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In this paper we consider the problem of the relative asymptotic
equivalence of the solutions of the systems

d

(1) =100
and
@) & [Dx, ~ G(t.x)] = L(x) + f(1,x,),

where (1) is a linear system of neutral functional differential equations.
The main theorem gives conditions under which the following result is
verified. Given a solution y, of (1) there exists a solution x, of (2) such
that

- lx, =l
* hm —_— =
() 3l

The converse of this result, namely given a solution x, of (2) there is a
solution y, of (1) such that () is satisfied is partially proved. A counter-
example is given to show that the converse result is not true in general.

0. Introduction. The study of asymptotic behavior of differential
equations is very important to the understanding of the qualitative behav-
ior of the solutions of an ordinary differential equation. Several mathema-
ticians, including N. Levinson, H. Weil, P. Hartman, R. Bellman, K.
Cooke, J. Hale, L. Cesari, and others, have done a great deal of work in
this area. The theory of functional differential equations is relatively new,
having evolved mainly in the last twenty years, and not many papers have
appeared on asymptotic behavior of functional differential equations. One
early paper was published by Bellman and Cooke in 1959 [1], followed by
several others that consider a nonlinear delay equation as a perturbation
of an ordinary differential equation; see, for example, Cooke [3]. Although
this point of view is important, in some cases a better approach is to
consider a nonlinear functional differential equation because the lin-
earized equation is still a linear functional differential equation, and
because the difficulties involved in the solution of the problem spring
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58 A. F. IZE AND A. VENTURA

from the fact that the space of the solutions of the linear system is now an
infinite-dimensional space. The first paper in this direction was published
by J. Hale [7]. It is a generalization of Bellman’s and Cooke’s paper. A
further generalization by 1zé and Molfetta [9] appeared later for a more
general class of neutral functional differential equations. We should point
out that for functional differential equations of the neutral type the
methods used to study asymptotic behavior are in some sense more
effective than the classical Lyapunov second method. When we use the
classical Lyapunov theorems for neutral equations we must always assume
the operator D is uniformly stable.

In this paper we consider the problem of the relative asymptotic
equivalence of the solutions of the systems

(L) < Dy, = L(y),

(P) 2 [Dx,~ G(1.x)] = L(y) + (¢ x,),

where (L) is a linear autonomous system of functional differential equa-
tions.

Let a,, be the order the strongly continuous semigroup {7,(¢ — o), ¢
= 0} associated with the solutions of the difference equation (d/dt)Dx,
= 0.If 8 > a, and y, is a solution of (L) such that || y,||/exp B¢ does not go
to zero, there exists a nonnegative integer / and a real number « uniquely
determined such that

0 <lim ||yl/r'e* < Tim |yr'e™ < oo.

1— 00 t— o0

If the condition above is satisfied we say ||y,|| ~ t'e®. Let y(1) be a

solution of (L) such that || y,|| ~ t'¢e* and let S be the vector subspace of C
defined by

s ={¢ € Cllim |7(:)9]/Iy] = 0}.

In §2 conditions are given on f and G under which there exists a
subset Y of C and a real number ¢ > 0 such that for every ¢ € Y + Y,
there exists a solution x(¢) of (P) such that x, = ¢ and

(*) hm”yr - 'xl”/“yt“ =0.

Furthermore, Y is homeomorphic to S.
Although the converse of this result, namely, given a solution x, of (P)
there exists a solution y, of (L) such that (*) is satisfied is true for ordinary
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differential equations, a simple counterexample given by J. Hale shows
that it is not true in general for delay equations. However if the Lyapunov
number of the solutions of (L) are finite, the converse result is true and a
partial converse theorem is proved.

We should remark that in the proof of Theorem 2.3 we do not assume
the operator D is uniformly stable. Thus it can be applied even to
perturbations of linear equations that have a weird behavior such as those
given by Gromova and Zverkin [4] and Brumley [2].

1. Preliminaries. Let r > 0 be a given real number,R = (-0, c0),
E™ = R" or C" a complex n-dimensional linear vector space with norm | -|
and C([a, b], E™) the Banach space of continuous functions mapping the
interval [a, b] to E” with the topology of uniform convergence of compact
sets. If [a, b] = [-r, 0] then C = C([-r,0], E"), and the norm in C will be
given by

lol = sup lo(8)].
-r=6<0
Ifo€R, A=0and x € C([o — r,0 + A], E"), then for every t €
[0,0 + A] welet x, € C be defined by x,(0) = x(t + 0), r <6 <0.
If @ C R X Cisopen and if D, f: & — R" are continuous functions
we say that the relation

(1) LD(t,x) = f(t, x)

is a functional differential equation. A function x is said to be a solution
of (1.1) if there are 0 € R and 4 > 0 such that x € C([o — r,0 + A)E"),
(t,x,) €Q,t €[0,0 + A) and x satisfies (1.1) on (o, 0 + 4). For a given
0 ER, ¢ EC, (0,9) €Q, we say that x(o, ¢) is a solution of (1.1) with
initial value (o, ¢) or a solution of (1.1) through (o, ¢) if there is an 4 > 0
such that x( 0, ¢) is a solution of (1.1) on[6 — r, 6 + A) and x (0, ¢) = ¢.

Let X, Y be Banach spaces, £( X, Y) the Banach space of bounded
linear mappings from X into Y. If L € £(C, E"), then the Riesz represen-
tation theorem implies there is an » X n matrix function 5 on [-r, 0] of
bounded variation such that

(12) Lo = [ Lan(0)]9(6).

For any such n we always understand that we have extended the
definition to R so () = n(-r) for 0 < —r, n(8) = n(0) for § = 0.
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Let A be an open subset of a metric space. We say L: A — £(C, R")
has smoothness on the measure if for any real 8 there is a scalar function
Y(A, s) continuous for A € A, s € R, y(A,0) = 0 such that if
0
LN = [ [dn(A,0)]9(8), A€A,0<s,

then

(1.3)

. B+s  (B—h -
Jim [0 [ " Lan(h, 0)le(0)|= ¥R, )l

If B € R and the matrix A(A; 8, L) = n(A, 87) — n(A, B7) is non-
singular on A = A, we say L(A) is atomic at 8 at A,. If A(A; B, L) is
nonsingular on a set K C A we say L(A) is atomic at § on K.

Let A=Q CR X Cand L € C(2, £(C, R")).

If D: € — R" has a continuous first derivative with respect to ¢, then
Lemma 5.1 of Hale [5], p. 50, implies D, has smoothness on the measure.

DEFINITION 1.1. Suppose € C R X C is an open set and (¢, ¢) € .
A function D: @ — R” (not necessarily linear) is said to be atomic at 8 on
Q if D is continuous together with its first and second Fréchet derivatives
with respect to ¢, and D,, the derivative with respect to ¢, is atomic at 8
on £2.

System (1.1) is called a functional differential equation of neutral type
if D is atomic at zero.

We also assume the existence, uniqueness, and continuous depen-
dence with respect to initial condition of the solutions of (1.1).

