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Simple Lie-algebras, all whose proper subalgebras are abelian, and
their algebras of derivations are studied. In many cases the algebra of
outer derivations of such a Lie-algebra turns out to be abelian.

0. Introduction. In this paper the structure of simple Lie-algebras
having only abelian subalgebras, in the following referred to as simple-
semiabelian, will be investigated. It has been shown in [3] that this class of
simple Lie-algebras depends on the properties of the underlying base
field: there are, for instance, no simple-semiabelian Lie-algebras over
algebraically closed fields. Questions concerning the field theoretical
aspects are not studied here; we will approach the problem from a purely
Lie-algebraic point of view.

In order to apply the results of Kaplansky ([6], [7]) some introductory
remarks on base field extensions are necessary. Although according to the
nature of the topic, many structural aspects of simple-semiabelian Lie-al-
gebras vanish after base field extension, some features can be retrieved.
This applies in particular to the index one case studied in §4 which makes
it possible to illustrate the scarcity of examples of low dimension. At
present only three-dimensional representatives of this class are known (cf.
[3D and it is an interesting open problem to construct such objects of
higher dimension.

I would like to thank Professor G. P. Hochschild of the University of
California at Berkeley and Professor H. Strade of the University of
Hamburg for the guidance and advice they gave me while this paper was
in preparation.

1. Remarks on base field extensions. In the following, let k be a
perfect field and let K be an algebraic closure of k. The Galois group of
K: k will be denoted by Gal(K: k). Throughout this paper we will
consider a finite dimensional Lie-algebra G, together with the Lie-algebra
G’ := G ®, K obtained by base field extension.

LemMmA 1.1. Let H C G be a Cartan subalgebra. Then the following

statements hold:
(1) H := H ®, K is a Cartan subalgebra of G'.
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288 ROLF FARNSTEINER

(2) Let G’ = H' ® @, G, be the Cartan decomposition of G’ relative
H'. Forvyin Gal(K: k) and o in R define

y-a:i=yoaoid,®y .

Then (id; ®Y)(G;) = G, -
(3) Gal(K : k) acts on R via

.{Gal(K:k)XR—»R
|(v,a) Y- a

The orbit of a € R under Gal(K : k) will be denoted by [a].
DEFINITION. G is called ad-semisimple if ad, is semisimple V x € G.

According to (1.2) of [3] every ad-semisimple solvable Lie-algebra is
abelian. Every subalgebra and every homorphic image of an ad-semisim-
ple Lie-algebra is ad-semisimple.

Let H C G be a Cartan subalgebra. Then there exists an H-module
V C G such that G = H ® V (Theorem 4, p. 39 of [4]). This decomposi-
tion will be referred to as the Fitting decomposition of G relative to H. We
obviously have V®, K= & __, G..

PROPOSITION 1.2. Let G be ad-semisimple. Then H C G is abelian and
V is a completely reducible H-module. Moreover

G.={x€G;[h,x]=a(h)-xVhEH} Va€ER.

Proof. H is nilpotent, ad-semisimple and, by virtue of (1.2) of [3],
abelian. Consequently ad, is diagonable for every » € H'. Since a(h) is
the only eigenvalue of ad,|;, we obtain ad,|; = a(h) - id;. The H'-
module V' ®, K is obviously completely reducible, therefore the H-module
V has the same property.

PROPOSITION 1.3. Let G be ad-semisimple and consider the Fitting
decomposition G = H ® V relative to a Cartan subalgebra H, as well as the
induced Cartan decomposition G' = H' ® & __, G,

(1) Let W C V be an irreducible H-submodule. Then there is a € R
such that (W ®, K) N G; #0and W®, K= @, ,,(W®,K) N G.

(2) Let Irty (V') denote the set of irreducible H-submodules of V. Then
there is a mapping Q: Irry (V) - R/Gal(K : k), such that Q(W) = [a] if
We,K=® (W®,K)N G,

oE(a]
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(3) Suppose dimy G, =1 Va € R. Then Q is bijective and if V =
@/, V,, where each V is irreducible, then Irry(V) = {V,,...,V,}.

