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ENDOSCOPIC GROUPS AND BASE CHANGE C/R

D. SHELSTAD

We consider a real reductive group G with complex points G(C),
Galois automorphism o, and real points G(R) = {g € G(C): a(g) = g}.
In general, an irreducible admissible representation II of G(C) equiva-
lent to its Galois conjugate IT o o need not be a lift from G(R), even if G
is quasi-split over R. Following the results of L-indistinguishability we
might expect this phenomenon to be related to the fact that o-twisted
conjugacy on G(C) need not be ‘“stable”, and therefore attempt to match
the various ‘‘unstable” combinations of o-twisted orbital integrals on
G(C) with stable orbital integrals on certain groups H(R). The principle
of functoriality in the L-group would then suggest, with reservations in
the nontempered case, a relation between the o-twisted characters of
representations of G(C) fixed up to equivalence by ¢ and the ‘‘dual lifts”
to G(C) of stable characters on the groups H(R).

In this paper we define the relevant groups /... they turn out to be
the endoscopic groups from L-indistinguishability. .. and prove a match-
ing theorem for orbital integrals. As a preliminary to the proposed dual
liftings of characters we also study the ‘“factoring” of Galois-invariant
Langlands parameters for G(C).

1. Introduction. We begin with two simple examples. Let G(C) =
C~*and o(z) =z, z € C*, so that G(R) = {g € G(C): o(g) = g} is the
unit circle in C*. A quasicharacter on C* fixed by o, i.e., trivial on the
positive reals, need not be of the form z —» x(za(z)) = x(z/z), with x a
character on the unit circle. At the same time z € C”* is stably o-conjugate
to —z, but not o-conjugate (see [Sh6] for definitions). Let f € C*(C~)
and write f(r, 6) for f(re'?). Set H, = H, = G, so that H(R) = S". Let

1) =25 ["(f(r,6/2) + f(r, 872+ m)) dr/r
0
and
fe®) =5 [“(f(r.0/2) = f(r,0/2 + w)) dr/r
0

for —m <0 <. Then both f, and f, extend smoothly to S'. If x is a
character on S' then f— ["_x(e)f,(e’)df is a distribution on C*
representing the usual lift of x to G(C), i.e., representing the quasichar-
acter z = x(zo(z)). On the other hand, f - [™_ x(e®)f(e®) d6 lifts x to
the quasicharacter z = re’® - x(zo(z))e?®. We have therefore recovered
the remaining Galois-invariant quasicharacters on C~*.

397
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For a general group, however, there are difficulties more akin to those
for L-indistinguishability. Consider G = SL,. Let

— _| cos@ siné
H(R) = [r(ﬂ) ‘[ —sinf cos 0]} ’
Note that if § = 0 (mod 7) then r(8) and (6 + 7) are stably o-conjugate
in G(C) but not o-conjugate (see [Sh6, Lemma 2.5.2]). For f € C(SL,(C)),
define

fu(r(8)) = /(e — e~ ?)(®7(6/2) + ®7(0/2 + 7)),

for —7 < 0 < &, where

o — —1y 98
o7(6) = [ v COUOL
dg denoting a Haar measure on G(C) = SL,(C). It can be shown that f;,
extends to a C* function on H(R). Then f - [y g, X fy is a distribution on
SL,(C) (see [Sh6, §5.4] for an explicit formula). L. Clozel has shown that
this distribution is, up to a constant, the twisted character of a Galois-fixed
equivalence class of representations of SL,(C). It is easily verified that all
such classes of (irreducible, admissible) representations of SL,(C) which
are not lifts from SL,(R) are lifts in this way.

Returning to the general problem, we find it convenient to consider
G(C) as the group of real points on a group G, and ¢ as the restriction to
G(R) of an algebraic automorphism a of G (cf. §2). Also, since (G, a) is
our starting point, rather than G itself, we may as well assume that G is
quasi-split over R.

In this paper we will be concerned with the matchings for a-twisted
orbital integrals on G(R); this includes the problem of determining what it
1s they should match. Theorem 7.1 is our main result, and §§2 to 6 are
preparation for it. Also, as both a check on our definitions and a
preliminary to the proposed dual liftings, we will consider the question of
“factoring” Galois-invariant Langlands parameters for G(C) or, equiva-
lently [L1] a-invariant parameters for G(R). Theorem 8.1 is the main
result.

In [Sh6] we started a study of the matching problem for a-twisted
orbital integrals. We found that, despite various “technical” difficulties,
the jump formulas for twisted orbital integrals on G(R) are closed related
to those for ordinary orbital integrals on G(R). Making convenient
technical assumptions, we then put together a matching theorem involving
the endoscopic groups from L-indistinguishability. In this paper we start
afresh, making none of the technical assumptions of [Sh6]. We first define
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the notion of endoscopic group for (G, ). This turns out to be the same as
the notion of endoscopic group in L-indistinguishability [L3], [Sh4].
However, there is new information in the data for an endoscopic group H
for (G,a) and it is this information which allows us to formulate a
matching theorem without the assumption (4.3.2) of [Sh6]. Moreover in
relating the embeddings “H =G relevant to our present problem to the
embeddings “H =>ZG from L-indistinguishability we find a remarkable
quasicharacter on H(R) =~ H(C) which allows us to dispense with the
“cross-section for the norm” in [Shé] (cf. Lemma 6.4).

As always, the twisted orbital integrals must be normalized. The
normalization factors will be written in a form suitable for global applica-
tions [L3] and, more specifically, in a form to reflect the connection with
L-indistinguishability for real groups. The proof of Theorem 7.1 itself
relies heavily on the proof of the matching theorem for L-indistinguisha-
bility (see [ShS] for an outline of the latter proof).

We will follow the notation of [Sh1]-[Sh7] as closely as possible,
especially with respect to L-group data. However, we now write G(C) and
G(R) in place of G and G. The definitions in this paper may be presented
in greater generality (cf. [Sh7]); in the general case there is no such
intimate tie with L-indistinguishability.

