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If X is a complex algebraic variety defined over R, complex conjuga-
tion in C induces an involution 7: X — X which we shall still call complex
conjugation. If X is nonsingular and of complex dimension 2, 7 is an
orientation preserving diffeomorphism and the quotient X /7 of X by 7 is,
as X, a naturally oriented smooth manifold without boundary. Qur aim is
to describe X/7, up to diffeomorphisms, in case X is a nonsingular
quadric or cubic in P2,

Our results can be summarized in the following:

PROPOSITION. If X is a nonsingular quadric or cubic in P defined
over R then X/t is, up to diffeomorphisms, obtained from the 4-sphere S 4
by a connected sum with copies of P2.

The proof is based on an analysis of the change of diffeomorphism
type of X /7 when X varies in a generic pencil of surfaces of degree d of P2
defined over R (see §2).

Our results can be seen as an extension of Kuiper’s theorem [3], which
says that P2 /7 is diffeomorphic to S*, in the direction of a discussion of
the general problem of describing the quotients by conjugation of nonsin-
gular surfaces of P2 defined over R.

A propos we remind the reader that the diffeomorphism type of the
real loci of such surfaces has been classified only when their degree is < 4
(actually in the degree 4 case there are still some lacunae [2]) and
practically nothing is known for higher degrees. Nevertheless we feel that
some general statements about the diffeomorphisms type of X /7 might
possibly be proved independently of such classification. For instance it
might turn out to be possible to single out in each degree d a reasonably
small set of manifolds such that every X/7 is obtained from one of them
by a connected sum with copies of P2. By the way we mention that in
degree 4 it seems that the set consisting of $? X S§? and PZ has this
property.

Anyhow before starting the proof of the proposition we want to recall
some general facts which place the particular cases we shall be dealing
with into perspective at least from a purely topological point of view.
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If X is any complex algebraic variety defined over R the natural
projection w: X — X /7 is a 2-covering branched along the real locus Xy of
X. If X is smooth connected with dim X, =2 and X #+ &, 7,: m(X) -
m(X/7) is surjective. The cohomology ring H*( X /7, F'), with coefficients
in any field F of characteristic 2, is mapped isomorphically by 7* onto
the subring of H*( X, F) consisting of the elements left fixed by =.
Moreover, one has, for each n = 0, estimates
(*) dim H(X/7,7(Xg), Z,) + X dim H(Xg,Z,) < > H(XZ,)

i=n i=n
provided by Smith theory ([1]). Whatever the characteristic of F, we have
the following relationship for the Euler-Poincaré characteristics:

(%%) x(Xg, F) =2x(X/7, F) — x(X, F).

If X is projective nonsingular, 7* maps C* forms of type ( p, ¢q) into
ones of type (g, p), and, in case dim: X = 2, #* maps the cohomology
class of a hyperplane section defined over R into minus itself. Hence we
have, in this case, dimy H'(X/7,R) = § dim H'(X,R) for i = 1 or 3. Let
us write

H*(X/r,R) = H}(X/7,R)" ®H*(X/1,R)”,

the sum being orthogonal with respect to the intersection form, this one
being positive definite on the first addend and negative definite on the
second. Since the intersection pairing of H?( X, R) is positive definite on
H*(X,R) N (H%( X, 22) ® H*( X, 0,)) and negative definite on the or-
thogonal complement of the hyperplane class in H?(X,R) N H'( X, @),
we have:

dimg H*(X/,R)" = dim H°( X, Q%)

(z (d; 1)ifXgPéofdegreed);

dimg H*(X/7,R)” <dimc H'( X, Q%) — 1
(=1@d® — 6d* + 7d) — 1if X C P2 of degree d).

