first recall from Cartwright's paper [Ca 75] that a sum of injective Banach lattices is again injective. Since a finite sum of Banach lattices with a strong order unit also has a strong order unit, it is enough to consider $C(X, l_1^n)$, where X is extremely disconnected. Clearly, the function $1: X \to \mathbb{R}^n$; $x \mapsto (1, \ldots, 1)$ is a strong order unit for $C(X, l_1^n)$. It remains to show that $C(X, l_1^n)$ is injective. We shall apply (1.1) to do so. Let $\mathcal{E} = X \times l_1^n$ and let $p: \mathcal{E} \to X$ be the first projection. Then p is a bundle and $\Gamma(p) = C(X, l_1^n)$. Moreover, if $U \subseteq X$ is open, then $\sigma: U \to \mathcal{E}$ is a bounded continuous section if and only if there are bounded continuous functions $f_1, \ldots, f_n: U \to l_1^n$ such that $\sigma(x) = (f_1(x), \ldots, f_n(x))$ for every $x \in U$. As X is extremely disconnected, each of the f_i has a continuous extension $g_i: X \to l_1^n$. Clearly $\tilde{\sigma} \in \Gamma(p)$ defined by $\tilde{\sigma}(x) = (g_1(x), \ldots, g_n(x))$ extends σ. Now (1.1) tells us that $\Gamma(p) = C(X, l_1^n)$ is injective.

References

Received May 3, 1982.

UNIVERSITY OF CALIFORNIA
RIVERSIDE, CA 92521
PACIFIC JOURNAL OF MATHEMATICS
EDITORS
DONALD BABBITT (Managing Editor) J. DUGUNDJI
University of California
Los Angeles, CA 90024
HUGO ROSSI
University of Utah
Salt Lake City, UT 84112
C. C. MOORE and ARTHUR OGUS
University of California
Berkeley, CA 94720

ASSOCIATE EDITORS
R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA
(1906–1982)

SUPPORTING INSTITUTIONS
UNIVERSITY OF ARIZONA
UNIVERSITY OF OREGON
UNIVERSITY OF BRITISH COLUMBIA
UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA
UNIVERSITY OF HAWAII
MONTANA STATE UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF NEVADA, RENO
UNIVERSITY OF UTAH
NEW MEXICO STATE UNIVERSITY
WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph must be capable of being used separately as a synopsis of the entire paper. In particular it should contain no bibliographic references. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California 90024.

There are page-charges associated with articles appearing in the Pacific Journal of Mathematics. These charges are expected to be paid by the author's University, Government Agency or Company. If the author or authors do not have access to such Institutional support these charges are waived. Single authors will receive 50 free reprints; joint authors will receive a total of 100 free reprints. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $132.00 a year (6 Vol., 12 issues). Special rate: $66.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics ISSN 0030-8730 is published monthly by the Pacific Journal of Mathematics at P.O. Box 969, Carmel Valley, CA 93924. Application to mail at Second-class postage rates is pending at Carmel Valley, California, and additional mailing offices. Postmaster: Send address changes to Pacific Journal of Mathematics, P. O. Box 969, Carmel Valley, CA 93924.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Copyright © 1984 by Pacific Journal of Mathematics
Robert A. Bekes, The range of convolution operators ... 257
Dennis K. Burke and Sheldon Davis, Subsets of $^{\omega}_{\omega}$ and generalized metric
spaces ... 273
Giovanni Emmanuele, A remark on a paper: “Common fixed points of
nonexpansive mappings by iteration” ... 283
I. Erdélyi and Sheng-Wang Wang, On strongly decomposable operators 287
Gerhard Gierz, Injective Banach lattices with strong order units 297
Maurizio Letizia, Quotients by complex conjugation of nonsingular
quadrics and cubics in \mathbb{P}^3 defined over \mathbb{R} .. 307
P. H. Maserick and Franciszek Hugon Szafraniec, Equivalent definitions
of positive definiteness ... 315
Costel Peligrad and S. Rubinstein, Maximal subalgebras of C^*-crossed
products .. 325
Derek W. Robinson and Sadayuki Yamamuro, Hereditary cones, order
ideals and half-norms ... 335
Derek W. Robinson and Sadayuki Yamamuro, The Jordan decomposition
and half-norms ... 345
Richard Rochberg, Interpolation of Banach spaces and negatively curved
vector bundles ... 355
Dale Rolfsen, Rational surgery calculus: extension of Kirby’s theorem 377
Walter Ian Seaman, Helicoids of constant mean curvature and their Gauss
maps ... 387
Diana Shelstad, Endoscopic groups and base change \mathbb{C}/\mathbb{R} 397
Jerrold Norman Siegel and Frank Williams, Numerical invariants of
homotopies into spheres ... 417
Alladi Sitaram, Some remarks on measures on noncompact semisimple Lie
groups ... 429
Teruhiko Soma, Atoroidal, irreducible 3-manifolds and 3-fold branched
coverings of S^3 ... 435
Jan de Vries, On the G-compactification of products 447
Hans Weber, Topological Boolean rings. Decomposition of finitely additive
set functions ... 471