2. The groups G, G and the automorphism a. Let G be a connected
reductive linear algebraic group defined over R. Assume that G is quasi-
split over R. In fixing the usual L-group data, we take G itself for G*, a
quasi-split inner form of G, and the identity map for ¥, an inner twist
from G to G*. Then B* will be a Borel subgroup over R in G, and T* a
maximal torus over R in B*. We form the dual (*G°,“B°, £T°, { X,}) with
r € 2(*B°,LTY), the set of simple roots of ZT° in ZBC. In fact it will be
convenient to have fixed a root vector X,, for any root r of “T? in LG°.
We therefore fix a Chevalley basis and take for { X, r € Z(“B°,*T?)} the
vectors so provided. Then “G =£G° X W, with o, denoting the action of
1 X o € W on “G° See [Sh 3, 4, or 5] for further explanation of the
notation.

Let G be the group obtained from G by restriction of scalars from C
to R. We realize G as G X G with Galois automorphism gz (x,y)
(05(y), 65(x)). Then B* = B* X B* will be the distinguished Borel sub-
group defined over R and 7* = T* X T*. We realize the L-group “G of G
as follows. Set “G®="G®X%G® LB®=LB®XLB® LTO=LT0xLTO
X, = (X, X,) for all roots r, r’ of 7% in “G° and define o
LG® LG by os(g, h) = (o4(h), 0,(g)), g h €GO Then LG =LG° X W,
with C* X 1 acting trivially and 1 X o by og.
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Let a: G —» G be the automorphism (x, y) = (y, x). We take the
standard dual automorphism (cf. [Sh7]) of a, and denote it by a also.
Thus:

al(g,h) Xw)=(h,g) Xw, g hec’,wew.

3. Endoscopic groups for (G, «). The following is a special case of
the definitions in [Sh7]. Let s €.G°. Then we set N(s) = sa(s),
Cent(N(s),“G%) = {g €LG°: g~ 'N(s)g = N(s)} and Cent(s,tG°) =
(g ELG°: g7 'sa(g) =s). Call s a-semisimple if Cent(s,~G°) is reduc-
tive. In §4 we will observe that s is a-semisimple if and only if N(s) is
semisimple (cf. Lemma 4.2). Let Z" be the group of W-invariants in the
center of “G°. Thus Z¥ =*G° N Center(*G) = {(g,0,(g)) X 1 X l: g €
Center(*G°)}. Also

Cent (sz,%G°) = Cent (5,G°), s€LG° z€2Z¥.

We will now use s to denote a coset of Z¥ in *G° and Cent (s,%G°) to
denote Cent (a, LG®) for a in the coset s. Following [Sh7], we consider

tuples
(S’ LHSO’ LBsO’ LI;O’ {Y} H ps)

where
(i) s €LGV s a coset of Z" consisting of a-semisimple elements,

(ii) “H? = (Cent (5, %G"))°,

(iii) “B? is a Borel subgroup of “H?,

(iv) 7% CtB? is a maximal torus in “H?,

(v) {Y} is a set of root vectors for the simple roots of “7.° in “B?,

(vi) p: W - Aut(*H?,“B%,'T° {Y}) is a homomorphism which
factors through Gal(C/R) and is “realized in Cent (s,%G)”, i.e. p(w) =
ad n(w) |y, w € W, for some n(w) €LG® X w such that
n(w) 'aa(n(w)) = a for each a in the coset s.

Let “H, ="H? X W, the action of W on “H being that defined by
p,. Often we will write o, for the automorphism p(1 X o), and abbreviate
(s,“HY?,...,p,) by (s, tH,).

Two tuples

(s,2H®,*BO,tT°, (Y}, p,) and (s',"HS,'B% LT, {Y"}, p,)
are equivalent if there exists g €GP such that “HC = g7 "*H?g, ‘B% =
g 'IB%, LT® = g 'LT% (Y} = {Ad g \(Y)) and if n(w) €
Cent (s, “G) realizes p(w) then g~ 'n(w)g lies in Cent (s’,~G) and real-
izes p,(w), w € W. The set of all equivalence classes will be denoted
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&(G, a). Using the results of the next section and Lemma 2.3.3 of [Shd],
we may show that &(G, «) is a finite set. Since this fact will not be needed
we omit the proof.

Finally, we call a quasi-split group H over R an endoscopic group for
(G, @) if some “H, as above is an L-group for H.

4. The relation between endoscopic groups for (G, a) and endoscopic
groups for G. By the endoscopic groups for G we mean the groups “H”
of [Shd], i.e. essentially the groups of [L1]. The set S(G), or S(G, 1) in the
more general notation of [Sh7], and the tuples used in its definition will be
taken from [Shd4] (.. .there is a small difference in the definitions of [L3]).

We embed “G “diagonally” in “G, i.e. by themap g X w — (g, g) X w,
g €LG®, w € W, and will frequently identify *G with its image in *G. As
in [Shd], Z" will denote the set of W-invariants in the center of G°.

By an a-conjugacy class in “G°, we will mean a set {g 'aa(g);
g €XG°), where a €LG°.

LEMMA 4.1.

(i) Each a-conjugacy class in “G° contains an element of the form
(x,1), x €L£G°

(ii) For x €LGY, Cent ((x, 1), ’G°) = Cent(x, LG°).

Here, of course, Cent(x,“G°) has been identified with its image in *G
under the diagonal map.

Proof. Let a = (g, 8,) €"G°, g =1(l,8,). Then g 'an(g) =
(1, g5 ") g1 8)(g25 1) = (g,8,, 1), so that (i) is proved. (ii) is also a simple
calculation.

LEMMA 4.2. a €GO is a-semisimple if and only if N(a) = aa(a) is
semisimple.

