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In this paper we consider the problem of the relative asymptotic
equivalence of the solutions of the systems

(1) ^

and

(2) ±[Dx,- G(t,x,)]= L{Xι) + f{t,x,),

where (1) is a linear system of neutral functional differential equations.
The main theorem gives conditions under which the following result is
verified. Given a solution yt of (1) there exists a solution xt of (2) such
that

The converse of this result, namely given a solution xt of (2) there is a
solution yt of (1) such that (*) is satisfied is partially proved. A counter-
example is given to show that the converse result is not true in general.

0. Introduction. The study of asymptotic behavior of differential
equations is very important to the understanding of the qualitative behav-
ior of the solutions of an ordinary differential equation. Several mathema-
ticians, including N. Levinson, H. Weil, P. Hartman, R. Bellman, K.
Cooke, J. Hale, L. Cesari, and others, have done a great deal of work in
this area. The theory of functional differential equations is relatively new,
having evolved mainly in the last twenty years, and not many papers have
appeared on asymptotic behavior of functional differential equations. One
early paper was published by Bellman and Cooke in 1959 [1], followed by
several others that consider a nonlinear delay equation as a perturbation
of an ordinary differential equation; see, for example, Cooke [3]. Although
this point of view is important, in some cases a better approach is to
consider a nonlinear functional differential equation because the lin-
earized equation is still a linear functional differential equation, and
because the difficulties involved in the solution of the problem spring
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58 A. F. IZέ AND A. VENTURA

from the fact that the space of the solutions of the linear system is now an
infinite-dimensional space. The first paper in this direction was published
by J. Hale [7]. It is a generalization of Bellman's and Cooke's paper. A
further generalization by Ize and Molfetta [9] appeared later for a more
general class of neutral functional differential equations. We should point
out that for functional differential equations of the neutral type the
methods used to study asymptotic behavior are in some sense more
effective than the classical Lyapunov second method. When we use the
classical Lyapunov theorems for neutral equations we must always assume
the operator D is uniformly stable.

In this paper we consider the problem of the relative asymptotic
equivalence of the solutions of the systems

(L) j^Dy, = L{y,),

(P) j t [Dx, - G(t, x,)] = L{yt) + f(t, xt),

where (L) is a linear autonomous system of functional differential equa-
tions.

Let aD be the order the strongly continuous semigroup {TD(t — σ), t
> 0} associated with the solutions of the difference equation (d/dt)Dxt

— 0. If β > aD and >>, is a solution of (L) such that || j,||/exp/?ί does not go
to zero, there exists a nonnegative integer / and a real number a uniquely
determined such that

0 < lim \\yt\\/tιeat < Πm \\yt\\t'eat < oo.

If the condition above is satisfied we say \\yt\\ ~ tιeat. Let y(t) be a
solution of (L) such that \\yt\\ ~ tιeat and let S be the vector subspace of C
defined by

In §2 conditions are given on / and G under which there exists a
subset Ys of C and a real number σ > 0 such that for every φ E Y + Ys

there exists a solution x(t) of (P) such that xσ = φ and

(•) Hb, - *,II/IMI = o
Furthermore, 1̂  is homeomorphic to S.

Although the converse of this result, namely, given a solution xt of (P)
there exists a solution j>, of (L) such that (*) is satisfied is true for ordinary
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differential equations, a simple counterexample given by J. Hale shows

that it is not true in general for delay equations. However if the Lyapunov

number of the solutions of (L) are finite, the converse result is true and a

partial converse theorem is proved.

We should remark that in the proof of Theorem 2.3 we do not assume

the operator D is uniformly stable. Thus it can be applied even to

perturbations of linear equations that have a weird behavior such as those

given by Gromova and Zverkin [4] and Brumley [2].

1. Preliminaries. Let r > 0 be a given real number, R = (-oo, oo),

En = Rn or Cn a complex ^-dimensional linear vector space with norm | |

and C([a, b]9 E
n) the Banach space of continuous functions mapping the

interval [a, b] to En with the topology of uniform convergence of compact

sets. If [a, b] = [-r,0] then C = C([-r,0], En\ and the norm in C will be

given by

| |φ | |= sup \φ(θ)\.
-r<0<O

If σ G R, A > 0 and x G C([σ - r, σ + A], En), then for every / G

[σ, σ + A] we let j c ^ C b e defined by xt(θ) = x(t + σ), -r < θ < 0.

If Ω C R X C is open and if D, f: Ω -» i?" are continuous functions

we say that the relation

(1.1) ^D(t,x,)=f(t,xt)

is a functional differential equation. A function x is said to be a solution

of (1.1) if there are σ G R and Λ > 0 such that JC G C([σ - r, σ + Λ)E")9

(t, xt) G Ω, ί G [σ, σ + Λ) and x satisfies (1.1) on (σ, σ + ̂ 4). For a given

σ G i?, φ G C, (σ, φ) G Ω, we say that x(σ, φ) is a solution of (1.1) with

initial value (σ, φ) or a solution of (1.1) through (σ, φ) if there is an A > 0

such that x(σ,φ) is a solution of (1.1) on[σ — r, σ + A) andxσ(σ, φ) = φ.

Let X, Y be Banach spaces, fc(X, Y) the Banach space of bounded

linear mappings from X into Y. If L G £(C, £"), then the Riesz represen-

tation theorem implies there is an n X n matrix function η on [-r, 0] of

bounded variation such that

(1.2) Lφ= f°[dη(θ)]φ(θ).
J-r

For any such η we always understand that we have extended the

definition to R so η(θ) = η(-r) for 0 < -r, η(θ) = η(0) for θ > 0.
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Let Λ be an open subset of a metric space. We say L: Λ -> £(C, Rn)

has smoothness on the measure if for any real β there is a scalar function

γ(λ, s) continuous for λ E Λ, s E i?, γ(λ, 0) = 0 such that if

L(λ)φ= [°[dη(λ9θ)]φ(0)9 λ E Λ , 0 < 5 ,

J -r

then

rβ+s t rβ-h(1.3)
Λ-^0+ Jβ + h Jβ-s

[dη(λ,θ)]φ(θ)

If β E R and the matrix A(λ; β, L) = i»(λ, β + ) - ij(λ, β') is non-

singular o n λ = λ0, we say L(λ) is atomic at β at λ0. If ^4(λ; /?, L) is

nonsingular on a set K C Λ we say L(λ) is atomic at /? on ̂ Γ.

Let Λ = Ω C R X C and L E C(Ω, £(C, Λπ)).

If Z>: Ω -> i?" has a continuous first derivative with respect to φ, then

Lemma 5.1 of Hale [5], p. 50, implies Dφ has smoothness on the measure.

DEFINITION 1.1. Suppose Ω C R X C is an open set and (/, φ) E Ω.

A function D: Ω -* R" (not necessarily linear) is said to be atomic at β on

Ω if D is continuous together with its first and second Frechet derivatives

with respect to φ, and Dφ, the derivative with respect to φ, is atomic at β

on Ω.

System (1.1) is called a functional differential equation of neutral type

if D is atomic at zero.

We also assume the existence, uniqueness, and continuous depen-

dence with respect to initial condition of the solutions of (1.1).

Assume Ω C C is open, and D: Ω -» Rn is a continuous linear opera-

tor given by

(1.4) Dφ = φ(0) - g(φ) withg(φ) = f°[dμ(θ)]φ(θ)9

where μ(0), -r < 0 < 0, is an « X n matrix whose elements are of bounded

variation and do not have singular parts, that is,

(1.5) f[dμ(θ)]φ(θ) = I Akφ(-»k) +fA(θ)φ(θ)dθ,

where

oo 0

0<wk<r and 2 \Ak\ + / M(^)l^ < °°
k=\ -r
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In [5] page 304 we found the following.