Proof. (1). By assumption, H’ is abelian and every ad, is diagonable.
Consequently, there is a common eigenvector x in W ®, K. This yields the
existence of a root @ € R such that G, meets W ®, K. Consider

U= > id, ®y((W®,K)NG).
yEGal(K: k)
By virtue of (1.2) U’ is an H’-module which is obviously contained in
W ®, K. Since U’ is invariant under the action of the Galois group there
exists, by general theory, a subspace U C W such that U ®, K = U’. Now
U is an H-module and by virtue of the irreducibility of W we obtain
U= W.Itis easy to see that U’ = @, (,,(W &, K) N G.

(2) We need only prove Q is well-defined. This is obviously a
consequence of the uniqueness of the direct sum decomposition.

(3). Suppose dimyx G, = 1 Va € R. By (1) we obtain

wWe. K= @ G VYWEIr,(V).
cEQ(W)
Let U, W be irreducible submodules of V such that Q(U) = Q(W). Then
U®, K= W®,K. Since U, W are irreducible they are either equal or
have trivial intersection. By the equation above the latter case cannot
occur. To verify the surjectivity let « € R be a root and consider
U = &g, G, Clearly, U’ is an H’-module which is invariant under
the action of the Galois group (1.1). There is an H-module U C V such
that U ®, K = U’. Let W C U be an irreducible submodule. Then there is
0, € [a] such that
wWe. K= @ G= P ¢G.=USK.
aE[ap) 0€Ela]
Consequently dim, W = dim, U and we obtain U = W. By definition of
U the equation Q(U) = [«a] holds.
Now consider a direct sum decomposition V' = @ V.. This yields
R = U, Q(V,), therefore we have Irr,(V) = {V,,...,V,}.

REMARK. One can show that the condition of (3) holds if V is an
irreducible H-module. According to (1.3) this also implies the Galois
group acts transitively on R. Suppose, conversely, that a transitive Galois
group action is given and all the root spaces are one-dimensional; then
Irr, (V') contains only one element, and by complete reducibility of V" we
see that I has to be irreducible.



290 ROLF FARNSTEINER

We proceed by proving a lemma which is analogous to the classical
result concerning the Killing form and will be applied in the study of
the structure of simple-semiabelian Lie-algebras of index 1. Following
Dixmier [1] we define for every linear form f € G* the associated alternat-
ing bilinear form

(x, y) o f([x, y]).

Note that rad(B;) = {x € G; B/(x,y) =0 Vy € G} is a subalgebra
of G.

GX G-k
7%

LEMMA 14. Let H C G be a Cartan subalgebra and suppose there is
f € G* such that H = rad(B;). Consider the extended linear form f’:
G’ - K. Then the following statements hold:

(1) H' = rad(B,).

V=D, G, Ckerf'

(3) By |y 5y is non-singular.

(4) B,(G,,Gy) =0VB# —a €R.

5)G.NGLt, =0VaER.

(6)a ER= -a €ER.

Proof. (1). We have H' = H ®, K = rad(B;) ®, K = rad(B,).

(2) Let @ € R be a root. Then there is # € H’ such that a(h) = 1 and
we consequently have kerad,|; = 0. For w € G, there is v € G, such
that w = [A, v]. This yields f'(w) = f'([h, v]) = B,(h, v) = 0.

(3) This follows directly from the definition of ¥’ and (1).

(4 If B+ —a then B+ a#0 and [G;, Gg] C V. The result now
follows from (2).

(5) is a direct consequence of (3) and (4).

(6) According to (5) By |g <, 1s non-singular. Hence there is an
isomorphism G, =~ G'* , proving that G’ , # 0.

2. The algebra of derivations of a simple-semiabelian Lie-algebra.
We adopt the notation and the assumptions of the preceding section.