Proof. Let a €G°. Choose g €G° such that g~ 'aa(g) = (x, 1), for
suitable x €“G°. Then
Cent,(a,tG°) = gCent ((x,1), “G%)g™"' = gCent(x,7G)g™".
On the other hand, N(a) = g(x, x)g~ !, so that
Cent(N(a),tG°) = g(Cent(x,%G°) X Cent(x,%G%))g"".

The lemma then follows from standard facts.
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LEMMA 4.3. Let s be a coset of Z" in “G° consisting of a-semisimple
elements. Then there exists g €G° such that s' = g~ 'sa(g) has the prop-
erty that {aa(a): a € s’} is contained in “G°. Then {aa(a): a € s’} is
contained in a unique coset of Z" in *G°. This coset, to be denoted N(s’),
consists of semisimple elements.

Proof. Let a € 5. Choose g €-G° such that g™ 'aa(g) = (x, 1), where
x €G° is semisimple. Let s’ = (x,1)Z%. Then if b €s’, ba(b) =
(x, x)(z0,(z), zo5(z)), for some z € Cent(*G°). Thus, with our identifi-
cations, ba(b) € xZ", a coset of Z" in LG° consisting of semisimple
elements. The rest is clear.

LEMMA 4.4. Each element of ©(G, &) has a representative (s, “H.) such
that (N(s),“H,) is a representative for an element of ©(G) i.e. such that
{aa(a): a € s} is contained in “G°® (...so that N(s) is defined), “H
coincides with (Cent(N(s), G°))°, and p, is “realized in Cent(N(s),"G).”

Proof. We may take s = (x, 1)Z", some x €-T°. Then N(s) = xZ"
and Cent (s,"G°) = Cent(N(s),*G®). We may also assume that 27,0 =
Lo, EBY =LBO NIH?Y (...T° and “B° being identified with their images
in £G°) and that {Y} = {X.: r € 2(:B° NLH’,'T")}. Then p, is a
homomorphism of W into Aut(*H?,“B° N*H?,*T° {Y}). Suppose
that p(w) = ad n(w) |0, where n(w) €LG° X w satisfies
n(w)™(x, Da(n(w)) = (x, l)s(cf. (vi) in §3). Then n(w) ™ !(x, x)n(w) =
(x, x). Also, if n(w) = (n(w), n,(w)) X w then calculation shows that
for w € C* X 1 we have n(w) = n,(w) lies in the center of “H? and for
w=1Xo we have n(w) = xn,(w). Thus for all w &€ W, p(w) =
ad m(w) |t ;0 where m(w) = (n(w), ny(w)) X w €LG. Also, m(w) central-
izes (x, x).yThus p, is “realized in Cent(N(s),“G)” and the lemma is
proved.

LEMMA 4.5. The correspondence in Lemma 4.4 induces a map

€N:&(G,a) - S(G).

Proof. We have to show that if (s, “H,) and (s, “H_) are as in Lemma
4.4, representing the same element of &(G, a), then the 5-tuples defining
LH_and “H_ are conjugate under “G°. They are conjugate under G, by
definition. It is easily checked that this conjugation may be replaced by
one from *G°.



ENDOSCOPIC GROUPS AND BASE CHANGE C/R 403

The map 9 need not be injective, as the example that G is a compact
torus shows. However 9U does have finite fibers (which implies that
©(G, a) is finite, as asserted in the last section). Reversing the construc-
tion in the proof of Lemma 4.4 shows that 9U is surjective.

5. Allowed embeddings of “H, in /G. Fix an element of &(G, a),
with representative (s,“H,) chosen as in the proof of Lemma 4.4. In
particular, s = (x, 1)Z%, x €'T° and 'H® = (Cent (s, *G°))° =
(Cent(N(s),“G°))°. We may further assume that “H? is in standard
position (cf. [Sh3, §2.2, Ex. 4.3.1]).

Suppose that & “H, =>%G is an admissible embedding, as in L-indis-
tinguishability [L1], [Sh3]. Here we regard “H? as a subgroup of “G° yet
to be embedded diagonally in “G°, and assume that ¢|. go 18 the inclusion
map. The “diagonal” embedding of G in G then yields an embedding of
LH_ in LG, again denoted &. Explicitly, £ is of the form:

ghx1xX1)=(h,h)X1X1, helH?,
(1 Xz X 1) = (&y(2), &(2)) X 2 X 1, z €,

where £, C* - Cent(“H?) is a homomorphism satisfying £.(Z) =
a(§,(2)),z € C*, and

£¢(1 X 1Xo)=(ny,n,) X1Xo,

where n, €°G° normalizes T, nyo,(ny) = &y(—1) and ny X 1 X ¢ €LG
acts on “H? as o, = p(1 X 0). It follows immediately that &*H,) C
Cent(N(s),“G). However, our present problem dictates (cf. §8) that we
consider embeddings for which the image of “H, is contained in
Cent (s, “G). That this is a quite different condition is indicated even by
the example that G is a compact torus.

DEFINITION 5.1. Let (s,“H,) be a representative for an element of
S(G, ). Then & LH, =G is an allowed embedding if:
(i) £ is an admissible homomorphism, i.e. £is a homomorphism such
that §*H? X w) CLEG® X w,w € W,
(ii) on LHY?, £ is the inclusion mapping, and
(iii) £(*H,) C Cent (s, -G).

We return to our choice s = (x, l)Z~ W, etc. Once again it is more
convenient to regard “H? as a subgroup of *G° yet to be embedded
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diagonally in G°. Then an allowed embedding &: “H, =>*G is of the form:
EhXx1x1)=(h,h)X1X1, heLH?,
E(1xzxX1)=(&(2),%(2)) XzX1, z€C

where £, satisfies the same conditions as £, earlier, and
(1 X1Xo)=(xmy,my) X1Xa

where m, €-G° normalizes “T°, xmo5(m,) = &,(—1), and my X 1 X ¢
€LG acts on “H? as o, (... then also xm, X 1 X ¢ acts on H? as o,, as
we have already used in the proof of Lemma 4.2).