DEFINITION 1.2. If G: C -> Rn is continuous we say G(φ) is indepen-

dent of φ(0) if there is an ε E [-r, 0) such that G(φ) depends only on the

values φ(θ) of the function φ for θ G [-r, ε). The systems

(1.6) jfDxt = Lxt

and

(1.7) ^ [Dx, - G(t, *,)] = Lx, + /(/, *,)

are our main concern, where D satisfies (1.4), L satisfies (1.2), Dxt —

G(t, xt) is atomic at zero and G(t, φ) does not depend on φ(0), φ — xσ.

If φ G C and xt(σ, φ) is the unique solution of (1.6) we define the

operator T(t — σ): C -> C, t>o, by the relation

(1.8) *,(σ,φ) = Γ ( ί - σ ) , Γ(0) = /.

{T(t — σ)} ί G [ σ 0 0 ) is a family of strongly continuous semigroups from

C into itself for all / > σ.

In [5] Theorem 10.1, p. 307, is proved that:

THEOREM 1.3. (i) The infinitesimal generator A of a semigroup T(t — σ),

t > σ, 0/(1.6) has domain ̂ (^4) and range $1(^4), respectively, given by

ty(A) - [φ G C: φ E C,Dφ- Lφ), Aφ = φ.

(ii) The spectrum o(A) coincides with the point spectrum (eigenvalues),

and λ E σ(A) if and only ifλ satisfies the characteristic equation

det Δ(λ) = 0, Δ(λ) = XD(eλΊ) - L(eλΊ).

(iii) The roots of characteristic equations have real parts bounded above,

and if λ G σ(A) then the generalized eigenspace ^ ^ ^ ί ) is finite dimen-

sional and there is an integer k = k(λ) such that

k and C = %(A \I)k θ <&{A XI)k

λ =%(A -λl)k and C = %(A - \I)k θ <&{A - XI)k.

(iv) Suppose A is a finite set {λl9 λ2,... ,λp} of elements of σ(A), and

v > s p

 φxJ is a basis for the

generalized eigenspace ofλj, and Bλ is the matrix defined by AΦλ = Φλ ,

j — 1,2,...,/?. Then the only eigenvalue of Bλ is λy and, for any eigenvector

a of the same dimension as ΦΛ, the solution T(t — σ)ΦAa of(\Λ) with initial
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value ΦAa at t = σ may be defined on (-00, 00) by the relation

(1.9) T(t - σ)ΦAa = Φ Λ e ^ - ^ φ Λ ( f l ) = ΦΛ(O)e*Λ -r < θ < 0.

Furthermore, there exists a subspace QA of C such that T(t — σ)QA C

QA, t>σ,andC = PA® QA, where

PA= {φ E C: φ — ΦAa, for some vector a).

We can give an explicit characterization of decomposition of space C

via the formal adjoint equation

(l.io) 4-
ds

wherey is an ^-dimensional row vector. If C* = C([0, r], En*), where En*

is the ̂ -dimensional space of row vectors, then, for any φ £ C the bilinear

forms

(1.11) {a,φ) = a{0)φ(0)+f^-£ζa(s-u)dμ(θ)φ(s)ds

-j° jθa(s - θ) dη(θ) φ(s) ds

are defined for a E C* = C([0, r], En*), ά E C*,φ E C.

The following theorem is proved in [5], p. 309.

THEOREM 1.4. If A — {λ,,... ,λp) is a finite set of elements of σ(A)

and PA is the linear extension of(ΰ\iλ {A),j— \,... ,p, with basis φΛ, andpA

is the linear extension of the correspondent generalized eigenspace of the

formal adjoint equation with basis ΦA, then one can choose ΨA so that

(ΨA, ΦA) = I is the identity and

(1.12) C = PA®QA,

PA= {φ E C: φ = φAa, for some vector a],

In the condition of Theorem 1.4 we sαy //*#/ the space C is decomposed by A

and therefore if φ E C, we /ι#€>e φ = φp* + ΦQA, where φ?A = Φα, α =

(*4, φ) andφQA = φ - ΦPA.

Furthermore, if C is decomposed by Λ, then σ(T(t — σ)\PA) =

σ(e

BΛ«-°)), where AΦA = ΦΛJ5Λ and AΨA = 5ΛΨΛ.
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1.2. Variation of constant formula. Consider {TD(t — σ), / >: σ}, the

strongly continuous semigroup of linear mappings associated with the

solution of the difference equation (d/dt)Dxt = 0.

DEFINITION 1.5. The order aD of the semigroup is defined by

aD = inf [a £R:3K = K(a) with \\TD(t - σ)| | < Kea(t~σ\ / > σ}.

In [5] we can find some results that can be stated as

THEOREM 1.6. If D and L satisfy (1.6), the matrix μ has nonsingular

part, and a> aD is fixed, then the set A f l = { λ E σ ( ^ ) ' Re λ > α} is finite

and the space C can be decomposed by Aa as C — P θ g, where P and Q

are invariant subspaces under T(t — σ) and A, and the space P is finite

dimensional and corresponds to the initial data of all those solutions of (1.6)

which are of the form p(t)exp(λt), where p(t) is a polynomial in t and

If xt(σ, φ) is a solution of (1.6), then, according to Theorems 1.3 and

1.4, we may write xt = x* + Xp.

Now let X(t), t>σ, be the n X n matrix function defined for all

/ E [ 0, oo) of bounded variation in t and continuous in / from the right

such that

- ί0' -r^

So according to [5], page 302, a solution of (1.7) with initial value φ in

σ satisfies the variation of constants formula

(1.14) xt - X0G(t, x,) = T(t - σ)[φ ~ X0G(0, φ)]

+ f{[-dsT(t-s)X0]G(s,xs)

+ T(t-s)Xof(s,xs)ds} />σ,

where T(t - σ)[φ - XoG(0, φ)] is defined ΆS T(t - σ)φ - X,(?(0, φ) and

(1.15)
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The integrals in (1.14) are evaluated at each θ E [-r, 0] as ordinary

integrals in En. Also, if C is decomposed by Λ as C = P θ ρ, then (1.14)

is equivalent to

xp - XζG{t9 xt)

(1.16) = T(t-σ)[φp-XpG(0,φ)]

+ f{[-dsT(t - S)XP]G(S, XS) + T(t - s)Xpf(s, xs) ds}

X?-XgG(t,x,)

= T(t-σ)[φ°-XgG(0,φ)]

+ f{[-dsT(t - s)Xg]G(s, xs) + T(t - s)Xgf(s, xs) ds},

where the superscripts P and Q designate the projection of the corre-

sponding function onto the subspaces P and Q, respectively.

However, we must observe that everything is clear in (1.16) except for

the meaning of the projections Xp, X§ since Xo is not continuous.

Projection operators taking C onto P and C are easily determined by

means of the adjoint differential equation (1.10) and the bilinear form

(1.11). One can show that (Φ, Xo) is well defined and (Ψ, Xo) = Ψ(0).

Therefore if we put

(1.17) Xζ = Φ*(0), Xg = *o - Xζ,

the quantities in (1.16) are well defined.

Also in [8], Henry has given some exponential estimates for the

solutions of (1.6).

THEOREM 1.7. If a> aD and A = (λ G σ(A): Re λ > α, det Δ(λ) =

0), then C is decomposed by Λ as C = P θ Q and there are positive

constants M l 9 M 2, M3, M 4 and ε such that for σ > 0,

(us)

and

(1.20) oo
J \\dsT(s)Xζ\\e-(a+e)s<M4.
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Relation (1.14) suggest the possibility of introducing a new variable

for the expression on the left-hand side. However, some care must be

exercised because the new variable would not be a continuous function on

[-r, 0]. See [5] page 302.

