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DEREK W. ROBINSON AND SADAYUKI YAMAMURO

Let % be a Banach space, with norm 11 * II, ordered by a positive cone
Φ + and order the dual * * by the dual cone $ * . We prove that, if Q> is
orthogonally generated, each/ G % * has an orthogonal, and norm-unique,
Jordan decomposition / = /+ - / _ with/± G ®*,

if, and only if, the norm on % has the order theoretic property

||β|| = i n f { λ > 0 ; -λw < a < λt? for some u9 v e ® , } ,

when $ ] is the unit ball of ύΆ. Various characterizations of the canonical
half-norm associated with $ + are also given.

0. Introduction. Let ® be a Banach space with a positive cone ® +

i.e., a norm-closed proper convex cone, and introduce the dual cone ®* ,
in the dual®* of®, by

®* = {/ e «*;/(*) > 0 , α G ί f t + } .

It follows that ®* is a norm-closed convex cone and if ® + is weakly
generating in the sense that φ =%+ ~"®+, where the bar denotes the
closure, then ®* is proper. We shall call ® + orthogonally generating if
every α E ® admits a decomposition a — aλ—a2 with α,. ε ® + (/ = 1,2)
and

Clearly, every Banach lattice and the hermitian part of a C*-algebra have
orthogonally generating positive cones with aλ — a+ and a2 — a_ where
a ± denote the usual positive and negative components of a. »

In general, the cones ® + and Φ* define order relations on ® and %*
respectively. If α, b E $, one sets a>b whenever a — b E % + . Similarly,
if/, g E φ*, one sets/ > g whenever/- g £ ® * .

The main puφose of this note is to determine conditions under which
a general/E $* has an orthogonal norm-unique Jordan decomposition,
i.e., a decomposition of the foπn/ = / + —/_ with/^ E %% such that

(1) (Jordan decomposition) | | / | | = | | / + || + ||/_ ||;
(2) (Orthogonality) | | / + +/_ || - | | / + -/_ ||;
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(3) (Norm-uniqueness) If / = gx — g2 is another decomposition with
the property (1), then

| |/+II = 113,11 and | | /_ | | = ||g2l|.

Our principal result is the following:

THEOREM 1. If%+ is orthogonally generating, the following conditions
are equivalent:

1. For every a G φ

||α|| = inf{λ >: 0; -λu < a < λv, w, v G ©,},

where ©, denotes the unit ball of%.
2. Every f G ®* λαs an orthogonal norm-unique Jordan decomposition.
3. If a — aλ — a 2 is an orthogonal decomposition of a G ®,

where N is the canonical half-norm associated with % + .

Before giving the definition of half-norms, we note that condition 1 is
easily verified if % is the hermitian part of a C*-algebra. First set

||e||i = inf{λ > 0; -λu < a < λϋ, u,v G ®,}

and note that || α || ] < || α ||. Next adjoin an identity element 1 if necessary,
and remark that in principle this reduces II IIP But, if -λu < a < λt> with
w, ϋ G ® p then (1 - u) < (1 + α/λ) < 1 + t> and 0 < 1 + a/λ < 21.
Therefore, | |α | | < λ and IIall - Hall,.

The situation is quite different for order complete Banach lattices.
Theorem 1 then implies (see [7], Example 1.5) that ®* has such a Jordan
decomposition if, and only if, ® is an AM-space.

The proof of Theorem 1 is based upon the notion of a half-norm, i.e.,
a function N over % with the properties:

(Nl) 0 < N(a) < fcllαll for some k > 0,
(ti2) N(ax + a2) ^ N(aλ) + N(a2)9

(N3) 7V(λα) = λN(a) for all λ > 0,
(N4) N(a) V iV(-α) = 0 if, and only if, a = 0.
The existence of a half-norm over ® is equivalent to the existence of a

positive cone © + in Φ. In fact, if ΛΓ is a half-norm on ©, then

® + = {αG©;7V(-α) = 0}

is a positive cone. Conversely, if © + is a positive cone in ®, then
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defines a half-norm over $. Following Arendt, Chernoff and Kato [2] we
call this latter half-norm the canonical half-norm associated with %+ .
Note that it automatically satisfies

Half-norms are particularly useful for studying positive semigroups
[2], [3], [9], We derive various properties of half-norms in §2, after
discussing the Jordan decomposition property in §1.

1. The Jordan decomposition. Throughout this section, let % be a
Banach space ordered by a positive cone ® + and let TV be a half-norm
associated with % + , i.e., N is such that

« + = {a;N(-a) = 0}.

LEMMA 2. Let f be a linear functional on $ . If there exists a constant
a > 0 such that

f(a)<aN(a) for all a E $

then f is positive and continuous. Conversely, ifN is the canonical half-norm
associated with ® + andf E Φ* is positive, then

f(a) <\\J\\N(a) for all a E Φ.