Assume £ C C is open, and D: € — R" is a continuous linear opera-
tor given by

. 0

(14) D, =9(0) —g(¢) withg(s) = [ [du(6)](6),
where p(8), —r < 0 < 0, is an n X n matrix whose elements are of bounded
variation and do not have singular parts, that is,

(13 [ Lam(@le(0) = 3 Ao(om) + [ 4(0)6(0) db
where

bad 0
0<w,=r and 3 |4,/+ [ |4(9)|d0 < co.
k=1 -r
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In [5] page 304 we found the following.

DEerFINITION 1.2. If G: C - R” is continuous we say G(¢) is indepen-
dent of ¢(0) if there is an ¢ € [-r, 0) such that G(¢) depends only on the
values ¢(8) of the function ¢ for § € [-r, ). The systems

(1.6) 4 px, = Lx,
and
d
(1.7) 1 Dx, = G(t, x)] = Lx, + f(z, x,)

are our main concern, where D satisfies (1.4), L satisfies (1.2), Dx, —
G(t, x,) is atomic at zero and G(¢, ¢) does not depend on ¢(0), ¢ = x,,.

If ¢ € C and x,(o, ¢) is the unique solution of (1.6) we define the
operator 7(t — a): C - C, t = o, by the relation

(1.8) x(6,9)=T(t—0), T(0)=1I.

{T(t = 06)},c[0.00y 15 @ family of strongly continuous semigroups from
C into itself for all = 0.
In [5] Theorem 10.1, p. 307, is proved that:

THEOREM 1.3. (1) The infinitesimal generator A of a semigroup T(t — o),
t = o, of (1.6) has domain D( A) and range R.( A), respectively, given by

D(A)={pEC:pEC,Dp=Lp}, Ap=2¢.

(ii) The spectrum o( A) coincides with the point spectrum (eigenvalues),
and A € a( A) if and only if X satisfies the characteristic equation
det A(A) =0, AN) =AD(er'T) — L(e' ).

(iii) The roots of characteristic equations have real parts bounded above,
and if N € o( A) then the generalized eigenspace I ,(A) is finite dimen-
sional and there is an integer k = k() such that

My(4) =9 (4 —AI)* and C=9(4 —A) S R(4 -\~

(iv) Suppose A is a finite set {A, A,...,A,} of elements of o(A), and
Q) = (D)., Py ) By =(By,...,B) ), where ®, is a basis for the
generalized elgenspace of A, and B A IS "the matrix defzned by A(I)A = CI))\ ,
Jj=12,...,p. Then the only ezgenvalue of B, is A, and, for any ezgenvector
a of the same dimension as ®,, the solution T(jt - o)fbAa of (1.4) with initial
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value ®,a at t = o may be defined on (o0, 00) by the relation
(1.9) T(t — 0)Pa= @, q0,(0) = ®,(0)e®, -r=06=<0.

Furthermore, there exists a subspace Q, of C such that T(t — ¢)Q, C
Quyt=0,and C= P, © Q,, where

P, = {¢ € C: ¢ = ®,a, for some vector a}.

We can give an explicit characterization of decomposition of space C
via the formal adjoint equation

(1100 g |55 = [y =0 au(@)] =[5~ ) ante)

where y is an n-dimensional row vector. If C* = C([0, ], E""), where E™"
is the n-dimensional space of row vectors, then, for any ¢ € C the bilinear
forms

(L1 (@6) = a(9(0) + [*[ 44 ["als = u) du(0) o(s) &

_[qus—wdmw¢bﬁh

u=40

are defined fora € C* = C([0, r], E™), a € C*, ¢ € C.
The following theorem is proved in [5], p. 309.

THEOREM 1.4. If A = {A,,...,A,} is a finite set of elements of o(A)
and P, is the linear extension of M, (A),j = 1,...,p, with basis ¢,, and p¥
is the linear extension of the corregpondent generalized eigenspace of the
formal adjoint equation with basis ¥,, then one can choose ¥, so that
(¥,, ®,) = Iis the identity and

(1.12) C=P,®0Q,,
P, = {¢ € C: ¢ = ¢,a, for some vector a},
O, ={p€C:(¥,¢)=0}.

In the condition of Theorem 1.4 we say that the space C is decomposed by A
and therefore if ¢ € C, we have ¢ = ¢™ + ¢9r, where ¢ = ®a, a =
(¥, ¢) and $2r = ¢ — ¢

Furthermore, if C is decomposed by A, then o(T(t —o)|P,) =
o(ef~) where A®, = ®, B, and AY, = B\Y¥,.
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1.2. Variation of constant formula. Consider {Ty(t — 0),t =0}, the
strongly continuous semigroup of linear mappings associated with the
solution of the difference equation (d/dt)Dx, = 0.

DEFINITION 1.5. The order a, of the semigroup is defined by
p = inf{a € R: 3K = K(a) with | T(1 — o)|| < Ke®""®, t = o}.

In [5] we can find some results that can be stated as

THEOREM 1.6. If D and L satisfy (1.6), the matrix p has nonsingular
part, and a > ay, is fixed, then the set A, = (A € o(A): Re A = a} is finite
and the space C can be decomposed by A, as C = P © Q, where P and Q
are invariant subspaces under T(t — o) and A, and the space P is finite
dimensional and corresponds to the initial data of all those solutions of (1.6)
which are of the form p(t)exp(At), where p(t) is a polynomial in t and
ANEA,.

If x,(o, ¢) is a solution of (1.6), then, according to Theorems 1.3 and
1.4, we may write x, = x” + X2.

Now let X(¢), t =0, be the n X n matrix function defined for all
t €10, 00) of bounded variation in ¢ and continuous in ¢ from the right
such that

D(X,_,)= I+fIL(Xs_o)ds, 1>,

_ /0, -r=60<0,
(1.13) x(0)={% =

b

So according to [5], page 302, a solution of (1.7) with initial value ¢ in
o satisfies the variation of constants formula

.~ XoG(1, x,) = T(t — o)[¢ — X,G(0, ¢)]
+f {[-dsT(t — 5)X,) G (s, x,)

(1.14)  «x

+T(t — 5) X, f(s, x,) ds} t=o,
where T(t — o)[¢ — X,G(0, ¢)] is defined as 7(t — 0)¢ — X,G(0, ¢) and

(1.15) X(t—0)X, = X,_
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The integrals in (1.14) are evaluated at each 6 € [-r,0] as ordinary
integrals in E". Also, if C is decomposed by A as C = P @ Q, then (1.14)
is equivalent to

x; — X;G(¢, x,)
(1.16) = T(t — o)[¢" — X5G(0, ¢)]
t
+f {[-asT(t — 5)X¢]G (s, x,) + T(t — s)Xf(s, x,) ds)

X2 — X§G(1, x,)
=T(t — 0)[¢2 — X£G(0, ¢)]
+/t {[~dsT(t — s)X(?]G(s, x,) + T(r — s)X§f(s, x,) ds},

where the superscripts P and Q designate the projection of the corre-
sponding function onto the subspaces P and Q, respectively.

However, we must observe that everything is clear in (1.16) except for
the meaning of the projections Xj, X§ since X, is not continuous.
Projection operators taking C onto P and C are easily determined by
means of the adjoint differential equation (1.10) and the bilinear form
(1.11). One can show that (¥, X)) is well defined and (¥, X)) = ¥(0).

Therefore if we put

(1.17) XP=0¥(0), X¢=X,— XI,

the quantities in (1.16) are well defined.
Also in [8], Henry has given some exponential estimates for the
solutions of (1.6).

