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BIJECTIVELY RELATED SPACES I: MANIFOLDS

P. H. DoYLE AND J. G. HOCKING

The following equivalence relation is introduced: Two (Hausdorff)
spaces X and Y are bijectively related if there exist continuous bijections
f: X— Y and g: X — Y. This first paper considers the case in which X
and Y are connected manifolds. If either f or g is not a homeomorphism,
then each space is necessarily non-reversible and hence this study
produces more knowledge of such spaces. The chief results here are the
existence theorem (Theorem 2) and, perhaps, Corollary 12, which states
that a simply-connected manifold having only compact boundary compo-
nents is reversible.

This is a continuation of a study of continuous bijections following
the work of Rajagopalan and Wilansky [5], Petty [4], and Doyle and
Hocking [2,3]. We introduce here the following equivalence relation
among topological spaces:

DEFINITION. Two spaces X and Y are bijectively related if there exist
continuous bijections f: X - Y and g: Y — X. Each space is then a
bijective relative of the other, the maps f and g are relating bijections and,
to be brief, we say that “[ X, Y, f, g] holds”. We denote by B(X) the
equivalence class of all spaces (in the category under study) which are
bijectively related to X.

1. Preliminaries. Throughout this study spaces will be assumed to
be Hausdorff (at least). With this assumption we surely have B(X) = { X}
if X is compact. To provide a more general result in this direction, recall
that the space X is said to be reversible [5] if the only continuous
self-bijections f: X — X are the homeomorphisms. If X is reversible and if
[X,7, f, g] holds, then go f: X - X must be a homeomorphism. Then
f'=(go f) "o gis continuous, so fis a homeomorphism. Thus B( X)
= { X} whenever X is reversible. However the condition B(X) = { X}
does not characterize reversible spaces, as we see next.

THEOREM 1. Among metric spaces the rationals Q constitute a non-re-
versible space for which B(Q) = {Q}.
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24 P. H. DOYLE AND J. G. HOCKING

Proof. We use as a lemma the known fact that every countable perfect
metric space is homeomorphic to Q. Write

0=[2N (—e0,m)] U[Q N (7, +00)]
=[on(-1,D]u[e N (1, +w0)].
Then there exist homeomorphisms
h:0N(—w,7)> QN (—0,1)
and
hy: QN (7, +00) > Q0 N[1, +c0).
when we put these together we get a continuous bijection f: Q — Q that is
not a homeomorphsim. Thus Q is non-reversible.

If X is a continuous bijective image of Q, then X is countable and
perfect. Thus we have B(Q) = {Q} as claimed. a

It is perhaps more surprising to find that there are non-reversible
connected manifolds M for which B(M) = { M} (see Example 2 below).
First, however, we provide an existence theorem and a first example of
bijectively related manifolds.

THEOREM 2. For each n =2 there exist non-homeomorphic connected
bijectively related n-manifolds.
Proof. In R? consider the following submanifolds (see Figure 1):
M={(x,y): —1<y<0}
UlU {(x,y):3n—1<x<3n,0=sy<4)

n€Z

UlU {(x,y):3n=sx<3n+1,1<y<2or3<y<d}
nel

U U{(x,y):—3n+1<x=<-3n+21<y<2o0r3<y<d},
neZ,

and
N=MU {(x,y):1<x=2,3<y<4}.

The interior of N contains a simple closed curve J which separates the
boundary of N. No such exists in M so the two are not homeomorphic. It
is obvious from inspection that M and N are bijectively related, and the
rest of the theorem follows from consideration of the manifolds M X S*
and N X S*fork = 1,2,3,.... O



BIJECTIVELY RELATED SPACES I. MANIFOLDS 25

g:rrv'r-r’--rvrrr,—r] pvr)-'rr] 1= TTITG
. v v J
r
< £ 2 ' v
<+ ‘r_.!.l - ,4.‘.1 4 rr.:.: ' ”44_6
v r 4 rog r o a
v a v 4 4 ] a
’ L r L
R A e [ y e M
4
z Z _1, ’:.z_z _’.._’_'_;’, A‘/"" 1 ’:,.L.l_' v ,;:z:
I " ’
) v j ; a ’ ,L
Frr? Chrr 7 A srrorr Srrrrv ',7,—772
\;_(_z_f.g ¢ fe 2 L 2 2t 2L 22 L L2l 22 £ 2201

FIGURE 1
g?rr"r‘-r'ﬁ-v'vvr‘r—rrrv-)vv-rrrrr rrr rrr L ey
Lrg  jratg 1228, Lt LeL L L4 L LL Loosc L,

o4 kAN v v
4 A 4 " :: p r' : g
f #3579 & 7; rrd r77 7

S:r}' Yyrrs
L ket ke Sk f okt L Lk Al L b £ L L £ £f L LLLLLL &Ll L L

4

{1‘7“77‘77""7‘77 T TP TrT T 7Y rrr rr> 77T
£z, ‘rz.(:_r' Py JlL L el l L rars .r.",