Proof If f(a) < aN(a) for all a<Ξ<&, then -f{a) < aN(-a), and/is
obviously positive. But by condition (Nl),

\f(a)\<aN(a)V N(-a) < α£||α||

i.e., / is continuous. Conversely, if / E $* is positive and N is canonical,
we choose bn E φ + such that || a + bn \\ < N(a) + \/n. Then,

f(a) <zf(a + bn) <||/1| ||α + bn\\*\\

, / ( ) / ( )
We denote by ®* the set of all / E $ * such that /(α) < iV(α) for all

flE®. The importance of this set is due to the following TV-extension
theorem

LEMMA 3. For every a E φ, ίλere exists f E $ * ŵcΛ that f(a) - N(a).

Proof. We may assume that TV(α) T^ 0. Let 911 be the linear space
spanned by a and define a linear functional g on 9H by

for all £ E R.
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Then, it is easy to see that

g(b)<N(b) forallZ>E9ΐt.

It now follows from the subadditivity and homogeneity of N that g has a
linear extension / to % satisfying the properties of the lemma (see, for
example, [4], pages 65-66).

We remark that this lemma implies

N(a) = sup{ /(a); f £<$>%}.

Next, we define the conjugate N* of N by

N*(f) = sup{f(a);a<Ξ<$>+9\\a\\<l}

for every/ E ®*. Then, N* has the following properties;
(Nl) O < # * ( / ) ^ | | / | |
(N2)* N*(f + g) < N*(f) + N*(g)9

(N3)* N*(λf) = \N*(f) for λ > 0.
In order that N* is a half-norm on <$* it must also satisfy the condition

(N4)* N*(f) V N*(-f) = 0 if, and only if, / = 0.
For this we need an assumption on the positive cone ® + . The positive
cone %+ is said to be generating if every a E % has a decomposition
a — aλ — a2 with at E Φ + (/ = 1,2). Ando [1], has proved that when ® +

is generating there exists a constant p > 0 such that each a E.% has a
decomposition a — aχ — a2 with Λf E ©+ (/ = 1,2), and

When this is the case, we shall say that ί&+ is p-generating.

LEMMA 4. When %+ is generating, N* is a half-norm on %* and, for
f E %*Jis positive if, and only if, N*(-f) = 0.

If(S)+ is ̂ -generating then

Proof. If N*(f) + N*(-f) = 0, we have f(a) = 0 when α > 0 or
a < 0. Since Φ + is generating, this implies / = 0 and, hence, iV* is a
half-norm on ®*. It is obvious that N*(-f) = 0 if / is positive. The
converse follows from

-f(a)<N*(-f)\\a\\ fora >0.

Now, to prove the last statement, assume that a > N*(f) + ΛΓ*(-/) and
choose αf. (/ = 1,2) such that a - aλ + a2, N*(f) < «j and N*(-f) < a2.
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Then, for every a E % and its decomposition a — aλ — a2 with α . G S +

( ί = 1,2),

and

-/(«) =/(β2) -/(«.) < «ιlMI + «2ltall

Therefore,

\f(a)\< aιP\\a\\+ a2p\\a\\< ap\\al

and, hence, II /1 | < ap.

We remark that, if every element of ® admits a Jordan decomposition
one has | | / | | = N*(f) + N*(-f).

Now, we start the proof of Theorem 1. We begin with a result of
Grosberg and Krein [5].

LEMMA 5. (Grosberg-Krein). If N is the canonical half-norm associated
with %+ the following two conditions are equivalent;

(1) | |α | | =N(a)V N(-a) for alia E ®.
(2) Every element of%* admits a Jordan decomposition.

Proof. Assume that the condition 1 holds and set P — {/E<$*;
11/1| < 1, />: 0}. Then, since ®£ C P, we can conclude from Lemma 3
that the polar P° of P coincides with the closed unit ball ©j of %. Hence,
the closed unit ball ®* of ®* coincides with the bipolar P00. Therefore
Grothendieck's argument [6] leads us to condition 2. Conversely, if
condition 2 holds and N(a) V N(-a) < 1, we choose an arbitrary / E ®*
such that 11/1| = 1. Then, for / ± > 0 such that / = /+ -/_ and
II/+II + II/Jl, we have

| / + ( n ) | ^ | | / + | | and | /_(α) |< | | /_ | |

In fact, since N is canonical, we can find b,c E ® + such that

||β + 6 | | < l and ||-α + c | | < l .

Then,

f+(a)<f+(a + b)<\\f+\\ and -/+ (a) </ + (-a + c) <||/

Therefore, | / + ( f l ) | < II/+II. Similarly, \f_{ά) | < II/_ II. Then, |
\f+{a) I + | / _ ( a ) I < 11/II = 1 and, hence, | | α | | < 1.
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It was proved in [7], Lemma 1.1, that the canonical half-norm N

associated with %+ satisfies

N(a) = inf{λ > 0; a<λu,u E ©,}.

Therefore, condition 1 in Theorem 1 is another expression of \\a\\ = N(a)

V N(-a). Hence, by the Grosberg-Krein theorem, Lemma 5, every ele-

ment of ®* admits a Jordan decomposition. We are going to show that

this decomposition is orthogonal and norm-unique. Note that, if ® + is

orthogonally generating, it is 1-generating.In fact, if a = aλ — a2 is an

orthogonal decomposition, then, since | |α | | = | | α 1 + Λ 2 | | ,

which implies HαJI^Hflll. Similarly, | | α 2 | | < | | α | | . Therefore, the follow-

ing two lemmas, together with Lemma 5, prove that condition 1 implies

condition 2 in Theorem 1.