DEFINITION. G is called simple-semiabelian if G is simple and every
proper subalgebra is abelian.

Note that the maximal subalgebras of G are the Cartan subalgebras.
Moreover, for every maximal subalgebra H of G, H is equal to the
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centralizer Cen ;(x) for every non-zero element x of H. It has been shown
in [2] that the maximal subalgebras of G are of the form H = rad(B,),
f € G*. Every derivation of a simple-semiabelian Lie-algebra is semisim-
ple, by (4.1) of [3]. We use this to prove:

LEMMA 2.1. Let G be simple-semiabelian and let D € Der, (G) be a
derivation. Then every eigenvalue of D which lies in k is zero.

Proof. Let a € k be an eigenvalue of D. Then there is x, € G\ {0}
such that D(x,) = a - x,; this implies that H = kD + k-ad, 1is a
solvable subalgebra of Der,(G). Since Der,(G) is (by (4.1) of [3] and
(1.3.22) of [1]) ad-semisimple it follows that H is abelian. This yields
0=([D,ad, ]=a-ad,. Thusa =0.

LEMMA 2.2. Let G be simple-semiabelian. Then the following statements
hold: (1) If H C G is a proper subalgebra and D € Der,(G) is a drivation
such that D(H) C H, then H C ker D.

(2) Let D € Der,(G) and x, € ker D\{0}, then the centralizer
Ceng(x,) of x lies in ker D.

Proof. (1). Consider H, := ad(H) + kD C Der,(G). Then H, is a
solvable subalgebra of Der,(G). Consequently, H, is abelian and, in
particular, H is contained in ker D.

(2). Let x, € ker D\{0} and let y € Cen,(x,). Then [D(y), x,] =
D([y, xo]) — [¥, D(x,)] = 0. Consequently, we obtain the desired result

by applying (1).

THEOREM 2.3. Let G be simple-semiabelian of characteristic p > 0.
Consider a maximal subalgebra H C G, as well as %, := {D € Der(G);
D(H) = 0}. Then the following statements hold.:

(1) A, is a self-normalizing p-subalgebra of Der,(G).

(2) If & C A, is a Cartan subalgebra of N, then & is an abelian
Cartan subalgebra of Der, (G).

(3) If G = H ® V is the Fitting decomposition of G relative to H then
Der (G) = %A, © ad(V).

(4) Der (G)/ad(G) = A, /ad(H).

(5) [Der,(G), Der,(G)] = ad(G) if and only if U , is abelian.

Proof. (1) Let D be an element of Norp,,, (¥ 5), the normalizer of
A, in Der,(G). Then we have [D, A ,] C A, which, in particular, yields
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adp,, € Ay for every h € H. Consequently H is a D-stable subspace and
D is an element of % ,, by virtue of (2.2). A self-normalizing subalgebra of
a restricted Lie-algebra is necessarily a p-subalgebra.

(2) Every Cartan subalgebra of an ad-semisimple Lie-algebra is
abelian. Let D be an element of Norp,, ,($9). Then § + kD is solvable
and therefore abelian. As a Cartan subalgebra of %,, $ obviously
contains the center 3(¥ ). This yields particularly ad(H) C § and we
therefore have [ad( H), D] C [&, D] = 0, which, in turn, means that D
lies in % ,. We finally apply (1) in order to see that D is actually an
element of .

(3) Let G = H ® V be the Fitting decomposition of G relative H.
Consider in addition the Fitting decomposition of Der,(G) relative to
and write Der,(G) = 9 © W. According to (1.2), W is a completely
reducible $-module, so we may write W = (W N A ) © U. We claim that
U lies in ad(V'). Let D be an element of U. If D(h) = 0, for an element
h € H\{0}, then H = Cen(h) C ker D (2.2). This implies D € % ;; and
hence D = 0. Consequently, for a non-zero element 4, of H, the map

|U-U
'{D |——>[adho, D]

is injective and hence surjective. For every element D € U there exists an
element D, € Usuch that D = [Dy, ad, ] = ad, -
This proves the inclusion U C ad(G) and we obtain
Der,(G) =90 (WNUA,) OU=%A,+ ad(G) =A, ® ad(V)
since ad(H) C A, and A, N ad(V) = 0.
4)
Der,(G)/ad(G) = % ,, + ad(G)/ad(G) = % ,/% ,, N ad(G)

=%, /ad(H).