Let “H? =LH® X'H?. We of course regard “H° as a subgroup of
LG®. Define an action of W on “H? by requiring C* X 1 to act trivially
and 1 X ¢ to act by the automorphism (4, h,) > (o(hz) o(h)). If *H,
is the L-group of H then “H, is the L-group of H = Res§ H.

LEMMA 5.2. Let £ be an allowed embedding of “H, in LG and & be an
admissible embedding of “H, in 'G CLG. Then

EhXw)=a(w)é(hXw), heH, weW,
where a(w) is a 1-cocycle of W in Cent(*H?).

Proof. This follows easily from our explicit description of £ and £. The
details are omitted.

Suppose that £, £ are both allowed embeddings of ZH, in “G. Then
(w) = b(w)&(w), w € W, where w — b(w) is a 1-cocycle of W in the
center of “H? embedded diagonally in “G°. We conclude then that the
image of “H, under an allowed embedding is independent of the choice of
embedding; we write thus simply “Image “H,.” Suppose next that (s, H,)
and (s’,H,) are equivalent in the sense of §3. Fix g €/G° as in the
definition. Suppose that £ is an allowed embedding of “H, in “G. Then
ad g and £ determine an allowed embedding of “H,. in !G. We conclude
then that there is an allowed embedding of “H, in “G if and only if there is
such an embedding of “H,.. Moreover, when embeddings exist we have
g '(Image“H,)g = Image “H,.

We defer a study of the existence of allowed embeddings. Recall,
however, that if the center of £G° is connected then “H, embeds admissi-
bly in G [L1]. The proof of this result can be used to show also that there
is an allowed embedding of “H, in *G.

6. Ingredients for the matching theorem. Fix an element of G(G, a)
with representative (s,“H,) satisfying s = (x,1)Z", etc., as in the last
section. We assume that &: “H, =~G is an allowed embedding. The main
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purpose of this section is to attach to £ normalizing factors to appear in
the matching theorem of the next section. We will assume also that there
is an admissible embedding of “H, in “G, say £. The choice of £ will not
affect the normalization factors (cf. Lemma 6.2), but we write individual
terms in the factors in a way that involves £, in order to make clear the
relation with the factors from L-indistinguishability.

Let H be an endoscopic group for (G, a) with L-group LH . We fix a
Borel subgroup By over R containing the maximal torus T, over R, and
assume that X*(T,,) = >,<(LT°) = X*(T*) and that 2( By, Tj,) is the dual
of 2("B),'T"). The group H= ResRH will also play a role. We set
B, =B, X B, and T, = T, X T,;; “H,, which appeared in the last
section, is an L-group for H.

Since H is also an endoscopic group for G we may invoke many of the
definitions from L-indistinguishability (cf. [L1], [Sh4]). Let T be a maxi-
mal torus over R in G. A pseudod1a§onahzat10n (p.d.) n of T is a map

from T to T* of the form T — T, — T*, where x € A(T) [L1], T

xTx~" is standard (i.e. the maximal R-split torus in 7, lies in 7*) and m

belongs to the Levi group attached to 7;. Then o, ,, denotes the transfer,
by 7, of the Galois action on T to T* and to X*(T*) = X, (:T°),
X (T* = X*(LTO) and £7° = X, (*T°% ® C*.

The set J,(G) = {(T, n): o7.,,, € Q" H),"T°)a,}, where Q(“H,*T°)
denotes the Weyl group of (“H?,LT?°), is the starting point for the
definitions of [Sh4, §2.4]. We will use it again. First, because G is
quasi-split over R, for each maximal torus 7 over R in H there exists
h € H(C) and (T, n) € 9,,(G) such that AT'h™' = T, and

XH(T7) S x(Ty) = xH(T%) "= X¥(T)
lifts to an isomorphism i(k,n): T" - T over R. We say that y" € H(R)
originates from y € G(R) via (T, n) if v’ is the preimage of y under some
such map i( 4, 7).

Recall that s = (x, 1)Z". Any element of this coset is of the form
a = (xz,0,5(z)), where z is in the center of “G°. But aa(a) =
(xz0,(2), xz04(2)), an element of “T° = Hom( X*(“*T?), C*). Also o,(x)
= x. Thus {aa(a): a € s} defines a family of quasicharacters on X*(“T°),
each invariant under o, for any (7, 1) € J,(G). Fix (T, 7) € J,(G).
Then, on transfer to T via 5, we get a family of quasicharacters on X,(7T),
each invariant under o,. On X, (T, ), the span of the coroots of T in G,
these quasicharacters all coincide and so we have defined a single qua-
sicharacter of the type used in L-indistinguishability (cf. [L1], also [Sh4,
§2.4]). Moreover on {AY € X (T): o,A”Y = —A" }, the quasicharacters
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coincide again. We therefore obtain a single character on
{)\V E X (T): 0,2V = =0V }/ {,uv —op’ipY E X*(T)}

and thence by Tate-Nakayama duality, a character on HY(T) =
H'(Gal(C/R), T(C)). Unless otherwise indicated, x will denote both the
quasicharacter on X ,(T,.) and the character on H'(T) attached to s and the
pair (T, 1) € I,(G).

With G embedded diagonally in G, we have T = Res§ T naturally
embedded in G as Cent(T, G) = T X T, for any maximal torus 7 over R
in G. The norm from T to T is obtained from the map T(R) — T(R)
defined by & = (¢, 0;5(¢)) = 8a(8) = (t0,(t), to;(2)). As in [Sh6] we re-
gard the norm from G to G (.. .or from 7 to T) as an (injective) map from
the set of stable regular a-semisimple twisted conjugacy classes in G(R)
(...or in T(R)) to the set of stable regular semisimple conjugacy classes in
G(R) (...or to T(R)). by Lemma 2.4.3(ii) of [Sh6] this norm from G to G
can be recovered from the norms from 7 to T, as T ranges over the
maximal tori over R in G.

Note that if n: T — T* is a p.d., then so is § X n: T — T*. Thus we
can use 7 to transfer data from 7 to 7* or from T* to T.