The variation of constants formula (1.14) for the solutions of (1.7)

suggests the change of variables

(1.21) zt = xt-XQG{t,xt)

to obtain a new equation for zt in PC, where PC is the space of functions

φ: [-r,0] -* Rn which are uniformly continuous on [-r,0) and for which

there exists φ(0~). See [5] page 302.

The transformation (1.21) is a well-defined transformation from C to

PC, since G(t, φ) is independent of φ(0). Therefore, G(t, xt) — G(t, zt)

for -r < θ < 0.

Thus if

(1.22) zt = xt- X0G(t, xt)9 xt = z< + X<P(t, xt) = H(t9 zt\

(1.14) becomes

(1.23) z, - T(t ~ σ)zσ + f{[-ds T(t - s)X0]G(s9 ZS)

+ T(t-s)X0F(s,H(s,zs))ds).

Let Φ, Ψ be the matrices defined by the composition C = P θ Q9

(Φ, Φ) = / and let B the p Xp matrix such that T(t)Φ - Φexp(Bt),

t E (-oo, oo). The spectrum of B is Λ. For any φ E PC one can define

(ψ, φ) and, therefore, it is meaningful to put

One can show that (ψ, Xo) is well defined and (Ψ, Xo) = Ψ(0).

Therefore, if we put

Xζ = ΦΨ(0), X§ = X0- Xζ,

the quantities in (1.14) are well defined. If we apply appropriately

relations (1.22), we can split (1.23) as

(1.24) z? = T(t - o)zζ+j'{[-dsT{t - s)Xo

p]G(s, zs)

+ T(t-s)X^F(s,H(s,zs))ds},

zf = T{t - o)zQ + f{[-dsT{t - s)Xg]G(s, zs)

+ T(t~s)X§F{s,H{s,zs))ds}.
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DEFINITION 1.8. The operator D is said to be uniformly stable if there
exist constants K > 1 and a > 0 such that

(1.25) \\TD{t)4^Ke-ΆtUl φ(ΞC°, t > 0.

It is shown in [5] that D uniformly stable implies there exists an n X n

matrix function B(t) defined and of bounded variation on [-r, oo),

continuous from the left, B(t) = 0, -r < t < 0, and a constant M > 0

such that

\\TD(t)φ\\^M\\φl />0, φEC, sap \B{t)\<M.
t>-r

THEOREM 1.9. The following conditions are equivalent:

(i) D is uniformly stable;

(ii) aD < 0, where aD is the order of the semigroup T°(t);

(iii) there are constants a, b> 0 such that for any h E C([0, oo), Rn),

any solution y of the inhomogeneous equation Dyt = h(t), t >Q, satisfies

\\yt\\^ be~at\\y0\\+ b sup |A(w)|, / > 0 ;

(iv) if Dφ = φ(0) - /-°Γ[<//ι(0)]Φ(0), wA r̂e μ satisfies conditions (1.5)

o/§l, there exists δ > 0 such that all solutions of the characteristic equation

det[I - /_°r e
λθ dμ(θ)] = 0 satisfy Re λ < -5.

2. Main results. The lemma below gives a characterization on the

asymptotic behavior of the solutions of the linear neutral differential

equation

h n d.
{2Λ) ~T™y — Lyn

where D and L are linear.

LEMMA 2.1. / / β > aD andyt is a solution of(2Λ) such that \\y,\\/(expβt)

does not go to zero as t -> oo, there exists a nonnegative integer I and a real

number a uniquely determined such that

0 < lim IMI/ί'e"' < Km Wy^/t'e*' < oo.
/-oo

Proof. If β > aD it follows from Theorem 1.7 that the space C is
decomposed by the set

A = {λ E σ ( Λ ) : R e λ > β , d e t Δ ( λ ) = 0}
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as C = P θ <2, where the subspace P is of finite dimension and there are

positive constants Ml9 M2 and δ such that

\ \ P l f < 0 , φpGP.

Without loss of generality we can assume>?, = T(t)φ for some φ £ C ,

and since \\yt\\/eβt does not tend to zero as t -> oo, we have

and

H^OΦlΛ^O asί-> oc.

From (1.9) of Theorem 1.3 we have

where B is a Jordan matrix with eigenvalues which are the elements of Λ

and have a real part greater than or equal to β.

Let

There are nonnegative integers / and a real number α, a > yS, such
that

(2.2) 0 < lim \z{t)\/tιeat < lim \z{t)\/tιeat.

We claim that

(2.3) 0 < lim | |Γ(/)φ p | | //^^ < lim ||r(/)φ / > | |// /eα / < oo.

In fact from (2.2) it follows that there are positive numbers cl9 c2 and

z(t)\/tιeat < c2 for/> η - r.

T] such that

cx ^

But for (? e [-r, 0],

θ)ιe a{t+θ)
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It is easy to see there is T2 > Tl9 large enough, such that / > T2 and
θ E [-r,0]. We have

and

The above inequalities imply (2.3) is true.
Since a > β it follows that

lim \\T(t)φψtιeat = 09

and then

0 < lim \\T{t)ή>p\\/tιeat = lim \z{t)\/tιeat.
t-* oo ί-» oo

and

Πίn | |Γ(ί)φ||/^Λ /= ϊϊm | |Γ(θΦlA^"'< oo,
/-*oo r-*oo

and the proof is complete.

NOTATION. We say || j>,|| — tιeat if

0 < lim \\yt\\/tιeat < lim IWI/ί'e"' < oo

Now consider β > aD and ^(0 a solution of (2.1) such that ĤH ~ f̂ "'
with / E Z + + , α E i?, α > β. Let Λ = (λ E σ(^): Re λ > α, det Δ(λ) =
0). Let P, β and 5 be as in Lemma 2.1 and let N be the order of the
larger block of B which has in the diagonal an integer with real part equal
to a. Let

: lim
r->oo

The next lemma is proved in detail in [10].
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LEMMA 2.2. There exists a subspace P2 of P and there are projections

Xp>: P -> P., i = 1,2, such that P = />, θ i>2, Z
p> + A** = /. Furthermore

there are positive constants M and σ, such that

(2.4)

(2.5)

Now consider the systems

(L) ^Dyt = Lyn

(P) ^ [ / ) x f - G(t, xt)] - Lx£

where D, L are linear and G(t, φ) is independent of φ(0). (See Definition

1.2.)

Let β> aD and # be a solution of (L) such that \\yt\\ — / /βα ί with

a > )8. Let Λ = {λ G σ(^4): Re λ > α}, P, β and B be as in Lemma 2.1

and let N be the larger order of the blocks of B which have in the main

diagonal integers with real part equal to α.

The result below is the main theorem of this section.

THEOREM 2.3. Let y(t) be a solution of(L) such that \\yt\\ - tιeat. Let S

be the vector subspace of C defined by

S=UeC: lim

Assume that for φ,Φ E C,

(26) / ( ' ' 0 ) = 0 ' I/('.Φ)-/(

G(t,0) = 0, \G(t,φ)-G(t,4,)\<hι(t)\\φ-*\\, ί^O,

(2.7) ΓsN-χh2{s)ds<oo, ΓsN~ιhι(s)ds<oo, lim Λ,(/) = 0.

there is a subset Ysof C and a real number σ > 0 such that:

(a) For every φ G Ys there exists a solution x(t) of(P) such that xσ —

and

(2.8) lim |LF, - *,||/IM = 0.
t~^O0

(b) Ys is homeomorphic to S, that is, there exists a homeomorphism W:

S -> Ys such that W~x is the restriction to Ys of a projection Xs from C onto

S.
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Proof. Let y(t) be a solution of (L) such that \\yt\\~tιeat. Let
x — y + z. To find solutions x(t) of (P) satisfying (2.8) is then equivalent
to finding solutions of

j t [Dzt - G(t, zt)} = Lzt + f(t, yt + zt)

= Lzt + F(t9zt)

satisfying

(2.10) lim \\zt\\/t'ea' = 0.