4 4 4 " L A r

[ 4 o 1 4' r .l

v
2 .
A 37

;
7 TFF Frr

- A i
\1-’1.‘.{.’.‘.{41‘.‘_‘1 £ L 2 L s L & L £ L Lt L L e Ll lt {22

FIGURE 2

In Figure 2 we picture two more planar manifolds bijectively related
to those in Figure 1. These clearly indicate that the class B(M) is infinite
for the manifold M of Theorem 2. This gives rise to a problem which
seems to be difficult: Let M be a connected manifold for which B(M) #
{M}. Is B( M) necessarily infinite?
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The non-reversible manifolds in Figures 1 and 2 might mislead the
unwary into making false conjectures about the number of boundary
components and ends which such manifolds must possess. The following
easily proved result is instructive in this regard.

THEOREM 3. If M is any connected non-reversible manifold, then
M X [0,1) is a non-reversible manifold having connected boundary and
precisely one end.

It is also interesting to note that for the manifolds M and N of Figure
1, M X[0,1) and N X [0,1) are homeomorphic, but M X [0,1] and
N X [0, 1] are not homeomorphic. (There is a copy of the simple closed
curve J in the boundary of N X [0, 1] that fails to separate this boundary.
No such nonseparating simple closed curve exists in the boundary of
M X [0, 1].) These observations yield several more unsolved problems of
the following nature: If [M, N, f, g] holds and P is any other manifold,
surely M X P and N X P are bijectively related. If we assume M and N
are not homeomorphic, does there exist a manifold P such that M X P
and N X P are homeomorphic? Can such a manifold P be compact?

For general information as well as subsequent use, we list the next
five theorems. The proofs either are simple exercises or are already known.

THEOREM 4. If [M, N, f, g] holds, then each manifold embeds in the
interior of the other.

THEOREM 5. If [M, N, f, g] holds and if one manifold is orientable, then
S0 is the other.

THEOREM 6. If [M, N, f, g] holds and if M has only compact compo-
nents, then ON has only compact components.

(We use M and Int M to denote the boundary of M and the interior
of M, respectively.)

THEOREM 7. If [M, N, f, g] holds and if f(0M) = ON, then f is a
homeomorphism (Theorem 3.4 of [4].)

THEOREM 8. If[M, N, f, g] holds, if every component of dM is compact
and if f is not a homeomorphism, then there is at least one component C of
OM such that f(C) C Int N (Theorem 3 of [2]).
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THEOREM 9. If the connected 2-manifold M has infinitely many handles,
infinitely many compact boundary components and infinitely many annular
ends, then M is non-reversible, and if M has only compact boundary
components, then the converse also holds (see Figure 3).

Proof. To prove the second statement, let f: M — M be a continuous
bijection which is not a homeomorphism. Theorem 8 says that f “swal-
lows” some component C of M. Then f~(C), f~'(f7(C)),... provides
us with infinitely many compact boundary components. If U is a suffi-
ciently small neighborhood of f(C), then f~}(U) has one component V
which contains an annular end of M and f~(V), f~'(f/(V)),... gives us
a sequence of such ends. There is a simple closed curve J in Int M that
meets f(C) transversely at a single point and is such that f!(J) is
connected. Then f(J), f( f(J)),... identify the required handles.

To prove the first statement we provide a continuous bijection f from
M to a manifold N and then show that N = M. An annular end S' X
[—1,0) and a collar S' X [0, 1] on a boundary component S' X {0} are
carried by local homeomorphisms to handle S' X [—1, 1] to form N. Thus
/7! is discontinuous along S' X {0}. The details of this construction can
be left to the reader.

Next we select a sequence of disjoint handles H,, H,,... which
“converge” to an end ¢ of M. Then we choose a topological line / in Int M
having both ends at ¢ and separating M into components U and V. Select /
so that U contains the handles H,, no other handles, no boundary
components and no ends of M. This line / also lies in N, of course, and
has the same properties there. Now run an arc from a point of / to a point
in some simple closed curve in N cutting off the new handle H,,. Swell up
this arc and add the disk containing H, to obtain an open set X in N
bounded by a topological line /" separating N into components X and Y.
We have constructed /’ so that X and U are homeomorphic, and, in fact,
there is a homeomorphism of X onto U which carries /” to / leaving /" N /
fixed. Analogously we may select topological lines in Int N, then alter
them in Int M, to cut off sequences of annular ends and boundary
components. This provides both four homeomorphic pieces of M and N
and the means of fitting them together. O

EXAMPLE 2. The 2-manifold M pictured in Figure 3 is an infinite tube
with countably many handles to the right and countably many compact
boundary components {C_,} and annular ends (at the tops of the chim-
neys) to the left. Theorem 9 tells us that M is non-reversible and we now