(5) If A, is abelian, so is Der,(G)/ad(G) by (4). Together with the
simplicity of ad(G) =~ G this yields the asserted equality. Suppose, con-
versely, that Der,(G)/ad(G) is abelian, then %, is solvable and hence
abelian.

REMARK. In the situation above, let v be an element of V and
x, € H\{0}. Then ker(ad, |,) = 0. Consequently there exists v, € V'
such that v = [x,, v,]. Write D(v,) = h; + v,, h; € H, v, € V. Then

D(v) = D([xo, v,]) =[x0, D(v))] =[xo, 0] € V.
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Therefore we obtain the structure of a restricted 2 ;-module on V by
defining D - v = D(v).

Now let v be a non-zero element of V. The definition of %  gives rise
to the injectivity of the mapping

. Ay,-V
*" | D - D(v).

Since 1 is not an eigenvalue of any D € %, (2.1), we have v & im S,.
Thus dim, % ; < dim, V. Combining this with (3) of the preceding theo-
rem we obtain dim, Der,(G) < 2dim, G/H.

In some cases, notably when G possesses an invariant non-singular
bilinear form, % ,; can be shown to be abelian (cf. §3). At the moment, we
investigate the case of a “minimal” simple-semiabelian Lie-algebra.

PROPOSITION 2.4. Let G be simple-semiabelian of minimal dimension.
Then [Der,(G), Der,(G)] = ad(G).

Proof. Let H C G be a maximal subalgebra and suppose U, is not
abelian. Let B be a minimal non-abelian subalgebra of %, and let / < B
be a maximal ideal of B. The subquotient B/J is not abelian since
otherwise B would be solvable and hence abelian. Consequently B/J is
simple. According to the choice of B and J every proper subalgebra of
B/J is abelian. This contradicts the minimality of dim, G, since dim, B/J
=dim, A, <dim, G. This shows that %, is abelian and the assertion
now follows from (2.3).

PROPOSITION 2.5. Let G be simple-semiabelian and let G = H © V be
the Fitting decomposition relative to a maximal subalgebra H. Suppose V is
U ,-irreducible and consider N, := {D|,; D € Ay}, as well as
A = alg,(ad,|,; h € H) and B := alg(N,), the associative k-algebras
generated by {ad,|,; h € H} and U, respectively. Then the following
statements hold.

(1) A C Z(B) is a field (Z( B) denotes the center)

(2) V is H-irreducible if and only if A is equal to B

Proof. (1) By the definition of %, we have Doad,=ad, oD
vDeN,, Vhe H %A, is therefore contained in the centralizer
Ceng(ad, |, ) Vh € H. Consequently, B C Ceng(ad,|,) Vh € H, proving
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that ad, |, lies centrally in B. This gives rise to A C Z(B). The Lie-alge-
bras A, and U, are canonically isomorphic and V is, by virtue of our
assumption, an irreducible % ,-module. Hence B is a primitive, finite-di-
mensional k-algebra and, by general theory, therefore, simple. This in turn
implies Z(B) is a field and so is A as a finite-dimensional integral
k-algebra.

(2) If 4 is equal to B, then V is obviously H-irreducible. Suppose,
conversely, that V is H-irreducible. Then V is A-irreducible and we infer
from (1) that dim , ¥ = 1. Since 4 lies centrally in B, B is a subalgebra of
End ,(V'). We therefore obtain 1 = dim , End ,(V') = dim , B. Thus 4 = B.

Consider the extended Lie-algebra G’ and, for a subalgebra H C G,
the associated subalgebra H'. We define % ;. := {D € Derg(G’); D(H")
= 0}.