Let Px = {φ G P: l im^^ | |7X0Φ||/^β / = 0} and let P2, ̂
P l and

be defined as in Lemma 2.2.
Now consider the following integral equation:

(2.11)

+ f{[-ds T(t - s)Xg]G{s, z) + T(t - s)X$F(s, H(s, zs)) ds)

+ f{[-dsT(t)Xp'T(-S)Xo

p]G(s,zs)

+ T(t)Xp'T(-s)XζF(s, H(s, z,)) ds}

- Γ {[-dsT(t)X^T(-S)Xo

p]G(s,zs)

where φs is an arbitrarily fixed element of S, Xζ = Φψ(0), X§ — Xo — X£.
We shall show that if zt satisfies (2.10) then the last integral above

converges. First we need to emphasize some facts. From Theorem 1.3 we
know the subspace P — (φ E C: φ = φa, for some vector a} and T(-s)Φa
= Φe~Bsa. Thus for a - B(Ψ, φ), we have

-ds T(t)Xp*Φe-Bs(Ψ, φ) = T(t)Xp*e-BsB(Ψ, φ) ds

= T(t)Xp*T(-s)Φads

with Φa E P.
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From (1.22) we have

Therefore

\F(t, H(t, z,))\ = \f(t, yt + H(t, z,))\ < h2(s)\\y, + H(i, z,)

If z, satisfies (2.10) with l i m , ^ hx{t) = 0, then

is bounded.

We will show that if zt satisfies (2.10) then the last integral of (2.11) is

convergent.

In fact, from (2.5)-(2.7), we have

{[-dsT(t)Xp>T(-s)Xo

p]G(s,zs)

+ T(t)Xp>T(-s)XpF(s, H(s9 zs)) ds}

<Γ\\T(t)XpiT(-s)Φa\\\G(s,zs)\ds
Jt

+ Γ\\T{t)X^T{-s)Xζ\\\F{s,H{s,zs))\ds

< Mtιeat ΓsN-χhλ{s)s-ιe-as\\zs\\ ds + Mtιeat Γ\N-]h2{s) ds

< 00.

We will now show that if zt is a solution of (2.9) satisfying (2.10), then

there exist φs E S such that zt satisfies (2.11), and, conversely, if zt

satisfies (2.11) and (2.10) and zt is continuous on t, then zt satisfies (2.9).

In fact, suppose zt satisfies (2.9) and (2.10) with zσ — φ.

From the variation of constants formula (1.23) we have

zt=T(t-σ)φ

+ f\[-ds T(t - s)Xg]G(s9 zs) + T(t - s)X$F(s, H{s, zs)) ds}

+ f{[-ds T(t - s)X£]G(s, zs) + T(t - s)XpF(s, H(s, zs)) ds}.
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Hence,

zr = T(t - σ)φ

f {[-ds T(t - s)Xg]G(s, zs) + T(t - s)XgF{s, H(s, z,)) ds}
σ

<"{[-dsT(t)Xp>T(-s)Xp]G(s,zs)
σ

+ T(t)XpιT(-s)X£F(s, H(s, zs)) ds}

- Γ {[-ds T(t)Xp>T(-s)Xp]G(s, zs)
Jt

+ T(t)XpiT(-s)XpF(s,H(s,zs))ds}

where

φ = φ+j'° {[-ds T(a)Xp*T(-s)XS]G(s, zs)

+ T(σ)Xp*T(-s)XpF{s,H(s,zs))ds}.

In order to show that φ G S, we show that if zt satisfies (2.10) then
G\{t) also satisfies

| | G , ( 0 | | / ^ β ' - 0 a s ί - o o .

From Theorem 1.7 and the convergence of

we have

Γ {[-ds T(t - s)Xg]G{s, zs) + T(t - s)X$F(s, H(s, zs)) ds

< / e a ε s e~ a ε s \\-ds T(t — s)X0 || |G(^, zs)\
J a

+ f\\T(t-s)XQ\\\F(s,H(s,zs))\dS

< Ke«e-*e-«-*hli)\z&f~''e<*-*u\du T(u)X$\

+ Ke«'e-«fe"e-a*h2(s)[\\yι\\ + (l + *,(/))!
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< Kt'ea'e-^-^h^)ξ-'e^\\zξ\\ Γ°e^-^\\du T(u)X$\\

+ Kt'ea'e-«fys-'e-ash2(s)[\\ys\\ + (l + Λ,(*))k||] ds

Jo

+ K2t'e
a'e-εt f'eεsh2(s)ds.

From Lemma 2.2 we have

'{[-dsT(t)Xp'T(-s)Xp]G(s,zs)

+ T(t)Xp>T(-s)XζF(s, H(s, zs)) dsU

<Mtι'ιea'fsN'!e-as\G(s, zs)\ds

4- M I tl~x<:N~lpa(t~sΆF(Ϊ H(<; 7 \\\d<i

< Mt'ea'^jtsNhx{s) ds + Mt'eatjfsNh2(s) ds.

In the same way we have

\f{[-dsT(t)XpiT(-s)Xp}G(S,zs)

+ T(t)Xp>T{-s)XpF(s, H(s, zs)) ds}

< Γ \\-ds T{t)Xp>T(-s)Xξ\\ \G(s, zs)\ds

+ Γ \\T(t)XpiT(-s)Xp\\ \F(s, H(s, zs))\ds
Jt

< Mt'eatj'X'sN-ι-'e-as\G{s, zs)\ds

+Mt'ea'ΓsN-'-χe~as\F(s, H(s, zs))\ds

< Mtιeatf*sN-χs-'e-ashx{s)\\zs\\ds

+ Mt'ea'[ s-'e-assN-ιh2(s)[\\ys\\ + {\ + hx(s))\\zs\\] ds

= Mtιeat ΓsN~xhλ{s) ds + Mtιeat ΓsN~ιh2(s) ds.
Jt Jt
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Then since, by hypothesis, lim^^ hx(t) — 0, we have, for /0 > σ large

enough, | hx{t) | < Mx, t > /0. Then we can write

\\Gλ(t)\\ < Kxt^«e-«-*\(ξ)ζ~%**-*idu T(u)J$\\

(2.12) +e-εtfeεsh2(s) ds + \ fsNhx(s) ds

+ -t fs
Nh2(s) ds + f°°sN-ιhx(s) ds

We show now that \\Gx(t)\\/tιeat -» 0 as / ^ oo.

Since the first integral is bounded, σ < ξ < ί and /zj(/) -> 0, the first

term of (2.12) goes to zero if £ -» oo when t -» oo or if £ goes to a finite

limit when t -^ oo.

From Strauss and York [11, Lemma 3.6, p. 19] it follows that

e~εt feesh2(s)ds -» 0 as/ -> oo.

From (2.7) it follows that

ΓsN~]h2{s)ds ^ 0 as/-* oo

and

ΓsN-]hx(s)ds-*0 a s ί - * oo.
Λ

We show finally that the terms

go to zero as / -> oo.
By integration by parts we have

ι

= f'τN-ιh,(τ) dτ~- fτN-ιh,(τ) dτ



PERTURBED NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATION 75

From hypotheses (2.6) and (2.7) on hλ and h2, it follows that the first
two terms of the right side of the above equality goes to zero as t -> oo.
Using LΉόpitaFs rule we prove that the last term also goes to zero.