THEOREM 1.7. If a > a;, and A = {A € 6(A): Re A > qa, det A(A) =
0}, then C is decomposed by A as C =P © Q and there are positive
constants M|, M,, M, M, and ¢ such that for ¢ = 0,

(1ag) 1T = 0090l = Ml =ol], r=0, 92€ 0.
T = o)l = Myt IR, =6, ¢"EP,
and
(1.19) |7(t = o) X§|| < Myet*—2=, 1=,
. [T(s ~ o)XOP“ < M e®toU=9), t<o,
7 d,T(s) X8l < aa,
(1.20)

/oo |d,T(s)XZ|le =" < M,.
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Relation (1.14) suggest the possibility of introducing a new variable
for the expression on the left-hand side. However, some care must be
exercised because the new variable would not be a continuous function on
[-r, 0]. See [5] page 302.

The variation of constants formula (1.14) for the solutions of (1.7)
suggests the change of variables
(1.21) z,=x,— X,G(t, x,)

to obtain a new equation for z, in PC, where PC is the space of functions
¢: [-r,0] = R" which are uniformly continuous on [-7,0) and for which
there exists ¢(07). See [5] page 302.

The transformation (1.21) is a well-defined transformation from C to
PC, since G(t, ¢) is independent of ¢(0). Therefore, G(¢, x,) = G(¢, z,)
for -r=6<0.

Thus if

def

(1.22) z,=x,— X,G(t,x,), x,=z,+ X,G(t,x,)=H(t,z,),
(1.14) becomes
(1.23) 2z, = T(t——o)z,,+ft{[—ds T(t — 5)X,)G(s, z,)

+T(t — s)X,F(s, H(s, z,)) ds}.

Let ®, ¥ be the matrices defined by the composition C = P @ Q,
(¥,®) =1 and let B the p X p matrix such that 7(¢)® = ® exp(Bt),
t € (—o00, o0). The spectrum of B is A. For any ¢ € PC one can define
(¢, ¢) and, therefore, it is meaningful to put

o' =0(¢,0), ¢2=06—9¢", ¢ €PC.

One can show that (¢, X,) is well defined and (¥, X,) = ¥(0).
Therefore, if we put

the quantities in (1.14) are well defined. If we apply appropriately
relations (1.22), we can split (1.23) as

(124) 2" =T(t — o)z" +fa' ([ds T(t — 5)XZ] G (s, z,)
+7T(t — s) X F(s, H(s, z,)) ds},
22 =T(t —0)z2 + ft {[-ds T(¢ — 5) X¢] G (s, z,)

+T(t — 5s)XEF(s, H(s, z,)) ds}.
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DEFINITION 1.8. The operator D is said to be uniformly stable if there
exist constants K = 1 and a« > 0 such that

(1.25) IT2(t)o|| < Ke*||¢ll, ¢ €C° t=0.

It is shown in [5] that D uniformly stable implies there exists ann X n
matrix function B(z) defined and of bounded variation on [-7, 00),
continuous from the left, B(t) =0, -r <¢ =<0, and a constant M >0
such that

IT°()ef < Ml¢l, t=0, ¢ €C,  sup |B(1t)|<M.

t=-r

THEOREM 1.9. The following conditions are equivalent:
(1) D is uniformly stable;
(i) @, < 0, where a , is the order of the semigroup T(t);
(iii) there are constants a, b > 0 such that for any h € C([0, o), R"),
any solution y of the inhomogeneous equation Dy, = h(t), t = 0, satisfies

Ivll=de=“lyol + & sup |n(u)|, =05

Oo=u=t
(iv) if D¢ = ¢(0) — [°[du(8)]9(8), where u satisfies conditions (1.5)
of §1, there exists 8 > 0 such that all solutions of the characteristic equation
det[7 — /2 e du(8)] = 0 satisfy Re A < 4.

2. Main results. The lemma below gives a characterization on the
asymptotic behavior of the solutions of the linear neutral differential
equation

d  _

where D and L are linear.

LEMMA 2.1. If B > a, and y, is a solution of (2.1) such that || y,||/(exp Bt)
does not go to zero as t — oo, there exists a nonnegative integer | and a real
number o uniquely determined such that

0 <lim |yl/r'e* < lim |ly]|/r'e* < co.
PR Ul

Proof. 1f B> ay, it follows from Theorem 1.7 that the space C is
decomposed by the set

A={A€o(4): ReA=pB,det A(N) =0}
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as C = P © Q, where the subspace P is of finite dimension and there are
positive constants M,, M, and § such that
IT(1)99) < Mye =29, =0, ¢°€Q,
|T(2)9"| = MeB®oP|, ¢=<0, ¢ € P,
Without loss of generality we can assume y, = 7(t)¢ for some ¢ € C,
and since || y,||/e?" does not tend to zero as ¢ - oo, we have
[T(1)99||/e? >0 ast— oo
and

“T(t)(bP"/eB’-/-) 0 ast— oo.

From (1.9) of Theorem 1.3 we have
T(1)¢" = ¢pe®b,

where B is a Jordan matrix with eigenvalues which are the elements of A
and have a real part greater than or equal to .
Let

2(1) Z T(1)$7(0) = $(0)e®b.

There are nonnegative integers / and a real number a, a = 8, such
that

(2.2) 0 < lim |2(2)| /r'e* < lim |2(¢)| /te™.

1—00 =00

We claim that

(2.3) 0 < lim ||T(1)¢"|| /t'e* < lim ||T(z)¢"| /t'e* < 0.

t— 00 =0

In fact from (2.2) it follows that there are positive numbers ¢,, ¢, and
T, such that

¢, <|z(2)|/tle <¢c, fort=T, —r.
But for @ € [-r, 0],
t+46 t+0
O IO,
t'e™ (1 + ) ec*® 4

/
>0
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It is easy to see there is T, = T, large enough, such that t = T, and
# < [-r,0]. We have

lz(t +8)]| _ ¢ g Cl .
—_— . o L ar >
e =5 e szm{e ,1}>0
and
t+ 6
IZ([ )lSc max{e *,1} < o0
telll

The above inequalities imply (2.3) is true.
Since a = B it follows that

lim ||7()$2|| /te™ = 0,

t— 00

and then

0 < lim [[T(z)¢"|/t'e™ = lim |z(z)]/2'e*.

t— 00 t— o0

and

lim [|T(2)¢l|/t'e* = Tim |T(1)¢"||/t'e*" < o0,

t— 00 t— 00

and the proof is complete.

NoOTATION. We say || y,|| ~ t/e* if

0 < lim [y /rle® = Tim [y /rle™ < oo.

t— o0 {—o00

Now consider 8 > a,, and y(t) a solution of (2.1) such that ||y, ~ t'e*
with/€Z, ,a€R,a=f Let A={A Eo(A): ReA=a, det A(A) =
0}. Let P, Q and B be as in Lemma 2.1 and let N be the order of the
larger block of B which has in the diagonal an integer with real part equal
to a. Let

P = {4) € P: lim ||T(¢)9]/tle™ = O}.
t— o0

The next lemma is proved in detail in [10].
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LEMMA 2.2. There exists a subspace P, of P and there are projections
X% P> P,i=1,2, such that P = P, ® P,, X" + X" = I. Furthermore
there are positive constants M and o, such that

(24)  |T()XPT(-s)o"||< Mt~ 's¥ e I|pP|, o=s=1,
(2.5) | T(e)XPT(-s)¢"|| < M'sV " lee"Ip"|, s=t1=0.