LEMMA 2.6. Let G be simple-semiabelian and H C G maximal subalge-
bra. Consider the Cartan decomposition G' = H' ® ®__,G,. Then the
following statements hold:

(1) There is a Lie-algebra isomorphism t: U ; ®, K — U . such that

H(D®a)=D®aidg.
(2) D(G,) CG,Va ER,VD € Ay
(3) Dlg,=0=D|;. =0.

Proof. (1) By general theory there is an isomorphism of associative
algebras #: End,(G) ®; K » Endg(G ®, K), such that #f® a) =
f®aidg. It is easy to check that #(Der,(G) ®; K) = Derg(G’) and
U, @ K) =Ny

(2) Let D be an element of %A ;; and x € G.. Then

[h, D®idg(x)] = D ®idg([h, x]) —[D ®idg(h), x]
= a(h)D ® id(x)

by (1.2) Vh € H'. This proves D ®id,(G,) C G, VD € U ,. Applying
(1) we obtain the desired result.

(3) According to (4.3) of [3] there is f € G* such that H = rad(B,).
Let f* € G* be the extended linear form and suppose D|; = 0. Let x be
an element of G’__; then ’

—a

0 =D([x, y]) =[x, D(»)] +[D(x), y] =[D(x), 5]

for every y € G.. This yields, in particular, D(x) € G, N G’} . Applying
(1.4) we find that D(x) = 0.
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PROPOSITION 2.7. Let G = H ® V be the Fitting decomposition of a
simple-semiabelian Lie-algebra relative to a maximal subalgebra H. Then
the following statements hold.

(1) If V is not A y-irreducible, then dimk A, <+dim, G/H.

(2) If X, is abelian, then dim, N, < 5 dim, G/H.

3) If dimy G, = 1 Va € R then % is abelian.

Proof. (1) By assumption there exists an ¥ ,-irreducible submodule
W C V. Let H = rad(B,) for an appropriate f € G*. It is easy to verify
that V' N W is an A ;-submodule of V. Consequently we have W N W+
=0 or WC VN W". In the second case W is a totally isotropic
subspace of V and therefore its dimension is bounded by 3 dim, V. If
W N W+ =0 then dim, W < % dim, ¥ or dim, W< } dim, V. In either
case there exists an U -submodule U C V such that dim, U <} dim, V.
For u € U\ {0} consider the injective linear map:

S {%I a—=U
“ | D D(u).
We obtain dim, %, < dim, U < } dim, V.
(2) By virtue of (1) we only have to consider the case where V is
U ,-irreducible. It is a result of [2] that this yields dim,G,=1Va€ER
and char(k) # 2. Let R = {a,,...,a,, —a;,...,a,} and write G, = Kx,,
1 =<i =< n. According to (2.6) the lmear map is 1nJectlve and therefore we
obtain:

Ay = G’

1D > D(x,)
i=1

observing (2.6)
dim, A, = dimy A, <n = dim, G/H.
(3) This is an immediate consequence of (2.6).

We finally use the results established above in order to estimate the
dimension of maximal subalgebras.

PROPOSITION 2.8. Let G be simple semiabelian and let H C G be a
maximal subalgebra. Then dim, H < § dim, G

REMARK. It can be shown (cf. [2]) that dim, H <3}dim, G for
finite k.



296 ROLF FARNSTEINER

Proof. Let G = H © V be the Fitting decomposition relative to H. V'
is completely reducible and decomposes into a direct sum of irreducible
submodules V=V, ® --- ®V,. Since for v € V, the map S,: H -V,
where S (k) = [h, v] is injective, we obtain dim, H < dim, V;, which
yields the desired result in case n = 2. If V' is irreducible then by applying
(2.5) and (2.7) consecutively we obtain 2 - dim, H < dim, V. This yields
dim, H <} dim, G.