LEMMA 6. Assume that Φ + is \-generating and f — /, — f2 is a Jordan

decomposition off E ®*. Then \\ /, || = N*(f) and \\ f21| = iV*(-/).

Proof. By Lemma 4, we have

!/1| <7V*(/)+7V*(-/).

On the other hand, we have N*(f) < II fλ II, because

if a > 0 and IIa II < 1. Similarly, JV*(-/) < II / 2II. Then, since II / II = || /, II

+ II/2II, we must have N*(f) = | | / , | | and N*(-f) = | | / 2 I | .

LEMMA 7. Assume that %+ is orthogonally generating andf — /, — f2 is

a Jordan decomposition off E %*. Thenfx andf2 are orthogonal, i-e.,

II/.+/2IIHI/11 - / 2 I I

Proof. Let β = aλ — a2 be an orthogonal decomposition of a E $ .

Then

Hence,
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which implies | | / | | < ||/j +/2II. On the other hand, if follows from the
definition of Jordan decomposition that II /, + f21| < || fx \\ + \\ f21| = || /1 | .
Therefore/, and/2 are orthogonal.

Next, we prove that condition 2 implies condition 3 in Theorem 1.
First, we note that we have

\\a\\ = N(a)VN(-a)

by Lemma 5. Now, let a = aλ — a2 be an orthogonal decomposition.
Then, as we have shown above, we have HαJI < | | α | | (ι = 1,2). On the
other hand, since a < al9 we have N(a) < N(aγ) < \\ax\\ and, similarly,
# ( - * ) < II a21|. Hence,

\\a\\>\\ax\\V\\a2\\>N(a)VN(-a)=\\al

That condition 3 implies condition 1 in Theorem 1 is trivial.

2. Half-norms. Let © be an ordered Banach space with a positive
cone ® + . The equality

N(a) = inf{||α + b\\ b E ® + } = inf{λ > 0 ; β < λ w , w G ®,}

referred to in §1, gives an order theoretic characterization of the canonical
half-norm iV associated with % + .

The next theorem gives a criterion for another order theoretic char-
acterization of N.

THEOREM 8. The following conditions are equivalent:
(1) N(a) = inf{λ > 0; a < λw, ti G ®, Π ® + },
(2) For eαcΛ ε > 0 α«c/ a E © /Λere ώ α decomposition

a-a+ -a_ with a± E ® βwrf||α+||< (1 + ε)||fl||.

Proof, Assume that condition 1 holds. If ε > 0 and a E ©, there is
M G S , Π 8 + such that α < Λ^(β)(l + ε)w. Hence, a = a+ ~a_ with
α + = Λ^(α)(l + ε)u and α_ = α + -a. But, | | α + II < N(a)(l + ε) <
(1 + ε)|| α||. Conversely, assume that condition 2 holds. If a<λu with
w E ® + and w has a decomposition u — u+—u_ with w± E ® + and
|| w+ II < 1 + ε, then α < λw+ and,

iV(α) < inf{λ > 0 ; f l < A M , w E ® , n ® + } < ( l + ε)ΛΓ(α).

Since this estimate is valid for all ε > 0, one has the desired identification.
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It was proved in [7], Proposition 1.6, that condition 2 with ε = 0 is
implied by the following three equivalent conditions:

(i) There i s a w E ® , such that

(ii) ©j has a maximal element u,

(iii) there is a u G Φ 1 such that N = Nu, where

JVM(fl) = i n f { λ > 0 ; α < λ w } .

COROLLARY 9. // (®, ® + ) /s /Ae rfwα/ o/ α« ordered Banach space %*

with positive cone ® * + and if N is the canonical half-norm associated with

Φ + , then the following conditions are equivalent:

(1) N(a) = inf{λ > 0; a < λu, u G ®, Π « + },

(2) eαcΛ α G ® Λoy α decomposition a — a^— α_ wίίλ α ± G ®

Proof. In view of Theorem 8, we only need to show that condition 1

implies condition 2. Now, if condition 1 holds, it follows from Theorem 9

that for ε > 0 and a G % there is a uB^%λn %+ such that a <

7V(α)(l + ε)we. But ®, Π %+ is weak* compact and hence uε has a weak*

limit point u. Therefore

N(a)u(ω) = lim JV(α)(l + ε)wε(ω) > α(ω)

for all ω G ©„,+ and Λ < N(a)u by the definition of a dual cone. Now,

a- a+ -a_ with α + = iV(α)w G ^δ + , a_ - a+ -a G ® + , and | | Λ + || <

ΛΓ(Λ)<||α| | .

If ® is either a Banach lattice or the hermitian part of a C*-algebra,

then each a G % has a canonical decomposition a — a+—a_ into positive

and negative components a± G $ + [8], [4]. In both cases, however \\a±\\

< IIall and hence the canonical half-norm has the order theoretic char-

acterization given by condition 1 of Theorem 8.
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