Thus we have proved \\Gλ(t)/tιeat\\ -> 0 as t -> oo.
Conversely, suppose zt is a continuous solution of (2.11). Therefore zt

satisfies

zt=T(t-o)φ

+ f{[-ds T(t - s)X0]G(s, zs) + T{t - s)X0F(s, H(s, z j ) ds}9

where

(2.13) Φ = ΦS~Γ {[-dsT(o)Xp>T(-s)Xp]G(s, zs)
J σ

+ T{o)XpτT(-s)XζF{s, H{s, zs)) ds)

Therefore z(t) is a solution of (2.9) and satisfies zσ = φ.
Our next goal is to show that (2.11) has a continuous solution which

satisfies (2.10) for φs arbitrarily fixed in S and σ large enough.
Consider the space E of functions g on C([σ, oo),C) such that

In E consider the norm

One can show that E with the given norm is a Banach space.
Suppose we have proved that the equation

g(t) = T(t - σ)φs

+ ίt{[-dST(t-s)Xg]G(s,g(s))

+ T(t - s)X§F(s, H(s, g(s))) ds}

+ f {[-dsT(t)Xp<T(-s)Xo

p]G(s, g(s))

+ T(t)Xp'T(-s)Xo

pF(s, H{s, g(s))) ds}

- f {[-ds T{t)XpiT{-s)Xp)G(s, g(s))

+ T{t)X^T(-s)XpF(s, H(s, g{s))) ds}

has a solution g in E.
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We show that from g we can find a solution zt of (2.11).

In fact, we define

(2.15) zσ = g(σ) and z(t) = g(t)(O), for/>σ.

We say that zt = g(t),t ^ σ.

In fact, using the same calculations given by (2.13) and putting

φ — φs, one proves that

g{t) = T(t - σ)φ + f{[-ds T(t - s)X0]G(s9 g(s))

+ T(t-s)X0F{s,H{s,g(s)))ds}

- f {[-dsT(σ)Xp>T(-s)Xp]G(s, g(s))

+ T(σ)Xp>T(-s)XζF(s, H(s, g(s))) ds}.

Now the proof that zt = g(t), t>σ, is without difficulties if we

observe that for t + θ>σ, T(t + θ - s)X{){0) = T(t - s)X0(θ) = 0 if

t + θ < s and = / if t 4- θ = s. For t > σ and s > σ 4- θ,

and for t > σ and s > σ > t + (9, T(t + θ - s)Xo(0) = 0, then zr = g(ί).

For fixed φ 5 in S and σ > 0 fixed, we consider the operator U defined

on E by if g E E, therefore

(Ug)(t) = T(t - o)φs

+ [!{[-dsT(t-s)χC]G(s,g(s))

+ T{t-s)X§F{s,H{s,g{s)))ds}

(2.16) + f i[-dsT(t)Xp<T(-S)χr]G(s,g(s))

+ T(t)Xp*T(-s)X£F(s, H(s, g(s))) ds}

- Γ {[-ώT(t)Xp>T(-s)Xζ]G(s,g(s))
Jt

+ T(t)Xp*T(-s)Xo

pF(s, H{s, g(s))) ds}.

Let us now prove that U has a fixed point on E.

First we observe that if g and w are elements of E, then, since φs E S,

using (2.12) we have that there exists a constant Kx > 0 such that
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\\{Ug)(t)\\<K,t ea[τ{t-β)<t>s/t>e«'

+ e-«t-Vhi(ξ)f~°e-^u\\duT{u)χQ\\

+ e-ε'[ eesh2(s)ds + - f sNhι(s) ds

\['sNh2(s)ds + ΓsN-%(s)ds

+ fsN']h2(s)ds\.

There also exists a constant K2 > 0 such that
\\{Ug){t) - {Uw){t)\\

<\\£{[~dsT(t-s)Xg][G(s,g(s))-G(s,W(s))]

+ T{t - s)XQ[F(s, H(s, g(s))) - F(s, H(s, w(s)))] ds}

'{[-dsT(t)Xp>T(-s)Xp][G(s,g(s)) - G(s,w(s))]

T(t)Xp<T(-s)Xp[F(s, H(s, g(s))) - F(s, H(s, w(s)))] ds} (

{[-ώT(t)X*T(-8)Xζ][G(s,g(s)) - G(s,w(s))]

+ T(t)XpiT(-s)Xp[F(s,H(s>g(s)))-F(s,H(s,w(s)))]ds}

By the calculations we made before we can write

\\(Ug)(t) - (Uw)(t)\\

< K2t'e"'\\g(ξ) - w(ξ)U-'e-aee-ε{'-t%(ξ)

f3ei*-yX>-')\F(Sf H(s, g(s))) - F(s, H(s,w(s)))\ds

+ flT(t)Xp'T(-s)Xp\\\G(s>g(s)) - G(s,w(s))\ds

+ f \\T(t)Xp>T(s)XoP\\ \H*> H(s, g(s))) - F(s, H(s, w(s)))\ds

+ ΓlT(t)XpiT(-s)XPl\G(s,g(s)) - G(s,w(s))\ds

+ Γ \\T{t)Xp*T{-s)Xp\\ \F(s, H(s, g(s))) - F(s, H(s, w(s)))\ds



78 A. F.IZE AND A. VENTURA

< K2t
ιea'\\gte) -

'ea'e-v f'eysh2(s)[\ + *,(*)]*-'«?-"%(*) - w(s)\\ds

+ Mt'eat\ ί'sNhι{s)s-'e-as\\g{s) - w{s)\\ds

+ Mtιe"'\ fsNh2{s)[\ + *,(*)]*-'*-«%(*) - w(s)\\ds

+ Mt'eat ΓsN-λhx{s)s-'e-as\\g{s) - w{s)\\ds
Jt

+Mt'eatΓsN-χh2{s)[\ + Λ,(5)]5-'e-α1g(ί) - w{s)\\ds

K2tie"'e-*'-VhU)f~°e<«-'>-|Λ T{U)X§\\ \\g - w\\E

+M3t'e
aιe-" f'h2(s) ds \\g - w\\E+Mt'eat f'sN-%{s) ds \\g -w

+ Mt'eal fsN-χh2{s)ds \\g- w\\E+Mt'ea< ΓsN~λhλ{s)ds \\g-w

+Mt'ea'ΓS»-ίh2(s)ds\\g-w\\E.

Thus there exists a constant K2 > 0, independent of φs, such that for
every t > σ,

\\(Ug)(t) - (Uw)(t)\\/t'ea'

) f\<a-*u\\duT(u

h2(s) ds + M I sN~ hλ(s) ds

+ M ΓsN~xh2(s)ds + M( sN'xhAs)ds

- HU

From (2.17) we see that WίUgXOW/t'e"' -* 0 as t -+ oo and therefore
U(E) C E. Furthermore, taking σ large enough in such a way that

ds + fV>sN-ιh2(s) ds\<\,
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we have that U will be a uniform contraction on E with respect to φs E S.
Now we apply a known theorem [6], p. 7, Theorem 3.2 to conclude

there exists a fixed point on U which is continuous with respect to φs.
For φs in S and g fixed in E, we consider

(Uφsg)(t) = T(ί - a)φs

+ T(t-s)XQF(s,H(s,g(S)))ds}

+ j\[-ds T(t)Xp>T(-s)Xp]G(s, g(s))

+ T{t)Xp'T(-s)XpF(s, H(s, g(s))) ds}

- Γ {[-dsT(t)Xp>T(-s)Xp]G(s,g(s))
Jt

T(-^XpF(s H(S z(sλX)ds\

The map φs E S -> (ί/φsg) E ί1 is continuous in 5. To prove it we
have only to show that the map

φs E S -> Fφs E £,

where Vφs(t) = Γ(/ — ky)φ's, is continuous in 5.
This follows from a simple application of the principle of uniform

boundedness to the set {T(t - o)/tιea\ t > σ} C L(S, C).
Since T(t - σ)φs/tιeaί -* 0, when t -> oo, for each φ5 E 5, then for

each φs E 5 we have

sup ||Γ(ί — σ)φ 5/ί^α / | | < oo, φs EL S.