Now consider the systems

d
(L) =1L

(P) L Px, = 61, x)] = Lx,+ £(1, %),

where D, L are linear and G(¢, ¢) is independent of ¢(0). (See Definition
1.2)

Let 8> a, and y, be a solution of (L) such that ||y, ~ t'e®" with
a=p.Let A={A€0d(A4): ReA=a}, P, Q and B be as in Lemma 2.1
and let N be the larger order of the blocks of B which have in the main
diagonal integers with real part equal to a.

The result below is the main theorem of this section.

THEOREM 2.3. Let y(t) be a solution of (L) such that ||y,|| ~ t'e*'. Let S
be the vector subspace of C defined by

s={¢ € C: lim |T(1)el/Iyll = 0}.
Assume that for ¢, ¥ € C,

A2,00=0, |f(t,¢) = f(t. W) =hy (D)o —ll, =0,
G(1,00 =0, |G(t,¢) = G(,¥)|=m()¢ —¢l, =0,

(2.7) fsN"'hz(s)ds<oo, fwsN_’hl(s)ds<oo, lim 4,(z) = 0.
t— 00

(2.6)

Then there is a subset Y of C and a real number ¢ > 0 such that:
(a) For every ¢ € Y there exists a solution x(t) of (P) such that x, = ¢
and

(2.8) Lim ly, = x]l/llyll = 0.

(b) Y is homeomorphic to S, that is, there exists a homeomorphism W
S — Y such that W' is the restriction to Y of a projection X® from C onto
S.
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Proof. Let y(t) be a solution of (L) such that ||y~ te*. Let
x =y + z. To find solutions x(t) of (P) satisfying (2.8) is then equivalent
to finding solutions of

i[DZz - G(t9 Z_t)] = LZ—! +f(t’ Y + Zt)

(2.9) dt
def _
=Lz, + F(t,z,)
satisfying
(2.10) tlﬁi*n°1o Iz]l/t'e* = 0.

Let P, = {¢ € P: lim,_ ,||T(¢)9|l/t'e* = 0} and let P,, X and X"
be defined as in Lemma 2.2.
Now consider the following integral equation:

(2.11)
z,=T(t —0g)¢°
+ [([-ds T(¢ = $) X8| G (s, 2) + T(r — 5) XEF (s, H(s, 2,)) ds)
+f‘ ([ds T(¢) X" T(~s) XZ]G(s, z,)
+T(¢t) XM T(-s) XS F(s, H(s, z,)) ds}
—fw {[~ds T(t) X™T(~5) X2]G (s, z,)
t +T(t) X" T(~s) X{F(s, z,) ds}
where ¢S is an arbitrarily fixed element of S, XJ = ®y(0), X¢ = X, — X/.
We shall show that if z, satisfies (2.10) then the last integral above
converges. First we need to emphasize some facts. From Theorem 1.3 we

know the subspace P = {¢ € C: ¢ = ¢a, for some vector a} and T(-s)Pa
= ®e~8%q. Thus for a = B(V, ¢), we have

~ds T(t) X" ®e 85(¥, ¢) = T(t) XPe BB(V, ¢) ds
= T(t)X"T(-s)®Pads

with ®a € P.
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From (1.22) we have

H(t,z,) =z, + X,G(t, z,) = Z,.
Therefore
|F(r, H(z, 2))| = |f(2, y, + H(z, 2,))| < hy(s) |y, + H(z, 2)|
< hao()[ Iyl +[1+ B ()]l
If z, satisfies (2.10) with lim,_ ,, 4,(¢) = O, then

tle <[ |ly )l +[1 + hy(0)]llz]]

is bounded.
We will show that if z, satisfies (2.10) then the last integral of (2.11) is

convergent.
In fact, from (2.5)—(2.7), we have

f, ([ -ds T(1) X" T(=5) XE] G (s, z,)
+T(¢)X"T(~s) XSF(s, H(s, z,)) ds}
sftw |T(r) X"T(-s)®a| |G (s, z,)| ds

+ [ IO X T KIFs, Hs, =) ds

0 [e e}

= Mt’e""f sV hy(s)s eS|z || ds + Mt’e""f sV h,(s) ds
t t

< 0.

We will now show that if z, is a solution of (2.9) satisfying (2.10), then
there exist ¢° € § such that z, satisfies (2.11), and, conversely, if z,
satisfies (2.11) and (2.10) and z, is continuous on ¢, then z, satisfies (2.9).

In fact, suppose z, satisfies (2.9) and (2.10) with z_, = ¢.

From the variation of constants formula (1.23) we have

zZ, = T(t - 0)¢
+ [ {[~ds T(: = 5)X§]G(s. 2,) + T(¢ = 5) X¢F(s, H(s, z,)) ds)

+]: {[—ds T(t — s)X(‘f]G(s, z,) + T(t — s)X$F(s, H(s, z,)) ds}.
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Hence,

z,=T(t—0)¢
+f6' {[~ds T(t — 5)X€)G(s, 2,) + T(t — ) X¢F(s, H(s, 2,)) ds)
+ [ (s T() X" T (=) 3]G s, 2,)
+T(t)XPT(-s) XS F(s, H(s, z,)) ds}
-/ " ([-ds T(1) X"T(=5) X2 G s, z,)
+T(¢)XPT(-s) X F(s, H(s, z,)) ds}

ZT(1 - 0)9 + G\(1),

$=o+ [ {[-dsT(0)X"T(-s)X1G(s. z,)

[

+T(0) X" T(-s) X;F(s, H(s, z,)) ds}.

In order to show that ¢ € S, we show that if z, satisfies (2.10) then
G (t) also satisfies
|G (2)|| /t'e* -0 ast— oo.

From Theorem 1.7 and the convergence of

[ {[-as T = )x]6 (s, 2,))|

[

we have

ft {[—ds T(t — s)X$|G(s, z,) + T(t — s) XZF(s, H(s, z,)) ds}

a

Sfate(“_"”)(’”)e‘("_E)(’_s)”—ds T(t — s) X8| |G (s, z,)|
+ [T = )XY |F(s, H(s, 2,)lds
= Ke®e e~ =0p ()2, [ e =] T(u) X8|
0

+Ke®e™ f e hy(s)[Ioll + (1 + hy(0)lz]] ds
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< Kileme~ " On,(£)£ e~z [ e« du T(u) X
0

+Kt/ at “”/e”s'le ‘”hz(s)[”ys” + (1 + hl(s))”Zs“] ds

(o4

_ K ZI atg—e(t— g)hl(%_)ft—ce-(a~e)ulldu T(u)XOQ”
0

+K,t'e™ ““’/ eh,(s) ds.