Here @, denotes the sheaf of holomorphic i-forms on X. In particular if X
is a quadric or a cubic in PZ the intersection form is negative definite on
H*(X/1,R). Adding (**) and (), for n = 0, we get an estimate for the
number of connected components of Xy for a X C P of degree d, namely

dimy, HY(XaZy) <4|d> = 4d> +6a— 1= (47 1]]
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(compare [4]). On the other hand if we suppose X connected we must
have

dimg H'(Xg,R) <1(2d® — 6d* + 7d)

(actually we can add a —1 to the right side if 4 is odd; notice that this
estimate is in fact sharp if d = 2, 3).

Let us incidentally observe that if dim: X = 1 and X is of genus g, by
a previous remark we must have dimy H'(X/7,R) = g. Now the compo-
nents of Xy become boundary components of X/, and for any compact
smooth real surface S with boundary, dimy H'(S,R) + 1 is an upper
bound for the number of its boundary components so we get Harnack’s
theorem.

2. Let us parametrize as usual the set of all surfaces of degree 4 in
P defined over R by points of

| (SR
and let

AD ¢ pLIHI

be the discriminant hypersurface of the surfaces of degree d. If X, and X,
are parametrized by points belonging to the same topological connected
component of

pg“:")—l — A

there is a diffeomorphism ¢: X, - X, which commutes with 7 so that X, /7
and X, /7 are diffeomorphic. We now want to investigate what relation-
ship there is between X,/ and X,/t when X, and X, belong to two
different but adjacent components of

PLT — A,

We can assume there is a family {X,}, A €R, |A|<g, of surfaces
given in some affine system of coordinates by f(xyz) — A = 0 such that
X, is nonsingular for A # 0; X, has a unique singular point which is at
(0,0,0) and is a nondegenerate quadratic point; and X, is X, for any
A, <0 and X, is X, for any A, > 0.

Furthermore, if B; = {(x, y, z) € C*{|xf + |y + |z < 8}, we can
assume ¢ and & so chosen that there is a diffeomorphism between
X, — B; N X, and X, — B; N X, commuting with 7 and there is a diffeo-
morphism commuting with 7 of B; onto itself carrying X, N B, onto
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Y, N By, the family {Y,}, A € R, |A|< ¢, being given either by x> + y? +
z* = X (we shall refer to this as the first case) or by x2 + y2 — z2 =\
(second case). (Since f restricted to R® is real analytic, the Morse lemma
provides a real analytic change of coordinates in a neighborhood of
(0,0,0) in R® which reduces f to the quadratic part of its Taylor expan-
sion: this change of coordinates can be extended to a complex analytic
change of coordinates in a neighborhood of (0,0, 0) in C* which will serve
our purposes.)

Letus write x = x, + ix,,y =y, +iy,, z =2z, + iz, withx,, y, z, €
R. In the first case, and if A >0, x?> + y? + z?> = X\ is equivalent to the
system:

xit+yi+zf =N+ x5 4y + 23, X)X, ¥yt 22, =0,
and the map

( XN A
X1s X35 Vi» Y25 215 23) = D’ D’ D’ YY)

where D = A + x2 + y? + z2, exhibits Y, N By, if A is small enough, as
diffeomorphic to the tangent bundle TS? of a 2-sphere S?; through this
diffeomorphism complex conjugation becomes the involution of TS?,
which is the identity on the base and multiplication by —1 on the fibres.
Considering S? as P¢, TS? as the bundle associated to the sheaf Opy(2)
and the map Opy(2) — Opy(4) given by o > ¢°, we see that ¥, N By/7 is
diffeomorphic to the degree 4 complex line bundle over P.. If A <0 we
have again, in an analogous way, a diffeomorphism of Y, N B; with TS?;
this time, however, conjugation becomes the antipodal map on the basis
and minus the map induced on TS? by the antipodal map on the fibres so
that Y, N B,/ is diffeomorphic to the degree 1 disk bundle over Pg, i.e.,
to the normal bundle to P in PZ.