Then from the uniform boundedness principle

sup \\T{t - σ)/tιeΆt\\L(S,C) = K < ^,
t>σ

and then

sup sup \\T{t - σ)φs/tιeat\\ = K<oo.
t>σ \[φs\\=\

Then for every t>σ and φs in 5, such that | | φ 5 | | = 1,

which implies

t>a
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Then the map φs E S -* Vφs = T( — σ)φs E E is continuous.
We now apply a well-known theorem, see Hale [5], Theorem 3.2, p. 7

with £/φs the uniform contraction. Then it follows that for each φs E S
there exists a unique fixed point g(φs) E JE of t/φs. Furthermore the map
g: S -* £ is continuous.

Then (2.11) has a continuous solution zt which satisfies (2.10) for φs

aribtrarily fixed in S and σ large enough, that is

Urn \\zt\\/t'eat = 0.

But if zf is given by (2.11), zr satisfies (2.9) and, therefore, from (1.22)
we have

zt = z, +

and then

which implies

lim | |z r | |A'^' = 0.
/-•oo

But z, = .x, — jμr, therefore

lim \\xt-yt\\/t'ea' = Q.

Now consider the map W\ S -» C defined by

ϊ^(φs) = ψ5 - Γ {[-ώ7Xσ)^Γ(-*)*o1Φ

+ Γ(σ)X^Γ(-5)^F(5, H{s, g(φs)(s))) ds].

We claim Wϊs continuous in S. If φ, ψ ε 5 we have

-F(s,H(s,g(φ)(s)))]ds}\\.
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From previous calculations we have

\\W{φ) - W(t)\\

<||φ - ψ|| + Mσ'e"°

u

But we already proved that the map φ G 5 -> g(φ) G £ is continuous,
therefore from the above inequality it follows that W is continuous.

Let Ysά= W(S) <Z C and consider the map W\ S ^ Ys. We shall

afterwards show that the inverse W~x is a projection over £.
Let Xp and XQ be the projections given by the decomposition

C = P θ Q. We assert that

(2.19) χQJV(φs) = XQφs.

In fact since the subspace P is invariant under T(t) for all t E i?, we
have

Γ {[-dsT(σ)Xp>T(-s)Xo

p]G{s, g(φs)(S))

+ T{o)Xp>T{-s)Xp

0F(s, g(φs)(s)) ds)

is an element of P. Then (2.19) follows.
Using also the invariance of P under T(t) we have

XpW(φs)

- XV - Γ {[-ds T(σ)X^T(~s)Xp]G{s, g(φs)(s))

+ T{a)X^T(-s)XζF{s, H{s, g(φs)(s))) ds}.

Thus

T(-σ)XpW(φs)

= T{-a)Xpφs - Γ {[-dsXp>T(-s)Xp}G{s, g(φs)(s))

T{-s)XpF{s, H(s, g(φs)(s))) ds}.
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We remark now that Xpφs E Px. Furthermore P, is invariant under

T(t). We also have that P2 is not invariant in general under T(t). In

general it is not also true that T(t)XPχ = XPιT(t).

From the remarks above it follows that

Xp>T(-σ)XpW(φs) = Xp>T(-σ)Xpφs = T(~σ)Xpφs E Px.

Then

(2.20) T(σ)Xp>T(-σ)XpW(φs) = Xpφs.

From (2.19) and (2.20) it follows that

[T(o)Xp*T(-c)Xp + XQ]w(φs) = Xpφs + XQφs = φs.

Therefore we conclude that W~λ: Ys -» S is

We now show that this map is a projection. In fact

(T(σ)Xp*T(-σ)Xp)(T(σ)Xp>T(-σ)Xp)

= T(o)Xp>T(-σ)T(σ)Xp*T(-σ)Xp = T(σ)Xp*T(-σ)Xp.

Thus we conclude that T(σ)XPιT(-σ)Xp + XQ is a projection. Fur-

thermore if φ E C, then [TXσ)JS^ίΠHOA* + XQ]Φ belongs to 5. We now

show that it is a projection over S.

In fact if φ E S we have φ- φQ + φPι and then

[τ(σ)Xp>T(-σ)Xp + X ρ ](φ ρ + <*>P )

= Γ ( α ) I p ' Γ ( - α ) l V + ^ ρ φ ρ = T(σ)T(-<j)φp* + φQ = φ.

The continuity of this projection follows from the fact that XQ, XP]

and T(t) are continuous. Therefore we proved that W is an homeomor-

phism.

For ordinary differential equations we can prove the converse of

Theorem 2.3, that is, for each solution xt of (P) there is a solution^ of (L)

such that II*, — ĵ ll/UXfll -* 0 when t -> oo. For delay equations this is no

longer true as is shown by the following example given by J. Hale.

Consider the equation

y - 0 and x = -2/exp(l - 2t(x(t - 1))),

which has the solution x(t) — exp(-ί2) and [1 — exp(-ί2)]/exp(-/2) -^ 0

as t -> oo.

However it is possible to give a partial converse of Theorem 2.3, that

is, if the Lyapunov numbers of the solutions of (L) are finite then the

converse is true. This was proved for retarded functional differential



PERTURBED NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATION 83

equations by Rodrigues [10]. We give in the following the extension of
these results to neutral equations. We will need the following lemmas:

LEMMA 2.4. Let p, g £ L^O, oo), R)9 p, g > 0. Let y(t)>0 be a
decreasing smooth function, y(t) -* 0 as t -> oo. Let u(t) > 0 be a continu-
ous solution of

u(t) < K + fu(s)p(s) ds+ -j-r f°γ(s)«(j)g(j) ώ, ί > σ,

swc/z ίΛαί γ(ί)w(ί) Ϊ5 bounded. Then

def

Proof. Let F(ί) = maxQ^^, u(s). Then F is continuous, decreasing,
u(t) < F(ί) and γ(0^(0 is bounded.

For given ί > σ there exists ί, G [σ, ί] such that

Let σ be sufficiently large in such a way that β < \. Then

and from GronwalΓs inequality we have

y(t)v(t) < j ^ y

LEMMA 2.5. Let x{t) be a solution of{¥) such that

Πm • = = μ e i ? , u>aD,
- • o o/-•oo

(2.21) \f(t, Φ)| < A2(/)||φ||, \G(t, φ)\ < A,

/

OO -00

hλ(t)dt < oo, / h2(t)dt < oo, lim Λ,(ί) = 0.

λ E σ(yl) swcΛ /Λ̂ / Re λ = μ.
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Proof. Assume that for every λ 6 σ(^), Reλ φ μ. Let Λ = {λ
σ{A) I Re λ > μ). Then C - P Φ Q and there exists ε > 0 such that

/>σ, φpGP,

\ / > σ,

Using the variation of constants formula

z, = T(t - σ)Φ+f{[-dsT(t - s)Xg]G(s, zs)

+ T(t-s)X§F(s,H(s,zs))ds}

-f {[-ds T(t - s)Xo

p]G(s, zs) + T(t - s)XpF(s, zs) ds)

where

Φ = φ+Γ{[-dsT(t-s)Xp]G(s,zs)

From the Mean Value Theorem we have

'\£[-dsT(t-s)χe]G(s,χs)ds

< e
e(μ-ε)(t-σ)

9 σ < ξ < t.