[y

From Lemma 2.2 we have

[ {[-ds T() X" T(=) X516 (5, 2,)

a

+T() XM T(~s) X F(s, H(s, z,)) ds}

< Mt~ Ie"""/‘lsN_’e“’ﬂG(s, z,)|ds

ag

+M/tt’_lsN_’e"(’_s)|F(s H(s, z,))|ds

smew} sV, (s) ds + Mot ['sVhy(s) ds.

a [

In the same way we have

ftw {[=ds T(1) X T(-5) X] G (s, z,)

+T(¢t) X" T(~s) X F(s, H(s, z,)) ds}

= [ |- T X7 () X0} (6, 2,)lds
+fw |T(e) X" T(-s) X{| |F(s, H(s, z,))|ds
< Mt'e atf sV 1= G(s, z,)|ds

t

+Mt’e""f°osN“’—‘e"”‘s|F(s H(s, z,))|ds
t

< Mt’e"“/ws”' Is~le=*h (s)|z,\ds
- 1 s

t

+ Mile f, s7le s Ny ()l + (1 + hy(s))llzl] ds

= Mtle "’f Nlh (s) ds + Mt'e "’f sV h,(s) ds.
t t
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Then since, by hypothesis, lim,_, ., 4,(¢) = 0, we have, for ¢, > o large
enough, | A (1) |< M,, t = t,. Then we can write

1G. ()]l = Klz’[eﬂte-eﬂ‘&)hl(g)['_°e-<“*f)“]|du T(u) X
0

(2.12) +e“”fte“h2(s)ds + %ftsNhl(s) ds

o]

1 ¢ ©
+7fasNh2(s)ds+ft sNTh (s) ds

+ft°°sN“'h2(s)ds}.

We show now that ||G,(¢)||/t'e* — 0 as t > oo.

Since the first integral is bounded, 6 < ¢ < ¢ and A (1) — 0, the first
term of (2.12) goes to zero if £ - oo when ¢ — oo or if £ goes to a finite
limit when ¢t — co.

From Strauss and York [11, Lemma 3.6, p. 19] it follows that

e“”/te”hz(s) ds—>0 ast— .

[

From (2.7) it follows that

o0
f s hy(s)ds >0 ast— o

t

and
f s h(s)ds >0 ast - 0.
t
We show finally that the terms
1oy L
tfos h(s) ds, i=1,2,

go to zero as t — oo.
By integration by parts we have

—llr—ftsNhi(S) ds = l[sfsTN“lhi(T) dr|, —ftdsfs'r""lh,(’r) dq-]

0

_/ ™V (1 d’r——f V" (1)

tfdsf N=1p (1) dr.
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From hypotheses (2.6) and (2.7) on 4, and h,, it follows that the first
two terms of the right side of the above equality goes to zero as ¢ — 0.
Using L’Hopital’s rule we prove that the last term also goes to zero.

Thus we have proved ||G,(¢)/t'e*|| = 0 as t - 0.

Conversely, suppose z, is a continuous solution of (2.11). Therefore z,
satisfies

z,=T(t—0)¢

+ [ {[-ds (¢ = $)X,]G(s, 2,) + T(r = 5) X F(s, H(s, 2,)) ds).

where

(2.13) ¢ =¢° —f°° ([-ds T(o) X" T(-5) XL G (5. z,)

(o

+T(0) X" T(~s) X F(s, H(s, z,)) ds)

Therefore z(¢) is a solution of (2.9) and satisfies z, = ¢.

Our next goal is to show that (2.11) has a continuous solution which
satisfies (2.10) for ¢° arbitrarily fixed in S and o large enough.

Consider the space E of functions g on C([o, o), C) such that
lim, . | g(1)ll/te* = 0.

In E consider the norm

lgllz = sup llg(¢)] /re.

t=ao

One can show that E with the given norm is a Banach space.
Suppose we have proved that the equation

g(1) = T(t — 0)¢*
+ [ ([ Tt = 5) X816 5. 8(5))
+ (¢ — s)XEF(s, H(s, g(s))) ds}
+ [ s T X T(5) X716 s, 8(5))
_ TTOXMT(s)XTF(s, H(s. 8(5))) ds
= [ {las T X" T(5)X{]G (5. 5(5))
+T(1) X" T(=s) X F(s, H(s, g(s))) ds)

has a solution g in E.
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We show that from g we can find a solution z, of (2.11).
In fact, we define

(2.15) z,=g(o) and z(z) = g(¢)(0), fort>o.

We say that z, = g(7),t = o.
In fact, using the same calculations given by (2.13) and putting
¢ = ¢°, one proves that

g(1) = T(t = o) + [ {[-ds T(t — 5) X,] G (s, g(s))
+T(t — s) X, F(s, H(s, g(s))) ds}
— [ {[-ds T(0) X"T(~5) X G(s, g(5))

+T(0) X" T(~s) XEF(s, H(s, g(s))) ds}.

Now the proof that z, = g(¢), t = o, 1s without difficulties if we
observe that for t + 8 =0, T(t + 60 — s)X,(0) = T(t —s)X(0) =0 if
t+f0<sand =Jifr+0=s. Fort=cands=o0 + 0,

T(t + 6 — 5)X,(0) = 0,

and fort =zoands=o0>r+ 6, T(t + 6 — 5)X,(0) = 0, then z, = g(1).
For fixed ¢° in S and o > 0 fixed, we consider the operator U defined
on E byif g € E, therefore

(Ug)(t) = T(r — 0)¢*
+ [ ([ T(c = ) X8) G5, &(5))
+T(t — s)XPF(s, H(s, g(5))) ds)
(2.16) + [ {[-as T X" T(5) X£] G s, ()
+T(¢) X T(=5) X F (s, H(s, g(s))) ds)
— f [~ds T(1) X" T(~5) X1 G(s, g(s))
+T(1) X T(=s) X7 F(s, H(s, g(s))) ds}.
Let us now prove that U has a fixed point on E.

First we observe that if g and w are elements of E, then, since ¢° € S,
using (2.12) we have that there exists a constant K, > 0 such that
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I(UB) (1) = Ko™ T2 = 0)g e
+e"E(’*E)hl(g)fl_ae‘(“—e)”“du T(u) X8|
0
2.17 , )
( ) +e“’fe”h2(s)ds+%fs’vhl(s)ds

LY * N-1
+7st hz(s)ds+ft sV hy(s) ds
+ [T sV (s ds].
[ 2(s)

There also exists a constant K, > 0 such that

I(Ug)(2) — (Uw)(2)]
< :{[-ds T(t — s)XOQ][G(s, g(s)) — G(s,w(s))]

+T(r — s)X@[ F(s, H(s, g(s))) — F(s, H(s, w(s)))] ds)

+

[ {[-ds T() X" T(-5) XZ][G 5. g(s)) — G5, w(s))]

(o]

+T(e) XN T(~s) XJ[ F(s, H(s, g(s))) — F(s, H(s, w(s)))] ds} \
f[ {[-ds T(1) X"T(~s) XZ][G(s, g(s)) — G(s, w(s))]

+T(t) X2T(-s) XF[ F(s, H(s, g(s)))— F(s, H(s, w(s)))] ds} '

By the calculations we made before we can write
I(Ug)(r) — (Uw)(1)]
= K,t'e*g(§) — w(§)[|§ e e~ "Oh,(§)
e T(w) XS]

+ f ‘Mie a9\ F(s, H(s, g(s))) — F(s, H(s, w(s)))|ds
+f:”TU XPT(=s) X |G (s, g(s)) — G(s,w(s))|ds
+./: “T(t)XP T(-s)X? H |F(s, H(s, g(s))) — F(s, H(s, w(s)))|ds

