Vol. 111, No. 2, 1984

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
An interpolation theorem and its applications to positive operators

Vilmos Totik

Vol. 111 (1984), No. 2, 447–481
Abstract

We answer a special case of a problem of Z. Ditzian. The obtained estimate for the Peetre K functional is applied to the characterization of functions for which Tnf f= O(nα) (0 < α < 1), where Tn is either the Bernstein, Szász-Mirakjan or Baskakov operator or their Kantorovich-invariant and ∥⋅∥ denotes either the Lp (p 1) or the supremum norm.

Mathematical Subject Classification 2000
Primary: 41A27
Secondary: 46M35
Milestones
Received: 21 July 1982
Published: 1 April 1984
Authors
Vilmos Totik