28 P. H. DOYLE AND J. G. HOCKING

£227) €229

D 39 Dy
A D31 e « D11
N =D,y oA P10

C
-2
¢

)

Fi1GURE 3

claim that B(M) = {M}. To prove this, suppose [M, N, f, g] holds for
some manifold N. Express M as a monotone increasing union M = U K,
of compact submanifolds where K, = J, and

0K, =J,UD_,UC,UJ,
0K,=J,UD,,UC,UD,,UC, UJ,

Clearly, no component of M — K, has compact closure and all but two of
such components are open annuli. Let U, and V, be the non-annular
components of M — K, to the right of J, and to the left of J_,, respec-
tively. Then {U,} is a sequence of domains defining the “end to the right”
and {V,} similarly for the “end to the left”.

We first claim f| U, is a homeomorphism for all n. This is certainly
true if f(U,) = f(U,). But if there were a point p € f(U,) — f(U,) (at
which /! would not be continuous, of course), then p would have to lie
on the image f(C) of some component C of dM. But f(C) C Int N, hence
some neighborhood of this compact set would contain points from in-
finitely many handles, and this is impossible.

We treat the end to the left differently. First we note that if f(dM) N
Int N has finitely many components, then M and N are homeomorphic.
To see this, suppose f “swallows” components C,,C, ,...,C; of IM by

sewing them to annular ends ¢, ¢,,...,&. Select n sufficiently large so
that M — J_, U J, consists of the three components V,, P and U, where P
contains all of the components Cipes G, and all of the ends ¢,...,¢,.

Applied to P, f simply forms k handles and we may rearrange these, via a
homeomorphism leaving f(J_, U J,) fixed, so that f( P) is homeomorphic
to the bounded component of M —J_ ., UJ,. The homeomorphism
from M to N is now obvious.
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If f(dM) N Int N had infinitely many components, then surely g o f:
M — M would “swallow” infinitely many components by creating in-
finitely many new handles. Because g o f preserves the end to the right
(homeomorphically) and the end to the left as well, this is not possible. [

One question suggested by Example 2 seems to be difficult: Let M be
a non-reversible manifold and f: M — N a continuous bijection of M to a
manifold N. Is every (isolated) wild end of M duplicated in N?

2. Some structure theorems. The results in this section serve to
elucidate the notion of bijectively related manifolds. There are, inevitably,
some recent additions to the knowledge of non-reversible manifolds.

Any non-reversible 2-manifold M has non-trivial first homology and
hence 7 ( M) # 1. However there do exist simply connected non-reversible
manifolds of higher dimensions. E. H. Kronheimer provided us with the
following example: Let M consist of the lower open half-space z <0
together with countably many open annular boundary patches on the
plane z = 0. Using a well-known bijection due to K. Whyburn [6], it is
easy to construct a self-bijection f: M - M that is not a homeomorphism.
In Corollary 12 below, then, we seem to have the strongest result possible
of its kind.

THEOREM 10. Let J be a simple closed curve in a normal space M.
Suppose some point p € J has an open neighborhood U with the following
properties: (1) U N J is an open arc A in J with endpoints p, and p,, and (2)
U — U is the union of separated sets Coand C,with CCNJ =p;,i=1,2.
Then J is essential in M.

Proof. Define a retraction r,: U - A such that r(C,) =p,, i = 1,2.
Setting B = J — A, repeat the construction of r, to obtain a retraction 7,:
M —U-B with r,(C)=p, i=12. Thus there is a retraction r:
M-J. U

We shall say that the continuous bijection f: M — N “respects
boundary components” if the following conditions hold:

(1) each component of dM is carried by f to a closed set in N;

(2) fY(Int N) N 0M is a union of components of 0M; and

(3) if C is a component of dM with f(C) C Int N, then f(C) is
bicollared in Int N with a bicollar that fails to meet all other components
of f(OM).
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THEOREM 11. Let f: M — N be a continuous bijection which respects
boundary components. If (N ) = 1, f must be a homeomorphism.

Proof. 1f f were not a homeomorphism, then by property (2) above
and Theorem 3.4 of [4] there is a component C of dM with f(C) C Int N.
We let U be an open bicollar on f(C) and assume U is homeomorphic to
C X [-1,1]. Surely U does not separate N. Thus by joining with an arc in
Int N — U the endpoints of a fiber in U, we construct a simple closed
curve J which has the properties set out in Theorem 10. This tells us
m(N) # L O

COROLLARY 12. If the manifold M has only compact boundary compo-
nents and if m(M) = 1, then M is reversible.