+ [T ITOXT() K] 65, 8(5) — G5, w(s))lds

+ f I T() XPT(=s) X\ |F (s, H(s, g(s))) — F(s, H(s, w(s)))|ds
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= Kyt'e*g(§) — w(£)[|§ e %" On,(¢)
[ e du T(u) X8
0

+Mtlee [ePhy(s)[1 + h(s)]s e lgls) — wis)lds

+ Mtle ""—ftsNhl(s)s"e"”Hg(s) — w(s)||ds

Mo ['sn()[1 + ()]s e () — w(s)las

+Mt’e""/t sV (s)s e ||g(s) — w(s)|ds

e [N ()1 + ()]s e g(s) — wls)lds

< K,tle™ "5(’"f)h1(5)/1_06"(“_5)““&1 T(u) X8| llg — wllz
+M teot —ytf hz(S) ds ”g — w||E+Mt /SN_lhl(s) ds Hg —W”E

o0
+ Mt'e "’f V7 ho(s)ds g — wlg+ Mile [ sV (s)ds g —wlls
t

+Mtle f sNhy(s) dsllg — wls.

Thus there exists a constant K, > 0, independent of ¢°, such that for
everyt = o,

1(Ug)(2) — (Uw)(2)] /2’
S[K;,_e-f«*ﬂhl(g) [ e au T(u) x|
+1\73f°oh2(s) ds + M/wsN”lhl(s) ds

(2.18) w -
+1\7f sV (s) ds + Mf sV hy(s) ds

[T () s = wl

Y (s) + [V () sl = wle

From (2.17) we see that |[(Ug)(?)||/t'e® — 0 as t > oo and therefore
U(E) C E. Furthermore, taking ¢ large enough in such a way that

Kz[foosN_‘hl(s) ds + fwsN_lhz(s) ds] <1,

o

us[foos

o
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we have that U will be a uniform contraction on E with respect to ¢5 € S.
Now we apply a known theorem [6], p. 7, Theorem 3.2 to conclude
there exists a fixed point on U which is continuous with respect to ¢>.
For ¢% in S and g fixed in E, we consider

(Upsg)(t) = T(t — 0)¢°
+fot{[—ds T(t — s) X2 G(s, g(s))
+T(t — s)X$F(s, H(s, g(s))) ds}

+f'{[_ds T(t) X" T(-s) XZ]G(s, g(s))

[

+T() XM T(-s) XJF(s, H(s, g(s))) ds}
[ (s T X" T5) X716 (5. 8(5))

+T(1) X" T(~s) XJF(s, H(s, g(s))) ds}.

The map ¢° € § > (Ussg) € E 1s continuous in S. To prove it we
have only to show that the map

¢ ES - V,sEE,

where V,s(t) = T(t — s5)¢°, is continuous in S.
This follows from a simple application of the principle of uniform
boundedness to the set {T(¢t — a)/t'e™, t = a} C L(S, C).
Since T(t — 0)¢°/t'e* — 0, when ¢ - oo, for each ¢5 € S, then for
each ¢° € S we have
sup |T(¢ — 0)¢°/t'e*||< 0, ¢°€S.

=0

Then from the uniform boundedness principle

sup |T(t — o) /t'e|rs.c) = K < 0,

t=o
and then

sup sup [[T(t — 0)¢S/tle*|= K< 0.
=0 |1¢%|=1

Then for every ¢ = o and ¢° in S, such that ||¢5]| = 1,
|T(z = 0)¢°/rle™| < K,
which implies

IT(- =0)¢%|l s = sup | T(z — 0)¢°/1e™|| =

=<4
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Then the map ¢° € § = Vs = T(- —0)¢° € E is continuous.

We now apply a well-known theorem, see Hale [S], Theorem 3.2, p. 7
with U,s the uniform contraction. Then it follows that for each oS ES
there exists a unique fixed point g(¢%) € E of U,s. Furthermore the map
g: S — E is continuous.

Then (2.11) has a continuous solution z, which satisfies (2.10) for ¢S
aribtrarily fixed in S and o large enough, that is

lim ||z,||/t'e* = 0.
=00

But if z, is given by (2.11), z, satisfies (2.9) and, therefore, from (1.22)
we have

7, =z, + X,G(¢, z,),
and then
Iz )l /e =l|z, + X,G (2, z,)l| /e,
which implies
lz) /te <[llz )|+ hi(0)llz )] /1'e
= (L+ B (0)llzl /e = lim |z]| /%% = 0.
But z, = x, — y,, therefore

lim [, =yl /e = 0.

Now consider the map W: S — C defined by

w(e%) =68 = [ {[-ds T(0)X"T(-5) X516 (s, &(6°)(s))

(o2

+T(0) X" T(-s) XJF(s, H(s, g(¢°)(s))) ds}.
We claim W is continuous in S. If ¢, ¢ € S we have

Iw(e) — W)l

<o — i+ || ([-dsT(o)X"T(~s)X]]

[G(s, 8(9)(5)) — G(s, 8(¥)(s))]
+T(o) X"T(~5) XS F(s, H(s, g(#)(s)))

— F(s, H(s, g(9)(s)))] s} |
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From previous calculations we have

Iw(e) — w(y)]
<[l — gl + Mo'e" [N h(s)s e~ g()(s) — g(¥)(s)]ds

g

+Mo'e™ [N (s)[1 + hy(s)]s e lg(9)(s) = g(¥)(5) s

o

<llo —

o0
+Mo’e“°[/ K

o4

YU (s)ds K5 Mhy(s) ds]ngw) — (V)]s

But we already proved that the map ¢ € S — g(¢) € E is continuous,
therefore from the above inequality it follows that W is continuous.

def
Let YS= W(S) C C and consider the map W: S - Y;. We shall
afterwards show that the inverse W' is a projection over S.

Let X” and X9 be the projections given by the decomposition
C = P & Q. We assert that
(2.19) X2W(¢%) = X2¢5.

In fact since the subspace P is invariant under 7(¢) for all 1 € R, we
have

7 {[-ds T(0) X" T(-5)X¢1G (s, g(°)(5))

[

+T(0)XP2T('S)X§F(S, g(q)s)(s)) ds}

is an element of P. Then (2.19) follows.
Using also the invariance of P under 7(¢) we have

X*w(¢%)
= X765 — [ {[-ds T(o) X"T(=5) 7] 65, 5(4°)(s))

+T(0) X" T(-s) XJF(s, H(s, g(¢°)(s))) ds}.
Thus
T(-0)X"W(¢°)
= 7(-0)X"¢° — [ {[-ds X"T(-5)XJ]G(s. 5(¢*)(s))

ag

+XPT(—s) XPF(s, H(s, g(95)(s))) ds}.
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We remark now that X7¢5 € P,. Furthermore P, is invariant under
T(t). We also have that P, is not invariant in general under 7(z). In
general it is not also true that T(¢) X" = XPT(¢).

From the remarks above it follows that

XPT (o) XPW(¢°) = XPT(-0) X795 = T(-0) X79° € P,.

Then
(2.20) T(o) X" T(-0) X*W(¢°) = X795,

From (2.19) and (2.20) it follows that

[T(o)XPT(-0) XT + X2 W(¢%) = X765 + X2¢5 = ¢5.