3. Simple-semiabelian Lie-algebras having a non-singular invariant
bilinear form. In this section we assume k to be perfect of positive
characteristic p > 3. All the results stated in the sequel hold in the
non-modular case as well, however they are even stronger and well known
so that we dispense with stating them explicitly.

Let K be an algebraic closure of k and let G be a finite-dimensional
Lie-algebra over k. We assume G to carry a non-singular invariant
symmetric bilinear form f: G X G — k. On G’, consider the extended form
f’: G" X G’ - K, which is non-singular.

THEOREM 3.1. Let G be simple-semiabelian. Then any two maximal
subalgebras are of the same dimension.

Proof. Let H C G be a maximal subalgebra. We claim that G’ is
classical with respect to H’ (cf. [8] p. 28). We have to show (a) 3(G’) = 0,
d) [G,G1=G (¢) [hx]=a(h)-x VhE H, Vx€G, (d
dim,[G,,G_,]=1Va€ER,(e)Va,BERIi € GF(p):a +if &R.

(a) and (b) are direct consequences of the simplicity of G. Property (c)
follows from (1.2). By applying Theorems 90 and 89 of [6] we obtain
dimy; G, =1 Va € R which in turn yields dimg[G,, G ] = 1. Since
[G.,G" ]+ 0, by (1.4), (d) holds. Finally (e) is a consequence of Theo-
rems 90 and 92 of [6].

Now let H, and H, be two maximal subalgebras of G. According to
the above H] is a classical Cartan subalgebra of the classical algebra G'.
By virtue of Theorem III.4.1 of [8] we have dimy H| = dimy H; which
yields the asserted result.

THEOREM 3.2. Let G be simple-semiabelian. Let H be a maximal
subalgebra of G and write G’ = H' ® ©__, G,. Then the following state-
ments hold: (1) dim; G, = 1Va €ER.

(2) [Der,(G), Der,(G)] = ad(G).

(3) dim, Der,(G) < 3 dim, G/H.
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Proof. (1) According to (1.2), G’ is a V-algebra in the sense of [6] p.
75. Since G’ is centerless we may apply Theorems 90 and 89 consecutively
in order to obtain the desired result.

(2) By virtue of (2.7) %, is abelian and the assertion is a consequence
of (2.3).

(3) Since A is abelian, (2.7) applies and, combining this with (2.3),
we obtain

dim, Der,(G) = dim, %, + dim, G/H <3 dim, G/H.

4. Simple-semiabelian Lie-algebras of index one. Except for the
existence of a non-singular invariant form, we adopt the assumptions of
the preceding section. The number ind(G) : = min ¢ ;. dim, rad(B,) will
be called the index of G.

THEOREM 4.1. Let G be simple-semiabelian of index 1 and let H C G be
a one-dimensional maximal subalgebra. Write G' = H' © @ __, G,. Then
the following statements hold:

(1)dimg G, =1Va €R.

(2) dim, G = 3 or there is n € N such that dim, G = p".

(3)Ifdim, G #3then R U {0} = 2,,GF(p) -oVa ER.

(4) [Der,(G), Der,(G)] = ad(G).

Proof. (1) Let f be a linear form of G such that H = rad(B;) and let f’
denote the linear form of G’ defined by f. Then H’ = rad( B,). Leta € R
be a root and suppose x € G, has the property [x,G’,] =0. Then
x € G. N G't, =0 (cf. (1.4)). The assertion now follows from [7] Theo-
rem 4,

(2) Suppose dim, G # 3. By virtue of [7] Theorem 4, R U {0} is an
abelian group and, since p - a = 0 Va € R, it also has the structure of a
GF( p)-vector space. Let n denote the dimension of R U {0} over GF( p).
Then R U {0} has p” elements and by (1) we obtain dim, G = dim, G’ =
IR U (0}|=p".