Proof. Each component of dM is collared and these collars can be
chosen to be pairwise disjoint. If f: M — M were not a homeomorphism
and the boundary component C had f(C) C Int M, we use the f~image of
the collar on C and the core of this collar just as the bicollar on f(C) was
used in Theorem 11. (|

COROLLARY 13. If M is a non-reversible manifold having only compact
boundary components, then w (M) is infinitely generated.

Proof. Let f: M — M be a continuous bijection swallowing a boundary
component C. Construct the simple closed curve J piercing f(C) as in the
proof of Theorem 11. Then consider f(J), f( f(J)), etc. O

COROLLARY 14. If 9M has only simply connected compact components,
then the universal covering manifold M is reversible. For a 2-manifold, M is
always reversible.

As Theorem 3 indicates, the number of ends plays little role in the
reversibility property of a manifold. The nature of the ends, however, is
very important in this regard.

THEOREM 15. If OM has only compact components and if M has only
euclidean ends, then M is reversible.

Proof. By assumption each end embeds in R”, where n = dim M. If a
boundary component C could be sewed to an end by some bijection f:
M - M, then C would also embed in R”.
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Because f(C) cannot separate M, f has constructed a “handle” H on
M such that H does not embed in R". By iterating f we see that M
contains an infinite sequence of such handles and hence that M has a
non-euclidean end. d

To facilitate the next discussion let us briefly describe the ends of a
non-compact connected manifold M. Represent M as a monotone increas-
ing union M = U;_ C, of compact submanifolds C, of M. We may
assume C, C Int,,C,,, for each n. Each end ¢ of M may now be
represented by a monotone decreasing sequence {U,}, where U, is a
component of M — C, for each n and U, is non-compact. (In fact, any
components of M — C, which have compact closure may be added to C,
without effect on the ends.)

DErINITION. If, in addition to the above, the compact submanifolds
C, can be so chosen that Fr U, C Int M for each n, we shall say that ¢ is
an interior end of M.

THEOREM 16. Let M be a non-compact manifold. Every end of M is
interior iff every component of OM is compact.

Proof. Suppose B is a non-compact component of M. Then B has at
least one end 7. If M is expressed as a monotone increasing union of
compact submanifolds M = U C,, surely B = U(B N C,). Hence there
is a sequence {V,}, each ¥, being a component of B — B N C,, which
represents 7. This identifies a sequence {U,} of components U, of M — C,,
where V, C U,. Surely {U,} represents an end & of M. We claim that the
submanifolds C, cannot be selected so that Fr U, N B = &. This is true
because B N C, is a submanifold of B and therefore must contain points
of Fr ¥, C Fr U,. It follows that ¢ is not an interior end.

On the other hand, suppose each component B; of 9M is compact. Let
p;: B; X[0,1) be an open collar C, on B;,i = 1,2,.... For each i and j, let
C; = pd(B; X[0,1/))) so Cp;1y CC; and N, C, = B,. Given any se-
quence of compact submanifolds M with M = U M,, we can obviously
adjust M, so that

C,UCU---UC,CM,

while
Uc,cM-M,.

j=n
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Then if U is any component of M — M,, Fr U C Int M, and thus every
end of M is interior. a

THEOREM 17. Suppose the manifold M has exactly one end and that end
is interior. If f:M — N is any continuous bijection (to a manifold N) which
is not a homeomorphism, then N is compact.

Proof. The map f carries some component B of 0M into Int N. It
follows that M has a B-like end (see [3]). Let V be a connected neighbor-
hood of f(B) that is separated by f(B) such that ¥ is compact. Let U be
the component of £ ~'(¥') not containing B. Then U is not compact and is
in some sequence representing the end. It follows that f(M — U) U
f(U UB) presents N as a union of two compact sets. a

THEOREM 18. If [M, N, f, g] holds, if every component of OM is
compact and if M is euclidean (i.e. if M embeds in some euclidean space as a
codimension zero submanifold), then M and N are homeomorphic.

Proof. Each component of dM separates the euclidean space R" in
which M embeds. Since N embeds in Int M, N also embeds in R”, whence
f cannot carry a component of dM into Int N. d

THEOREM 19. Suppose [M, N, f, g] holds and OM has only compact
components. Suppose further there is some set C, closed in Int M and having
codimension = 2, such that (Int M) — C embeds in R”, where n = dim M.
Then M and N are homeomorphic.

Proof. First notice that the set C’ = g~'(C N g(Int N)) is a set in
Int N enjoying exactly the properties of C in Int M. If there were a
component B of dM such that f(B) C Int N, surely Int N — f(B) 1is
connected, whereas (Int N — C’) — f(B) is not connected. Thus the
euclidean domain Int N — B is separated by a set of codimension = 2,
which is impossible. O

COROLLARY 20. Suppose [M, N, f, g holds and M has only compact
components. If Int N has a residual set R (see [1]) of codimension = 2, then
M and N are homeomorphic.
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