In the second case we also have a diffeomorphism of Y, N By with
TS?, but complex conjugation now becomes reflection around an equa-
torial plane on the base and minus the map induced by this reflection on
the fibres if A > 0, and a rotation of angle # on the base and minus the
map induced by such rotation on the fibres if A < 0, so that Y, N B/ is
diffeomorphic to a 4-ball B* if A > 0, and to the degree 1 complex line
bundle over P¢ if A < 0. If we also keep track of the orientations we see
therefore that in the second case there is an orientation preserving
diffeomorphism between X,/ and X,/7# P} — where as usual # stands
for the operation of connected sum and P2 for P2 endowed with the
orientation opposite to the standard one. In the first case we can only say
that X, /7 is obtained from X, /7 by removing a degree 1 disk bundle over
P} and putting in its place a degree 4 complex line bundle over P¢.
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3. Let us now deal with the first specific objective of this paper:
there are 3 connected families of nonsingular quadrics in P2 defined over
R, a representative of each, say Q,, Q,, O,, being given by the equation
X2+ x34+x2+x2=0, X2+ xI+x}—x2=0, x3+x3—xt—xi=
0, respectively. Itis Qg = &, Q. = S, Qs ~ Py X Py, where ~ stands
for “is diffeomorphic to”.

There is an algebraic isomorphism defined over R between Q,; and
Pl X P.. If we let complex conjugation act separately on the factors of
P. X Pl we get a group of order 4, G, of diffeomorphisms of this
manifold and we have:

P. X PL/G~Pl/r X P./Tr ~ B* X B*~ B*

(B'is the closed i-ball).

Hence we obtain a map P' X P! /7 - B* which exhibits P' X P! /7 as
a double cover of B* branched precisely along the boundary of B*: we are
so led to the conclusion that Q, /7 is diffeomorphic to the 4-sphere S*.

Considering the family x3 + x3 + Ax{ — x3 = 0 we get from §2 that
Q,/7 is diffeomorphic to S*#PZ, i.e. to P2. Again consideration of the
family x? + x2 + x? + Ax2 = 0 shows that Q, /7 is obtained from PZ by
removing a certain degree 4 complex line bundle over P and replacing it
with a degree 1 disk bundle over P}; actually we can describe the
complement of that degree 4 complex line bundle over P.. In fact
X, — X, N By is diffeomorphic to the normal bundle of the hyperplane
section at infinity which is, in this case, again diffeomorphic to TS?
through a diffeomorphism which carries complex conjugation into the
map which is the antipodal map on the base and minus the map induced
by the antipodal map on the fibres. This more or less already follows from
the fact that the degree of the normal bundle of the hyperplane section at
infinity equals its self-intersection, which in our case is 2, and the fact that
the hyperplane section at infinity has no real points. Anyhow we can
exhibit an explicit diffeomorphism with the stated properties between
Vo— {(1:0:0:0)} and TS? as follows: write X; = X! + iX? with X/ € R
and consider X, = (x{, x5, xi) (i = 1,2) as vectors of R’. The map ¢:
V,—{(1:0:0:0)} > R* X R® given by

S [ XiANX, xiX, + x3X,
(o 3% %) = | Ip A3 IR AKT |

where A stands for the ordinary vector product and || || for the ordinary
norm, has the desired properties. In conclusion we have that the comple-
ment in question is the degree 1 disk bundle over Pz and Q,/ is the
double of this bundle.
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Before passing on to deal with cubics we want to remark that it is
possible to give another proof of Kuiper’s theorem ([2]) in the following
way: if & Q3 - Q, is the blowing up of Q, in one of its real points P,
projection of Q; from P onto a complex plane defined over R induces a
morphism 7: Q, — PZ, defined over R, which is an isomorphism except
two complex lines, defined over R, of Q3 get contracted to two points. &
and 7 induce maps & Q,/r —» Q,/7 and 7: Q,/t - PZ/7 which are
diffeomorphisms except one or two submanifolds of Q3 /7, each diffeo-
morphic to a closed 2-ball, are contracted to points. This implies $* ~

Q,/1~ Q3/1~PZ/T.