(3) Let @ € R be a root and consider A := 2% ., GF( p)o. Obviously,
A is a subspace of R U {0}. The equality

v-( 2 me)= S wlro), 7EGHp)
o€[a] o€lal
proves the invariance of A under the action of the Galois group. Conse-

quently 8" := H'® @, _ NG G}, is a subalgebra of G’ having the prop-
erty (id; ® y)(®") C &’V y € Gal(K: k). This gives rise to a subalgebra
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& C G such that ® ®, K = ®’. Since &’ is not abelian we must have
® =Gand @ = G’. Hence A = R U {0}.
(4) This is a direct consequence of (1), (2.7) and (2.3).

REMARK. Using Theorem 88 of [6] one can show that every simple-
semiabelian Lie-algebra of index 1 possessing a non-singular invariant
symmetric form is three dimensional.

Let W be an irreducible H-submodule of V. Since dim, G, =1
Va € R we have W®, K =32 cguk.: k) Oy fOr an appropriate « € R
(cf. (1.3)). By applying (2.6) it is now clear that D(W) C WV D € U,,.

The following proposition illustrates the scarcity of simple-semi-
abelian Lie-algebras of low dimensions. Let W(1) denote the Witt-algebra.

PROPOSITION 4.2. Let G be simple-semiabelian. Then:
(1) dim, G # 4.

(2) dim, G = 5 = char(k) = 5 and G’ =~ W(1).
(3)dim, G = 6 = G = s1(2) ® sl(2).

(4) dim, G = 7 = char(k) = 7 and G' = W(]).

Proof. (1) Suppose dim, G = 4 and let H C G be a maximal subalge-
bra. Since dim, G/H is even ((4.3) [3]) we necessarily have dim, H = 2,
contradicting (2.8).

(2) By virtue of (2.8) every maximal subalgebra of G is one dimen-
sional. The equation 5 = dim, G = p” yields n =1 and p = 5. Conse-
quently R U {0} = GF(p)a Va € R and the assertion follows from
Theorem 2 of [7].

(3) If H C G is a maximal subalgebra, its dimension is not greater
than 2. As in (1) we find that H has dimension 2. It is a result of [2] that
G’ then decomposes into a direct sum of copies of sl(2).

(4) Analogous to (2).

REFERENCES

{11 J. Dixmier, Algébres Enveloppantes, Gauthier-Villars, 1974.

[2] R. Farnsteiner, Ad-halbeinfache Lie-Algebren, Dissertation, Hamburg, 1982.

[3] , On Ad-semisimple Lie-algebras, to appear in the J. Algebra.

[4] N. Jacobson, Lie-Algebras, Dover Publications, Inc., New York, 1979.

[51 , Basic Algebra I1, Freeman and Company, San Francisco, 1980.

[6] I. Kaplansky, Lie-algebras and locally compact groups, Chicago Lectures in Mathe-
matics, Chicago, 1974.




SIMPLE-SEMIABELIAN LIE-ALGEBRAS 299

[7] , Lie Algebras of characteristic p, Trans. Amer. Math. Soc., 89 (1958), 149-183.
[8] G. B. Seligman, Modular Lie-Algebras, Springer Verlag, Berlin, Heidelberg, New
York, 1967.

Received July 1, 1982.
UNIVERSITY OF CALIFORNIA
BERKELEY, CA 94720

AND

FORSTGRUND 4
2104 HAMBURG 92
WEST GERMANY






PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DoNALD BABBITT (Managing Editor) J. DUGUNDJI
University of California Department of Mathematics
Los Angeles, CA 90024 University of Southern California

Los Angeles, CA 90089-1113
Huco Rossi
University of Utah R. FINN and H. SAMELSON
Salt Lake City, UT 84112 Stanford University
C. C. MOORE and ARTHUR OGUS Stanford, CA 94305
University of California
Berkeley, CA 94720

ASSOCIATE EDITORS
R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

(1906-1982)

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA UNIVERSITY OF OREGON

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY

UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAII

MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO

UNIVERSITY OF NEVADA, RENO UNIVERSITY OF UTAH

NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are
not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form
or offset-reproduced (not dittoed), double spaced with large margins. Please do not use built up fractions in the
text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red,
German in green, and script in blue. The first paragraph must be capable of being used separately as a synopsis
of the entire paper. In particular it should contain no bibliographic references. Please propose a heading for the
odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors.
Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author
to whom proofs should be sent. All other communications should be addressed to the managing editor, or
Elaine Barth, University of California, Los Angeles, California 90024.