Therefore we conclude that W™': Y, > S'is

[T(0)X"T(-0) X" + X9 |,..
We now show that this map is a projection. In fact

(T(0)XPT(-0) X?)(T(0) X" T(-0) X*)
= T(o)X"T(-0)T(0) X" T(-0) X" = T(0) X" T(-0) X”.

Thus we conclude that T(o) X" T(-0) X" + X< is a projection. Fur-
thermore if ¢ € C, then [T(0) X" T(-0)X? + X]¢ belongs to S. We now
show that it is a projection over S.

In fact if ¢ € S we have ¢ = ¢¢ + ¢ and then

[T(o) X" T(~0) X” + X2](92 + ¢")
= T(0) X" T(-0) X " + X2 = T(0)T(-0)¢" + ¢2 = ¢.

The continuity of this projection follows from the fact that X2, X
and 7(¢) are continuous. Therefore we proved that W is an homeomor-
phism.

For ordinary differential equations we can prove the converse of
Theorem 2.3, that is, for each solution x, of (P) there is a solution y, of (L)
such that ||x, — y,||/||x,]| = O when ¢ - co. For delay equations this is no
longer true as is shown by the following example given by J. Hale.
Consider the equation

y=0 and x = -2texp(l — 2t(x(¢ —1))),

which has the solution x(z) = exp(-t?) and [1 — exp(-t?)]/exp(-t?) » 0
ast — oo0.

However it is possible to give a partial converse of Theorem 2.3, that
is, if the Lyapunov numbers of the solutions of (L) are finite then the
converse is true. This was proved for retarded functional differential
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equations by Rodrigues [10]. We give in the following the extension of
these results to neutral equations. We will need the following lemmas:

LEMMA 2.4. Let p, g € L((0,0), R), p, 8=0. Let ¥(t) =0 be a
decreasing smooth function, y(t) - 0 as t - oo. Let u(t) = 0 be a continu-
ous solution of

t 1 ]
u(t) =K+ ‘/;u(s)p(s)ds-i- ml; v(s)u(s)g(s)ds, t=o,

such that y(t)u(t) is bounded. Then

) = T2 e 715 [Te(o) ],

4

where B = [*[p(s) + g(s)]ds < 1.

def
Proof. Let V() = max,—,, u(s). Then V is continuous, decreasing,
u(t) < V(t) and y(¢)V(¢) is bounded.
For given ¢ = ¢ there exists ¢, € [0, ¢] such that

V(t) = u(t,) <K + V(t)[j:op(s)ds + fowg(s)ds]
+Y—(lt7ftwy(s)V(s)g(s) ds.

Let o be sufficiently large in such a way that 8 < 1. Then

YOV(0) = 775 [Kr(0) + [Tvo)V(s)s(s) as]

and from Gronwall’s inequality we have
K 1 %
= gree| g [ o) o)

LEMMA 2.5. Let x(t) be a solution of (P) such that

Y(O)V(1) <

lim M =uER, u>ap,
where
(2.21) [f(z, @) = hy()llgll,  1G(z, ¢)| < hy(2)]l9ll,

[e¢] o0
fhl(t)dt<oo, fhz(t)dt< o0, limh,(¢) = 0.

Then there exists X\ € o( A) such that Re X = p.
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Proof. Assume that for every A € 0(A), ReA #pu. Let A= (A €
6(A){Re A > p}. Then C = P @ Q and there exists ¢ > 0 such that

1T(e — o) 2] < M2, t=0, ¢2€0,
I7(t = 0)¢7| < Mye®=*|o?|, t=0, ¢ P,

”T(t — 0)X{|| = Myt ™ot t<o,
IT(t — o) X@| < Mye®==) (=g,

foo 4T (s) X@[le*9° < M,

o0
[ lar(s)xg]le w0 < M,

Using the variation of constants formula
2= T(t = o)® + [ {[-ds T(t — 5)X§]G(s, 2,)
’ +T(t — s)XEF(s, H(s, z,)) ds}
—flw {[-ds T(t — 5)XZ]G (s, z,) + T(t — s) X[F(s, z,) ds}

where

® =9+ j:o {[~ds T(t — s) X{)G (s, z,)

+T(t — s)X3F(s, H(s, z,)) ds}.

From the Mean Value Theorem we have

e—(uﬂ)t

ft [~ds T(¢ — 5) X¢]G(s, x,) ds

a

< e-(n—e)1~0)

e OK iy (£) [ e du T(u) X8
t

< Ke ety (&) = Ke ®(" e "D (§), o=<¢=<t.

If £ goes to a constant or infinity, the above expression goes to zero. Since

ds T(t — s)X; = Be®U™9xp
and

|[F(e, H(z, z,)| < By ()1 + hy(1)]]z ],
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we can prove that

f {[_ds T(t — s)XOQ]G(s, z,) + T(t — s)X8F(s, H(s, z,)) ds}

e—(p,+e)t

+f —dsTt—s)Xo] (s, z,)

+T(t — s) X F(s, H(s, z,)) ds)

goes to zero.

Since p being the Lyapunov number of x, implies e **9"| x,|- 0 as
t - o0, then e **9'T(¢t — ¢)® also goes to zero when ¢ — oo. Since we
assumed p does not belong to o(A4) and p > a,, there is € > 0 such that
p — € also does not belong to 6(A4) and, since e **'T(t — 0)p - 0, ¢
does not belong to P, and from the relations above

I7(t = o)l = Metr o0t~ glle-te0xc-)

: f [-ds T(¢ — 5) X8] G (s, x,) ds

g

< Ke—e(t—ﬁ)hz(g) < Ke (r—e)t—0)

/’T(t — 5)X@F(s, H(s, z,)) ds
t
< e—(y—e)(l‘a)f M4e(”_5)(’~S)F(S, H(S, Zs)) ds
t
< K ['hy(s)(1 + hy(5)) 2 e+ ds.

e -(h=e)X1—0)

foo [—ds T(t — s)X(f]G(s, z,)

t

00
= Ke'("'s)('_c')/ Be® " (s)llz,|
t
< Ke—(u—s)u—a)f°°e<u+e)(r—s)h1”Z I
. 5
[e o]
< K/ e*ce 2¢h (s)||z|le * o ds.
t

Then
|z le* " < K + Klfthl(s)(l + hy(s))|z,|e"* 9% ds

0
+e2“K2f e *%h,(s)|z,le* 9 ds
t
=K+ Kzftp(s)lzsle‘("“)“v ds

o0
+Kze2elf -2es (S)'Z Ie —(p—e)s dS
t
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From Lemma 2.4, z,e*79% is bounded, a contradiction, because p is
the Lyapunov number of z, and then the Theorem is proved.

LEMMA 2.6. Let p > aj, and let x(t) be a solution of (P) such that
pLER

1
1im———~°gt'x’| =

and assume condition (2.21) is satisfied. Then there exists a nonnegative
integer | such that

Proof. Let

A,={AEo(4)|ReA = p},
Ag={AEa(A4)|ReXA>p},
Ap={AEo(4)|Re <p}.