4. Finally there are 5 connected families of nonsingular cubics in P2
defined over R ([5]). If we blow up in PZ 6 real points (in general
position), or 4 real points and 2 conjugate nonreal points, or 2 real points
and 4 conjugate nonreal points, or 6 conjugate nonreal points, we obtain 4
surfaces defined over R which we shall call, in order, C,, C,, C;, C,. There
is an isomorphism defined over R of C, with a nonsingular cubic of P¢,
defined over R, which we shall also denote C;. This isomorphism can be
constructed as follows: consider the linear space of all the cubic curves in
P2 passing through the six points in question. Since the configuration of
the six points is invariant under conjugation if a cubic passes through
them so will the conjugate: hence that linear space will have a basis
composed of cubics defined over R. If G,(x,, x|, X,), i =0, 1,2, 3, is such
a basis we consider the map

(xo: Xy - xz) —>(G0(x0, X15 x2)3 GI(XO’ X1 x2): ce :G3(x0, X5 xz))-

This map is, as easily seen, well defined on the complement of the set of
the six points and is therefore an open immersion; the closure of its image
will be a surface defined over R, since ¢ commutes with conjugation, and
will be in fact our surface C,. Let P2 be the variety obtained from P2 by
blowing up the six points: conjugation of PZ will extend to conjugation of
P2 and ¢ will extend to an isomorphism of P2 with C, which commutes
with conjugation. So C, will be diffeomorphic to P3: this manifold is
obtained from P} by replacing a disk around each of the real points which
are blown up with two copies of R? glued together by x’ = xy, y’ = 1/x,
i.e. with a Mobius strip. Hence we have that C,; is a connected compact
nonorientable real surface which has dimg H'(Cz,R) =8 — 2i (i =
1,2, 3,4). We shall call F, the family to which C, belongs.
Let C; be defined by

(%) 2x*+y P+ 22— x2+y?+ 22+ A=0

where A is any real number s.t. 0 <A < 1/27.
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Ifweputx’ =x + 1,y =y, z/ = z, (***) becomes:
2xP + P+ 2+ x?+y?+ 22+ A —1/27=0

and we know from §2 that the real solution locus of this equation has an
S? as component (for 0 < A < 1/27); on the other hand there is an ¢ > 0
s.t. if —e <A, <0 the cubic given by 2x> + y3 + z3 — px?* + y2 + 22 +
A, = 0 is nonsingular for 0 < p < 1. Now the real locus of 2x* + y* + z*
+ y2+ z2 4+ A, = 0 is diffeomorphic to P2 as seen by considering the
projection (x, y, z) = (y, z). It follows that Csz ~ Pz U S? (the union
being disjoint) and C; belongs to the remaining family F;. Also we see that
C; can be connected to a C, through a family which satisfies the condi-
tions of the second case envisaged in §2. If C; and C; belong to adjacent
families we must have, as we have seen, |x(C;g, R) — x(Cg,R)|= 2 s0
that F, can only be adjacent to F,_, or F,,,. Moreover since Cp is
connected for i < 4 when we connect through a family as in §2 an element
of F,_, with an element of F, for i <4 we must always be in the second
case. As in the above proof of Kuiper's theorem we can get at once
C,/t~ S* from this and from what we just remarked it follows that
C,/7 =~ connected sum of i — 1 copies of I_’é fori =2,3,4,5.

(One can also proceed directly if i =<4 since one has maps ¢;:
C,/t - P2/1 ~ S* which are diffeomorphisms except that 8 — 2i closed
2-disks and i — 1 l—’c2 get contracted to points.)

As a final remark we mention that a cubic surface

X4y + 2+ x4+ yP+ 22 +A=0

belongs to the family F, for A > 0 and to the family F; for -4,/27 <A <0.
So C;/7 can also be seen as obtained from C,/r by removing a degree 1
disk bundle over P} and replacing it by a degree 4 complex line bundle
over P_.

We wish to thank Professors H. Clemens and R. Stern for their most
helpful advice.
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