There are page-charges associated with articles appearing in the Pacific Journal of Mathematics. These
charges are expected to be paid by the author’s University, Government Agency or Company. If the author or
authors do not have access to such Institutional support these charges are waived. Single authors will receive 50
free reprints; joint authors will receive a total of 100 free reprints. Additional copies may be obtained at cost in
multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $132.00
a year (6 Vol., 12 issues). Special rate: $66.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be
sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers
obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics ISSN 0030-8730 is published monthly by the Pacific Journal of Mathe-
matics at P.O. Box 969, Carmel Valley, CA 93924. Application to mail at Second-class postage rates is pend-
ing at Carmel Valley, California, and additional mailing offices. Postmaster: Send address changes to Pacific
Journal of Mathematics, P. O. Box 969, Carmel Valley, CA 93924,

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Copyright © 1984 by Pacific Journal of Mathematics



Pacific Journal of Mathematics

Vol. 111, No. 2 December, 1984

Berndt Brenken, Representations and automorphisms of the irrational

rotation algebra ... ... 257
Harold George Diamond, A number theoretic series of I. Kasara .......... 283
Rolf Farnsteiner, On the structure of simple-semiabelian Lie algebras ...... 287
Guillermo Grabinsky, Poisson process over o-finite Markov chains ........ 301
Derbiau Frank Hsu and A. Donald Keedwell, Generalized complete

mappings, neofields, sequenceable groups and block designs. I ......... 317
William H. Julian and Fred Richman, A uniformly continuous function on

[0, 1] that is everywhere different from its infimum ................... 333
D. H. Lehmer and Emma Lehmer, The sextic period polynomial .......... 341
E. Maluta, Uniformly normal structure and related coefficients ............. 357
Coy Lewis May, The species of bordered Klein surfaces with maximal

symmetry of Iow @enus . ...... ... e 371
Louis Jackson Ratliff, Jr., On asymptotic prime divisors .................. 395
Norbert Riedel, Disintegration of KMS-states and reduction of standard von

Neumann algebras ...t e 415
Richard Gordon Swan, n-generator ideals in Priifer domains .............. 433

Vilmos Totik, An interpolation theorem and its applications to positive
(0] 0155 10 ) ¢ PP
Richard Vrem, Hypergroup joins and their dual objects .



http://dx.doi.org/10.2140/pjm.1984.111.257
http://dx.doi.org/10.2140/pjm.1984.111.257
http://dx.doi.org/10.2140/pjm.1984.111.283
http://dx.doi.org/10.2140/pjm.1984.111.301
http://dx.doi.org/10.2140/pjm.1984.111.317
http://dx.doi.org/10.2140/pjm.1984.111.317
http://dx.doi.org/10.2140/pjm.1984.111.333
http://dx.doi.org/10.2140/pjm.1984.111.333
http://dx.doi.org/10.2140/pjm.1984.111.341
http://dx.doi.org/10.2140/pjm.1984.111.357
http://dx.doi.org/10.2140/pjm.1984.111.371
http://dx.doi.org/10.2140/pjm.1984.111.371
http://dx.doi.org/10.2140/pjm.1984.111.395
http://dx.doi.org/10.2140/pjm.1984.111.415
http://dx.doi.org/10.2140/pjm.1984.111.415
http://dx.doi.org/10.2140/pjm.1984.111.433
http://dx.doi.org/10.2140/pjm.1984.111.447
http://dx.doi.org/10.2140/pjm.1984.111.447
http://dx.doi.org/10.2140/pjm.1984.111.483

	
	
	