If ξ goes to a constant or infinity, the above expression goes to zero. Since

dsT{t- s)Xζ~-

and
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we can prove that

• T(t - s)Xg]G(s, ZS) + T(t - s)X§F(s, H(s, z,)) ds}

+ T(t~s)Xo

pF(s,H(s,zs))ds}

goes to zero.
Since μ being the Lyapunov number of xt implies e~{μJrε)t\xt\-> 0 as

t -> oo, then e~(μ+ε)tT(t — σ)Φ also goes to zero when t -> oo. Since we
assumed μ does not belong to o(A) and μ > aD, there is ε > 0 such that
μ — ε also does not belong to o(A) and, since e~{μJrB)tT(t — σ)φ -> 0, φ
does not belong to P9 and from the relations above
\\T(t - σ)φ\\ ^

f[-dsT(t-s)χC]G(s,xs)ds

s)XgF(s,H(s,zs))ds

, H(s, zs)) ds

*'-°ϊ ΓBeB('-s)h{{s)\\zs\\

)(t~σ) C'e{iL+E){t~s)h \\z II
I 1N ill

< K Γe2εte-2εsh{(s)\\zs\\e-^-^ ds.

Then

K+Kλ

ds
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From Lemma 2.4, zte~{μ~ε)s is bounded, a contradiction, because μ is
the Lyapunov number of zt and then the Theorem is proved.

LEMMA 2.6. Let μ > aD and let x(t) be a solution of(P) such that

and assume condition (2.21) is satisfied. Then there exists a nonnegative
integer I such that

Proof. Let

Λ5 = {λ G

AQ= {λ£

Then C = P θ S θ Q. As before let Pλ = {φ E P | T(t)φ/teμί -> 0}
where / > 0 is fixed. We can choose P2, σ > 0 in such a way that
P — Pλ® P2. See E. A. Coddington and N. Levinson, Theory of Ordinary
Differential Equations, McGraw-Hill, 1955, Exercise 33, p. 106.

\T(t)Xp>T(-s)φp\ < ΛS '-^- 'e r t ' - 'VI , σ < j < /,

Moreover there exists ε > 0 such that

\T(t - s)φQ\ < ΛΓ^-^'-^lφ^l, σ < s

>|φρ|, σ < /

~def

Let β = β + P. The following estimates hold provided ε > 0 is small

enough:



PERTURBED NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATION 87

Since

z, = T(t - σ)φ

+ f [[-ds T(t - s)Xg\G(s, XS) + T(t - s)X$F(s, H(s, zs)) ds}

- Γ {[-ds T(t - s)Xξ]G(s, ZS) + T(t - s)XξF{s, H(s, zs)) ds}.

From the above estimates it is easy to show that

Mme-{μ+ε)tT{t~ σ)φ->0.

It then follows that φs = 0. We can also prove, using Lemma 2.4 and the
above estimates, that | T(t — σ)φ\/tN~]eμt is bounded, where N = largest
order of the blocks of 5, where B is in the Jordan canonical form and
T(ΐ)φs = eBt(Φ,Ψ).

Let / = min{n > 0: | xt \/tMeμt be bounded for / > σ}.
We can prove, as we did before, that zt can be written in the following

form:

zt= T(t- σ)Ψ

+ f {[-ds T(t - s)Xg]G(s, zs) + T(t - s)X$F(s, H(s, zj) ds}

+ Γ {[-dsT(t)Xp'T(-s)Xo

p]G(s,zs)
Ja

+ T(t)Xp'T(-s)XQ

pF(s, H(s, zs)) ds}

- Γ {[-dsT(t)Xp>T(-s)Xo

p]G(s, zs)
Jσ

+ T(t)XpiT(-s)XpF(s, H(s, zs)) ds},

where

ψ = φQ+ Γ {[-ds T(σ)Xp>T(-s)Xp]G(s, zs)

It only remains to prove that the above integrals are convergent, and
it also follows that Γιe~μtT(t — σ)ψ is bounded. Now this is not difficult,
using Lemma 2.4 and the known estimates that Γιe~μtT(t — σ)ψ -^0 as
t -> oo and there exists Cx such that | T(ί - σ)\p\/ίιeμt ^Cx>0 for every
t large enough.

Our final conclusion is that there exist constants Cu C2 such that
0 < C, < xt/tιeμt < C2 < oo. We then have the following theorem.
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THEOREM 2.7. Assume f and G are continuous. Let x{t) ^=0 for all
sufficiently large t be a solution of(P). Let

r o o '

Let N = max{m/(A - λ / ) m + 1 = (A - λl)m, Re λ = μ). Let us assume

that

ΓtN~xh,{t)dt< oo, ΓtN-]h2(t)dt<oo, li

Then there exists a family of solutions yt of(L) such that

The proof follows easily from the estimates given before, Lemma 2.4
and the change of variables (1.22).

Applications. Consider the equation

(P) ^ N O ~ <*o*(' ~ r)] = βx{t) - aoyx{t - r) + b(t)x(t ~ r),

where

Dφ = φ(0) - aoφ(-r), Lφ = βφ(0) - aoyφ(-r), G(t, φ) ΞΞ 0,

|F(/,Φ)|=IM0ΦWI^IM0IIIΦII and jQ°b{t)dt<n.

The associated linear equation

(L) j t [x(t) - αox(/ - r)] = j8x(/) - αoϊ^(^ ~ r)

was given by R. Brayton, Bifurcation of periodic solutions in a nonlinear
difference-differential equation, Quart. Appl. Math. 24 (1966). In the study
of transmission lines Brayton showed that for γ > β > 0 there exists an
infinite set of real couples (α 0, w0), w0 > 0, a\ < 1, such that ±iw0 are
simple roots of the characteristic equation

λ - α oλe" r + β + a^ye~λr = 0,

and w0, α0 satisfy the formulas

w o y + β 1 wo

2-γ)8w0

o w0

2 + γ 2 «o w0

2 + γ

w0 y + β 1
sin wor = — • —.—^-r, cos wQr = — 2«o w0

2 + γ 2 «o w2 + γ 2
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We assume, in systems (L) and (P), α0 = \, β = 1, αoγ = 3, r — 1. If
ao = 2 < 1> by Melvin's theorem the operator D is stable. See [5].

We now determine the decomposition of C by Λ = {+iw0, -iw0).
If Φ = (φ,, φ2), φ,(0) = sin woθ, φ2(θ) = cos wo0, -/• < 0 < 0, then Φ

is a base for the generalized eigenspace of (L) associated with Λ, since we
are assuming these eigenvalues are simple.

Furthermore, AΦ — ΦB implies

B = (bιj)> bu=b22 = 0, bl2 = -b2l = -w0.

The bilinear form associated to (P) is

- α 0 4>(θ + r)φ(θ) dθ - αoγ / ψ(0 + r)φ(θ) dθ,

the adjoint equation is

dt

and

ϊ t K O - «o^(' + 0] = ̂ ( 0 + «oYj(̂  + r),

0 < ^ < A% is a base for generalized real eigenspace of the adjoint equation
associated with Λ.

One can show that

( ψ f , Φ . ) = ( Ψ ί , Φ 2 ) - 2 ( 2 1

+ 2

(Ψ2*, Φ.) = - (ΨΓ , Φ 2) =

If we define

then (Ψ, Φ) = / and we can make the decomposition of C by Λ.
From the above assumptions we have that the set ( λ G σ ( i ) :

det Δ(λ) = 0} satisfies Re λ < 0 and the λ S σ(A) such that Re λ = 0 are

λj = +iw0 and λ2 = -/w0.