We come then to the normalizing factors. The admissible embedding
¢ "H_ ="G has been fixed, and “H, chosen to satisfy the conditions of
[Sh3, Sh4). We may therefore write £ = &{(u*, A*), for suitable p*, A* €
X4("T°) ® C, and define the attached correction (quasi) characters A 7.,
on T(R), for (T, 1) € 9,(G). Although the notation does not reflect it,
A 7., depends on the choice of §.

Since &: LH <=>LG has also been fixed, we have the 1-cocycle a(w) of
W in Center(*H?) from Lemma 5.2. A procedure in [L2] attaches to a(w)
a quasicharacter on H(R). This quasicharacter determines a pair (fi,, A,)
of elements from X *(TH) ® C= X, (*T° ® C. We may also recover
(fig» A o) directly from the 1-cocycle a(w). Thus define fi,, 5\0 by

AV(a(z X 1)) = z{FoA ") F{ofaA”) z € C*,

AV (a(l1 X0)) = 2 RoA")

for AV € X*(*T°). Then fi, is uniquely determined and A, is uniquely
determined modulo

X, (*T°) + {X —5A: X € x,(*T°) ® C}.

o — 6,10 € X, (*T°),  1/2(f, — 6,fi) = Ao+ 6,7, mod X, (*T°),
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and
(Bo, AV )=0, (X, AV)eEZ

whenever AV lies in the span of the roots of Z7°° in ZH? (cf. §9.1 of [Sh3]).
Here we have used 6, to denote the action of 1 X 1 X ¢ ELH,.

Let (T,7) € 9,(G). Then on transferring (fiy, Ay) to T using n we
obtain the data also denoted (ji,, A,) for a quasicharacter on T(R) (cf.
[Sh3, §4.1]). This quasicharacter will be denoted a ).

LEMMA 6.1.
a(T'n) 1S a-lnvariant.

Proof. We describe a1, explicitly. Let § = (2, o,(2)) € T(R_). Write ¢
as exp X, X € Lie(T(C)) = X (T) ® C. Then o,(t) = exp o(X), where
if X=3",\’®z then o,(X)=23"_,0-(A)) ® z,. Because a(C* X 1)
lies in the diagonal subgroup of Center(LﬁSO), as is evident from the form
of the embeddings ¢ and £ (cf. last section), we must have fi, lying in the
diagonal subspace of X, (*T°) ® C = (X, (*T°) ® C) X (X, (:T°) ® C).
Thus we write fi, as (g, Lo)s fo € XK(*T%) ® C. As usual, we transfer
to X*(T) ® C via n without change in notation. Then

_ X+op(X)
agr.(8) = erolX+or(),

Since a(d) = (exp o( X), exp X) it is now clear that air(a(d)) =
a r ,(98), and the lemma is proved.

Note that ) is uniquely determined by the clas§ of a(w) in
H'(W, Center(“H?)), but is affected by a change in ¢ or £. The depen-
dence on £ of our normalization factors is to be expected; the dependence
on £ is not.

LEMMA 6.2. Fix (T, n) € 9,(G) and 8 € T(R). Then
&7 (8)A 7., (8a(8)) depends on £ alone.

Proof. The embedding ¢ may be replaced only by A X w —
ay(w)é(h X w), where ay(w) is a 1-cocycle of W in the center of “H?
embedded diagonally in the center of “A?. Then a(w) is replaced by
ay(w) ™ 'a(w). The cocycle ay(w) defines first a quasicharacter x on H(R)
and second a quasicharacter ¥ on H(R). As before, we use 7 to transfer
data and define quasicharacters xr,,, on T(R) and X r,,, on T(R). Since
A ., is replaced by x 7., A 7.,,, and @z, Y X7 1) @(r.,)> W€ have only to
show that X r.,,(8) = X 7., (8a(8)). Define parameters u,, A; € X, (“T°)
® C for x as usual; use the same symbols for their transfer to X*(7) ® C
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via 7. For ¥ we can use parameters i, = (g, f;), A, = (A, A)) in
X, (*T°) ® C (...or X*(T) ® C, after transfer). Since X is clearly a-in-
variant (see the last proof), we may take 6 = (exp X, exp X), X €
Lie(T(R)). Then %(8) = e %> and x(8a(8)) = x(8?) = e<¥2%, 50 that
the lemma is proved.

The next lemma is simple but very useful (cf. proof of Lemma 6.4).
Each element of H'(T) can be represented by a cocycle o — exp imA ",
where AV € X,(T) and o,AY = —AY . We will use exp imA" to denote
this cocycle and its class in H'(T); of course, exp iwA" also denotes an
element of T(R) C T(R). Recall that to (T, n) € J,(G) and our funda-
mental datum s = (x, 1)Z" we have attached a character x on H'(T).

LEMMA 6.3.
air.plexpimhY) = k(exp inA")

for all \Y € X, (T) such that o,\Y = —A\V.
T

Note that the left side alone appears to depend on the choice of £ and
£. However a quasicharacter ¥ as in the last proof annihilates exp izA"Y , if
AV € X (T) and 0,AY = —\" . Indeed we then have imA" & Lie(T(R)),
so that g(exp imAV) = ™ M2 =1 since L(p, — o)) = (A, + 0,7)
mod X*(T) implies that (1(p, — o,7p,), AY )= {p,, A) lies in Z. It then
follows that neither side of the formula depends on £ or £

Proof of Lemma 6.3. First we evaluate the right side. The cocycle
o — exp imA" corresponds under the Tate-Nakayama isomorphism to the
coset of AV in

H™'(X.(T))
= {p,v €E X (T): opY = —uv}/ {VV —ovY ivY E X*(T)}.

Thus k(exp imAY) = AV (x), where s = (x, 1)Z" was used to define .
Note that we have transferred AV to £7° via 7.