Then C=P® S ® Q. As before let P, = {¢ € P|T(t)p/te*" — 0}
where /=0 is fixed. We can choose P,, 6 >0 in such a way that
P = P, ® P,. See E. A. Coddington and N. Levinson, Theory of Ordinary
Differential Equations, McGraw-Hill, 1955, Exercise 33, p. 106.

|T(1) X" T(~s)¢"| < Kt' sV ler™9|gP|,  o=s5=1,
|T(1)X"T(-s)¢"| < Kt's¥I"ler™9|¢P|, o=<r<s.

Moreover there exists € > 0 such that

|T(t — 5)92| < Ke® 9U=9|p9), c<s<t,
|T(t — 5)¢5| < Ke®+ ) ™9|p9|, o=<t=<s.

~ de
Let QO :fQ + P. The following estimates hold provided & > 0 is small
enough:

’T(t)(j)é! < Ke® /o0,  1=0

b

|T(2)¢5| < Ke®*9"(¢%), <0,
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Since

z,=T(t— o)
+ [ {[as 7 = )x8] 605 ) + T = ) XEF(s. Hs. ) as)

—ftoo {[-ds T(t — 5)X5)G(s, z,) + T(t — s)X5F(s, H(s, z,)) ds}.

From the above estimates it is easy to show that
lim e **9'T(t — 0)¢ — 0.
t— o0

It then follows that ¢° = 0. We can also prove, using Lemma 2.4 and the
above estimates, that | 7(¢ — o)¢|/tV e is bounded, where N = largest
order of the blocks of B, where B is in the Jordan canonical form and
T(1)¢ = eB(®, V).

Let / = min{n = 0: | x,|/t"e* be bounded for = g}.

We can prove, as we did before, that z, can be written in the following
form:

z,=T(t —o0)¥
+f —ds T(t — $) X8| G(s, z,) + T(t — s) XF(s, H(s, z,)) ds}
+f [-ds T(1) X" T(=s) X]G (s, z,)
+T() X" T(-s)XEF (s, H(s, z,)) ds}
—f —~ds T(1) X"T(~s) X! G (s, z,)
+T(2)X"T(-s)XF(s, H(s, z,)) ds},
where
4=92+ [ {[-asT(o)X"T(-)x¢]6(s, )
+T(0)XPT(~s)F(s, z,) ds}.

It only remains to prove that the above integrals are convergent, and
it also follows that ¢ ‘e ™*'T(¢t — o)y is bounded. Now this is not difficult,
using Lemma 2.4 and the known estimates that ¢ e " T(t — o)y + 0 as
t — oo and there exists C, such that | T(¢ — o)y/|/t'e* = C, > 0 for every
t large enough.

Our final conclusion is that there exist constants C,, C, such that
0 < C, < x,/te* = C, < co. We then have the following theorem.
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THEOREM 2.7. Assume f and G are continuous. Let x(t) # 0 for all
sufficiently large t be a solution of (P). Let
lim
t— o0
Let N = max{m/(A — ANI)"*' = (A4 — AI)", Re A = p}. Let us assume
that

log|x
% il — L ER.

(e, o)l =hy(Dllell,  1G(z, )l = hi(1)ll9ll,
fth_lh,(t) dt < o0, footN“‘hz(t) dt < o0, tgm h,(1) =0.

Then there exists a family of solutions y, of (L) such that

N 77

t— 00 ” t”

The proof follows easily from the estimates given before, Lemma 2.4
and the change of variables (1.22).

Applications. Consider the equation
(®) L Lx(e) ~ apxlt = )] = Bx(1) = agrx(e = r) + b(0)x(s = r),
where
D¢ = ¢(0) — agp(-r), Lo = Bs(0) — agve(-r), G(r,9) =0,
IF(1, )] =[6(1)o(=)| <Ib(1)] ol and [ (1) dr < co.

The associated linear equation

(L) Z[x(t) — agx(t — r)] = Bx(1) — agyx(t —r)

was given by R. Brayton, Bifurcation of periodic solutions in a nonlinear
difference-differential equation, Quart. Appl. Math. 24 (1966). In the study
of transmission lines Brayton showed that for y > B > 0 there exists an
infinite set of real couples (&g, wy), W, > 0, ai < 1, such that *iw, are
simple roots of the characteristic equation

A—aghe” + B+ agye ™ =0,
and w,, a, satisfy the formulas

2

) W, + 1 ws—7YB

smwor=-—g-YT—§-2-, COSWor = —— + — .
A  wyt+y Ay wyty
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We assume, in systems (L) and (P), ay = 3, B=1,apy =3, r= 1. If
a, = 3 < 1, by Melvin’s theorem the operator D is stable. See [5)].

We now determine the decomposition of C by A = { +iw,, —iw,}.

If ® = (¢, 9,), ,(0) = sinwyb, ¢,(0) = cos wyd, —r < § < 0, then ®
is a base for the generalized eigenspace of (L) associated with A, since we
are assuming these eigenvalues are simple.

Furthermore, A® = ®B implies

B = (b,j), b“ = b22 =0, b12 = _b21 = —w,.
The bilinear form associated to (P) is

(¥, ¢) = $(0)6(0) — oy (0)¢(-r)
—ao [0+ r)o(8) b — gy [ (68 + r)o(8) db.

the adjoint equation is

Z10) = aople+ )] = By(e) + agry(e + 1),
and
¥* = col(yf, ¥¥), YH(0) = sinwyd, ¥5F(8) = coswy,

0 = 6 < r, is a base for generalized real eigenspace of the adjoint equation
associated with A.

One can show that

(4290 = (4. 82) = S s [+ ) + (4 )

(U5, 6)) = - (U1, 6y) = mﬁ—yz)[v + B+ (v +w)].

If we define
V= (¥*, &)y

then (¥, ®) = I and we can make the decomposition of C by A.
From the above assumptions we have that the set {A € o(A):
det A(A) = 0} satisfies Re A < 0 and the A € o(A4) such that Re A = 0 are

A= +iw, and A, = —iw,.

By Theorem 1.9, since D is stable there exists 6 >0 such that
Re A < -6, with A the solution of

det[I — f_(:e“’ dp(B)] =0.
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Then we have that there are only two eigenvalues with real part equal to
zero and there exists y > 0 such that the set {z: 0 <|Re z|< y} does not
contain any eigenvalue.

If we put x, = x,(0,¢, h) = xF + x? and if x/(o, ¢, h) = ®y(1),
then y(7) satisfies the ordinary differential equation

y(1) = Byy(t) + ¥(0)h(z), =0,

where B, = B and

D 1
¥(0) = col( . )
) E*+ D* E*+ D?
with
E= ——— + B) + mB(v* + wd)l,
2 177 [v(y + B) + B(v* + wg)]
W,
D= ——"——|y+ B+ r(y+wi)l
2(W02 + Y2) [Y IB (Y 0 )]
If
0 w
-w, O
we have
eBt :[ 0 e[wot}
_eIWOl 0
and then [!] and [7',] are the respective eigenvectors associated to +iw,
and —iw,.
Furthermore,

1wyt —iwgt
=l ] ana |

;L —iwgt

ie
are solutions of
y(t) = Byy(1).
Since the conditions of Theorem 2.1 are satisfied we conclude that
—)f—(—t—)(%‘f—%i -0 witht - oo,

and this implies

x(t) — Cie™o' = Cie™" - o(l) = o(1).
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