By Theorem 1.9, since D is stable there exists δ > 0 such that
Re λ < -δ, with λ the solution of

- feλθdμ(θ)] =0.
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Then we have that there are only two eigenvalues with real part equal to
zero and there exists γ > 0 such that the set {z: 0 <| Re z |< γ} does not
contain any eigenvalue.

If we put xt = xt(σ, φ, h) — xj* + x® and if xf(σ9 φ, h) — Φy(t),
theny(t) satisfies the ordinary differential equation

where J5Λ = B and

Ψ(0) = col
D

with

D =

If

we have

B =
0 w0

eBt = \ 0 eιw°'

/in,/ o

and then []] and [~\] are the respective eigenvectors associated to +iw0

and -iw0.

Furthermore,

and y2 =
1 ze~'

wot

are solutions of

Since the conditions of Theorem 2.1 are satisfied we conclude that

> 0 with t -> oo,
χ(0 - cv"

and this implies

x(t) -



PERTURBED NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATION 91

REFERENCES

[I] R. Bellman and K. Dooke, Asymptotic behavior of solutions of differential-difference
equations, Memoirs of the Amer. Math. Soc, 35 (1959).

[2] W. Brumley, On the asymptotic behavior of solutions of differential-difference equations
of the neutral type, J. Differential Equations, 7 (1970), 175-188.

[3] L. Cooke, Asymptotic equivalence of an ordinary and a functional differential equa-
tions, J. Math. Anal. Appl., 51 (1975), 187-207.

[4] P. S. Gromova and A. M. Sverkin, On trigonometric series whose sums are continuous
unbounded functional on the real line, Differentialniye Uravnieniya, 4 (1968), 1774-
1784.

[5] J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, N.Y.,
Heidelberg, Berlin, (1977).

[6] , Ordinary Differential Equations, Wiley-Interscience, (1969).
[7] , Linear asymptotically autonomous functional differential equations, Rend.

Circ. Mat. Palermo, (2) 15 (1966), 331-351.
[8] D. Henry, Linear autonomous neutral functional differential equations, J. Differential

Equations, 15 (1974), 106-128.
[9] A. F. Ize and N. A. Molfetta, Asymptotically autonomous neutral functional differen-

tial equations with time-dependent lag, J. Math. Anal. Appl., 51, no. 2, (1975).
[10] H. M. Rodrigues, On growth and decay of solutions of perturbed retarded linear

equations, Tohoku Math. J., 32, no. 4, (1980).
[II] A. Strauss and J. A. Yorke, Perturbation on theorem for ordinary differential equa-

tions, J. Differential Equations, 3 (1967), 18, p. 19.

Received April 2, 1981 and in revised form June 14, 1982. This research was supported by
CNPq, FAPESP and FINEP. This paper has been printed under financial support of
F.A.P.E.S.P.

ICMSC-USP
DEPARTAMENTO DE MATEMATICA

13.560-SAo CARLOS-SP
BRAZIL





PACIFIC JOURNAL OF MATHEMATICS
EDITORS

DONALD BABBITT (Managing Editor)

University of California
Los Angeles, CA 90024

HUGO ROSSI

University of Utah
Salt Lake City, UT 84112

C. C. MOORE and ARTHUR OGUS

University of California
Berkeley, CA 94720

ASSOCIATE EDITORS
R. ARENS E. F. BECKENBACH B. H. NEUMANN

(1906-1982)

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, CA 90089-1113

R. FINN and H. SAMELSON

Stanford University
Stanford, CA 94305

F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS
UNIVERSITY OF ARIZONA
UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY

UNIVERSITY OF OREGON
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF HAWAII
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON



Pacific Journal of Mathematics
Vol. 111, No. 1 November, 1984

Harald Brandenburg and Adam Stefan Mysior, For every Hausdorff
space Y there exists a nontrivial Moore space on which all continuous
functions into Y are constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Henry Dappa, A Marcinkiewicz criterion for L p-multipliers . . . . . . . . . . . . . . . . . 9
P. H. Doyle, III and John Gilbert Hocking, Bijectively related spaces. I.

Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Joel Hass, Complete area minimizing minimal surfaces which are not totally

geodesic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Aarno Hohti, On Ginsburg-Isbell derivatives and ranks of metric spaces . . . . . 39
Richard Howard Hudson, Diophantine determinations of 3(p−1)/8 and

5(p−1)/4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A. F. Izé and A. Ventura, Asymptotic behavior of a perturbed neutral

functional-differential equation related to the solution of the unperturbed
linear system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Palle E. T. Jorgensen, Spectral representations of unbounded nonlinear
operators on Hilbert space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Darrell Conley Kent and Gary Douglas Richardson, Cauchy spaces with
regular completions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Mark Mahowald, An addendum to: “bo-resolutions” . . . . . . . . . . . . . . . . . . . . . 117
Stuart Wayne Margolis and Jean-Eric Pin, Minimal noncommutative

varieties and power varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Carla Massaza and Alfio Ragusa, Some conditions on the homology

groups of the Koszul complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Vicente Miquel Molina, Some examples of Riemannian almost-product

manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Roderic Murufas, Inverse spectral problems for certain differential

operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Ulrich Oertel, Closed incompressible surfaces in complements of star

links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Katsuro Sakai, A characterization of local equiconnectedness . . . . . . . . . . . . . 231
William Victor Smith and Don Harrell Tucker, Weak integral

convergence theorems and operator measures . . . . . . . . . . . . . . . . . . . . . . . . . 243

Pacific
JournalofM

athem
atics

1984
Vol.111,N

o.1

http://dx.doi.org/10.2140/pjm.1984.111.1
http://dx.doi.org/10.2140/pjm.1984.111.1
http://dx.doi.org/10.2140/pjm.1984.111.1
http://dx.doi.org/10.2140/pjm.1984.111.9
http://dx.doi.org/10.2140/pjm.1984.111.23
http://dx.doi.org/10.2140/pjm.1984.111.23
http://dx.doi.org/10.2140/pjm.1984.111.35
http://dx.doi.org/10.2140/pjm.1984.111.35
http://dx.doi.org/10.2140/pjm.1984.111.39
http://dx.doi.org/10.2140/pjm.1984.111.49
http://dx.doi.org/10.2140/pjm.1984.111.49
http://dx.doi.org/10.2140/pjm.1984.111.93
http://dx.doi.org/10.2140/pjm.1984.111.93
http://dx.doi.org/10.2140/pjm.1984.111.105
http://dx.doi.org/10.2140/pjm.1984.111.105
http://dx.doi.org/10.2140/pjm.1984.111.117
http://dx.doi.org/10.2140/pjm.1984.111.125
http://dx.doi.org/10.2140/pjm.1984.111.125
http://dx.doi.org/10.2140/pjm.1984.111.137
http://dx.doi.org/10.2140/pjm.1984.111.137
http://dx.doi.org/10.2140/pjm.1984.111.163
http://dx.doi.org/10.2140/pjm.1984.111.163
http://dx.doi.org/10.2140/pjm.1984.111.179
http://dx.doi.org/10.2140/pjm.1984.111.179
http://dx.doi.org/10.2140/pjm.1984.111.209
http://dx.doi.org/10.2140/pjm.1984.111.209
http://dx.doi.org/10.2140/pjm.1984.111.231
http://dx.doi.org/10.2140/pjm.1984.111.243
http://dx.doi.org/10.2140/pjm.1984.111.243

	
	
	