For the left side, we write a(z X 1) = (ay(z), ay(z)), z € C*, and
a(l X 6) = (xb,, by), where a(z), b, lie in the center of “H?. Since
im\Y € Lie(T(R)), we have ar,(exp imA ") = e2™#eA D= AV (ay(— 1)),
where again we have transferred AV to “7'° without change in notation (cf.
proof of Lemma 6.1). On the other hand, a(1 X ¢)é(a(l X 0)) = a(—1)
implies that ay(—1) = xbyo,(by) = xb0 7. ,(by). Since o7, A" = =N,
we have that AY (a,(—1)) = AV (x), and the lemma is proved.
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We continue with (7, 1) € 9,(G) and associated character k on
H'(T). Fix a set {u =expimA"Y : A € X(T), oA"Y = =XV} such that
the cocycles o — expimA" form a complete set of (noncohomologous)
representatives for the elements of H'(T).

For f € C[.”(G(R)), and Haar measures dr on T(R), dg on G(R) form
(cf. [Sh6)):

- N a1\ A8
o8, di, dg) = S(u) [ fla(g)usg ') 5,
u GR)/T(R)
for 8 € T(R) such that 8a(8) is regular. Note that for all § € T(R), 8a(8)
lies in T(R)°, the identity component of T(R).

LEMMA 6.4.
Y~ a(TVn)(a)(Df(T‘a’K)(Sa dt, dg)»

if ba(8) =17y, Y E T(R)?eg =TMR)’N Gy, is a well-defined function on
T(R);

reg*

Proof. By Lemma 6.3,

fla(g)udg™) %

a 8D )(§, dt,dg) = Da ud
(T,n)( ) ' ( g) % (T,n)( )'[G'(R)/T(R)

which we will write as ®(§). If da(d) = 8’a(8’) then 8" = vd, where
va(v) = 1, v € T(R). Then it is easily seen that v = ¢ 'a(r)u for some
t € T(R) and u as in the summation. Since a r.,, is e-invariant we then
have ®(8") = ®(vd) = ®(ud) which clearly coincides with ®(8). Thus the
lemma is proved.

Finally, suppose that (7,7) € 9,,(G) and that i(h,n): T > T is
defined over R. Then the Haar measure dr on T(R) is transported via
i(h, n) to a Haar measure dt’ on T'(R); dt’ is independent of the choice of
h. Also, we say that v’ € T'(R),, is not a norm if it is not in the image of
the norm map from 7’ = Res§ 77 to T, i.e. v’ does not lie in the identity
component of 7'(R). Then if y’ origjnates fromy € T(R),, via (T, ), v is
not in the image of the norm from 7 to T (and conversely...).

We have not assumed that £ or £ is of “unitary type” [Sh3]. It is eas-
ily checked that there is a quasicharacter x on H(R) such that
IX(Y)A (7.0 (Y)ar(8)[= 1 if y” originates from y = da(8) via (T, 7).
We then define Cz( H(R)) to be the set of functions f on H(R) such that fx
belongs to C(H(R)), the Schwartz space of H(R). As the notation indi-
cates, this space does not depend on the choice of x. For f € Cz( H(R)) the
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stable orbital integrals ®/"-"(y’, dt’, dh), v’ € T'(R) N H,,, (cf. [Shd] etc.)
are well-defined.

It remains now to recall the factor A ;) from L-indistinguishability.
Thus

G, H ’
Aagm = GV o(T, MA 7y Bz

where g(G, H) is an integer, (— 1)?(“*) being inserted only for conveni-
ence, &7, n) = =1 is defined implicitly, A 7, is as earlier in this section
and ‘A, is a discriminant function (see [Shd, §3] for further details).

7. The matching theorem.

THEOREM 7.1. Let H be an endoscopic group for (G, &), with L-group
LH_ chosen as earlier. Suppose that & "H, ='G is an allowed embedding
and that & “H, "G is admissible ( for L-indistinguishability). Then for
each f € CZ( G(R)) there exists fu € Cz(H(R)) such that:

A (V) a7, (8)BfT*(8, dt, dF),
if v’ originates from y = §a(8)

via (T, 1) € 9,(G),

0 ifyisnot anorm.

o7 (y', dt’, dh) =

Here it is assumed that y’ originates from regular elements in G(R).
Then v’ is regular in H(R) [Sh2]; 7" is the maximal torus containing y’.
Recall that A (r..) depends on § alone, that a ; ,, depends on both £ and §,
and that A 7, (v)ar.,,(8) depends on £ alone. .. as long as (7, ) and §
are fixed.

REMARK. We have used C(G(R)) instead of the more natural C(G(R))
since the necessary analysis of “twisted F;” (cf. [Sh6]), for f a Schwartz
function, has not been carried out. Work of L. Clozel now in progress
should settle this matter and allow us to replace C®(G(R)) by C(G(R)).

Proof of the theorem. Let vy’ € H(R). Suppose that y’ originates from
Y € G, via (T, 1) and from y via (7_", 7). Choose § so that da(d) = v.
Write ¥ as yyy™' and 7 as wyoneoady”!, where wy € Q(H, Ty) C
Q(G, T*) and y € A(T) (cf. [Shd, §3]). Then for § such that a(8) = ¥ we
may take y8y~!, where y € G has been identified with its image in G
under the diagonal embedding. With this choice of § we have a;i 8) =
a r .,(8). The relation between A 7 -(¥) and A () is described in [Shd,
§3].
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For fixed (T, n) € 9,(G) the function
Y - a(T,n)(s)A(T,n)(Y)(I)}T’a’x)(aa dt, dg),

if y’ originates from y = da(8) via (7, n), is well-defined and invariant
under (7). To prove this we invoke [Sh4, Propositions 2.4.5 and 3.1.2]
and [Sh6, Lemma 4.3.2]. These results show that we have only to check
that a7, (8“) = a(r,(8) for w an element of the Weyl group (G, T) of
(G, T) which commutes with the Galois action on 7 and “comes from H”
(i.e. w € Qy(G, T) N Q¥(G, T) as in [Shd, Proposition 2.4.5]). But this
invariance of a ., follows easily from the fact that (fi,, A”' )= 0 for A
in the span of the roots of 7 in “H_ (see the proof of Lemma 6.1).

Suppose now that we fix a “framework of Cartan subgroups [Sh3],
[Shd, §3.2]. Thus we have specified certain pairs (7,,n,) € 9,(G) and
embeddings i, = i(h,,n,): T, = T, over R; the set {T,(R)} provides a
complete family of representatives, without redundancy, for the conjugacy
classes of Cartan subgroups of H(R). Given v’ € T(R), set y =i (Y),
and choose any & such that da(8) = y. Call y’ G-regular if y is regular.
Then for each n we may consider the function on the G-regular elements
of T(R) given by

enb 1, (V) a7, ) (8) @y, dt, dF)
&,(v, dt', dh) = ity € TRY,
0 ify & T/(R),

where e, = =1 (to be chosen), A(T,n) =T, n,)A 1, (e A(T’,,) is Az
with the &(7, n) removed), and «,, is the “k” associated to (7,,, n,). Note
that {«, |y, (1.} is exactly the set {«,} from [Sh2, §7] and [Sh3, §2].

Suppose that we are able to show that there exists f; € Cz(H(R)) such
that

, , . ’ ” 0

(*) (I);HT,;,I)(,Yr, dtl, dh) — {(I)n(y b dt > dh) ;f}/ € T;(R) s
0 ify & T)(R),

for all G-regular v’ in T;(R) and for all n provided e,e,= e(m, n)
whenever 7, (R) and T(R) are adjacent Cartan subgroups. Here &(m, n) is
as defined in [Sh4, §3.5] (cf. [Sh2]). Then we shall take ¢, = &7, n,), so
that by the results of L-indistinguishability (exp. [Sh4, §3.5]) there does
exist f, satisfying (*). It is then routine to verify that f; satisfies the
statement of our theorem (see the first paragraph of this proof; similar
arguments for L-indistinguishability are given in [Sh4, §3]).
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Returning to the condition on the existence of fy, we have only to
show that our family {®,(, , )} behaves like the family {®,} of [Sh2, §9]
(cf. [Shd, §3.2]). The invariance and growth requirements being satisfied
(clearly), only the “jump conditions” remain. Thus we need the jump
formulas for the functions ¥,

acray(8)B (V)@ T4(8, dt, dg) if Y € T(R)reg,
. % 0
0 ify € T(R), — T(R)".

These are contained essentially in the analysis of §§4 and 5 of [Sh6]. To be
more precise, we seek analogues of Lemmas 5.2.2 and 5.2.5 of [Sh6}, when
“’A,®"” is replaced by the function above (with the necessary adjustment
in the choice of positive system for the imaginary roots of 7 used to define
the factor A(T.n)). The proof of the analogue of Lemma 5.2.2 is straightfor-
ward; because of notational complications we omit further details. Note
that the “k-signature” [Sh2] which appears depends only on « |y . ,, i.e.
the jump is indeed like that from L-indistinguishability. The analogue of
Lemma 5.2.5 will be stronger than the original statement, because we no
longer need the assumption “k(a”) = 1 if (5.2.3) holds.” We now have
the exact analogue of [Sh2, Proposition 9.1] from L-indistinguishability.
Indeed, let v, be a semiregular element in 7(R) such that A(y,) = 1, where
A is an imaginary root such that k(AY) = —1. We wish to show that
¥ ., is smooth on some neighborhood of y,. We may assume that
Yo € T(R). Fix 8, € T(R)? such that 87 = y. For y close to vy, choose 8
close to &, such that §* = y. It will be sufficient to show that § — (T'n)(S )
is smooth near §,. This follows immediately from Lemma 4.3.3 of [She6].
Note that this type of argument could not be used in the proof of Lemma
5.2.5 of [Sh6] because the “cross-section for the norm” was not smooth
near y,.

We now complete the proof of Theorem 7.1 by the arguments already
indicated.

8. The dual lifting. Again we fix an element of &(G, a) and choose
a convenient representative (s, “H,) for this element, as in §5. Let H, be
the corresponding endoscopic group. Since H, is, by definition, quasi-split
over R, the set ®( H,) [L2] consists of all equivalence classes of admissible
homomorphisms ¢: W —"H,. Suppose that & LH: =G is an allowed
embeddmg Then £ induces a map, also to be denoted £, from <I>(H ) to
®(G); the image of the class of ¢: W —>"H_ is the class of ¢ =£%0¢:
W —LG. It is easily checked that the image of ®(H,) in ®(G) is indepen-
dent of the choice for £ By the remarks at the end of §5 it is also
independent of the choice for (s, “H.).
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On the other hand, the automorphism a of G has a standard dual
[Sh7], again denoted a:

a((g,h) Xw)=(h,g) Xw, h,g€G'\wew.

If ¢: W - LG is admissible then so is a © ¢: W —LG. We write {¢} for the
class of ¢ and {¢}* for the class of a o ¢. Then ®(G)* = {{¢} € D(G):
(o) = (4}). )

For each element of &(G, a) we fix a representative (s,“H,) as
before, and assume that each “H, has an allowed embedding £ in £G. Also,
we will use U, _ to denote a union over the corresponding endoscopic
groups.

THEOREM 8.1.

o(6)* = U &(@(H,)).

Proof. Let ¢: W —LH_be admissible. Set ¢ = £ 0 ¢. We may assume
that ¢(C* X 1) CET% X C* X 1. Then clearly ¢ and a ° ¢ coincide on
C* X 1. We write ¢(1 X 6) as ny; X 1 X 6 €'H,, and &(1 X 1 X o) as
(xmgy, my) X 1 X o (cf. §5). Then ¢(1 X 6) = (xnymgy, nymy) X 1 X o
and

(a0 ¢)(1 Xo)=(nymy, xnymy) X 1X o
= (x7, x)é(1 X o) =g7'9(1 X 0)g,

where g = (x,1). Then clearly a o =ad g™ ' ¢, and so & P®(H)) C
O(G)~

Suppose now that ¢: W -G is admissible and that {$}* = ().
Then it is sufficient to show that ¢ factors through some LH (not
necessarily among our fixed representatives) embedded (via an allowed
embedding) in G.

Let S§ = {a €*G% ap(w)a™' = (acp)(w), w E W}. Then S% is
nonempty. If a, lies in S§ then so does a,z, for z € Z". In fact, then
S§ = a,Sy, where Sy is the centralizer of ¢(W) in LG, .. recall that the
results of [Shd4], w1th a little extra argument for the case ¢ unbounded,
show that S35 = S~°Z ¥, §3 denoting the identity component in S;. Choose
s=a,Z% contamed in S~ Assume that s consists of a-serru51mple ele-
ments (... we will prove below that such an s exists). Then set “H? =
(Cent (s,%G"))°, and select “BY, T and {Y} as in §3. To define a
suitable action of W on “H? we have just to give a homomorphism of
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Gal(C/R) into Aut(“*H?,“B%,*T°, {Y}) such that o,, the image of o, is
“realized in Cent (s,2G) = Cent (a,,“G)”. But

o(1 X o)_[aoa(cﬂ(l X 0)) =

Thus ¢(1 X ¢) normalizes “H°. We may write ad ¢(1 X o) o as wo,
where « is an inner automorphism of f‘H? and o, €
Aut(*H?, “B°, L'T?, {Y}). Note that ¢} = 1 and is “realized in
Cent (s5,7G)”. Using the associated W-action we form “H, and so obtain
a representative (s,”H,) for an element of &(G, ). We claim that ¢
factors through “H,. Thus, suppose that & “H, ='G is an allowed
embedding. Then for each w € W, ¢(w) lies in Cent (s,~G) and acts on
LHO = (Cent (s5,2G°))° as an element n(w) X w of the image of “H, in
LG. By definition, n(w) X w € Cent (s,2G). Thus ¢(w) = a(w)(n(w) X
w), where a(w) € Cent (s,"G°) centralizes “H°. But then a(w) lies in the
center of “H?. Hence ¢ factors through “H..

It remains now to show that S contains an a-semisimple element. If
we replace ¢ by ad g ° ¢, g €G°, then we must replace S by a(g)Sfg™".
Therefore we may assume that S5 contains an element (x~', 1), x €°G°
(cf. Lemma 4.1). Then we write ¢(w) as (¢,(w), d,(w)) X w and obtain
from (x~%, De(w)(x, 1) = a($(w)), w € W, that ¢p,(z X 1) = ¢y(z X 1),
z € C*, and ¢ (1 X 0) = x¢,(1 X 0); also, x lies in the centralizer S, of
the image of the homomorphism qb, w = ¢ (w) X w of Winto LG. Write
x = x,x,, where x, € S, is unipotent and x;, € §, i1s semisimple. Then
with the same ¢, and with x in place of x we can use the formulas above
for ¢ to define qbo W LG such that S3 contams (x;', 1). But ¢, is easily
seen to be equivalent to ¢ because x, !, being unipotent and fixed by
é,(W), can be written as v($,(1 X o)v) I, v € Cent(¢,(C* X 1), “G).
Since (x,!, 1) is a-semisimple our proof of Theorem 8.1 is complete.

According to Langlands’ functoriality principle this factoring of the
a-fixed parameters {¢} should be reflected in character theory. Let
¢ € ®(G) be a-fixed (we now drop the { } from the notation for
parameters). Then the L-packet II; consists of a single infinitesimal
equivalence class of irreducible admissible representations fixed by the
automorphism a: G(R) = G(R) (... this is easily checked, see also [C1]).
Thus the twisted character x§ of I1; is well-defined up to sign (see [C1] for
a detailed discussion, especially concerning the question of signs). Assume
that ¢ is bounded, i.e. if ¢(w) = o(w) X w, w € W, then ¢,(W) is
bounded. The:n x5 is tempered [C1, Theorem 5.12]. On the other hand,
suppose that ¢ is the lift of ¢ € ®(H), in the sense afforded by Theorem
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8.1. Then ¢ is essentially bounded, so that the L-packet II, consists of
essentially tempered (equivalence classes of) representations. Thus x, =
2,,61% X.» X, denoting the ordinary character of =, is a stable essentially
tempered distribution on H(R) [Sh1, Lemma 5.2].

Theorem 7.1 provides a correspondence ( f, f;) between CX(G(R))
and Cz( H(R)). As mentioned already, an adequate analysis of the “twisted
F; transform” would provide a correspondence between C(G(R)) and

z( H(R)); it would also give a dual lifting of stable tempe~red distributions
on H(R) to twisted-invariant tempered distributions on G(R), with eigen-
distributions mapping to eigendistributions (see [Shd4, §4] for the analo-
gous arguments in the case of L-indistinguishability). Nevertheless, with
the corre§pondence of Theorem 7.1 we can define (Lift x4 )(f) = x,( fu),
f € CX(G(R)). Writing x ,(fy) as [uw) fu(h)x,(h) dh, and applying the
Weyl Integration Formula, the matching theorem and the twisted ana-
logue of the Weyl Integration Formula, we find that Lift x, is a twisted-
invariant distribution on G(R) represented by a function explicitly com-
puted in terms of x,. Moreover, this fu1~1<:tion transforms under the center
of the universal enveloping algebra of G(C) according to the infinitesimal
character of x3. We may therefore ask if Lift x, coincides with x5 up to a
constant (depending only on G and H, once the sign for x§ has been
suitably fixed). According to [C1] with some minor additional arguments,
this is true if # = G; recall that we are assuming that ¢ is bounded, so
that ¢ is an essentially bounded parameter. Work of L. Clozel now in
progress should provide the answer to our question for the case H + G.
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