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There is a well-known construction which associates with each
o-finite measure space (X, S, p) a certain stochastic process {N(F):
FE &, u(F)< o} called the Poisson process over (X, S, p). Any
p-preserving bimeasurable map 7 on X “‘lifts” to a probability preserving
map 7, characterized by N(F) o T = N(t'F). We show the following:
If 7 is the shift arising from a Markov chain preserving a o-finite
measure with stochastic matrix (p, ;), ,cn- Then T is a Bernoulli shift iff

p") > 0Vi, j €N as n — co. If, in addition, 7 has a recurrent state or

if it is transient and (S, p) is not completely atomic, then 7 has infinite
entropy. The analogous results are valid for »-step Markov chains
preserving a o-finite measure (v > 1).

Introduction. We will examine the ergodic properties of dynamical
systems arising by the use of the Poisson process as described in the
following result (see [8]).

THEOREM 0. Let (X, S, ) be a o-finite (infinite) measure space. There
exists a unique probability space (R, @, p) together with a countably additive
set function N defined on sets F € & with u(F) < oo, satisfying:

(i) N(F) is a Poisson random variable with mean p( I).
(ii) If (F,) is a sequence of pairwise disjoint sets (mod u) then the
sequence ( N(F))) is independent.

(iil) @ is generated by the class {N(F): F € 5, p(F) < oo}.

Throughout this paper 7 will denote an invertible measure-preserving
transformation, i.e. an automorphism, acting on the Lebesgue space
(X,S, ), and it will also be assumed that there is no finite r-invariant
measure equivalent to p. 7 gives rise to an automorphism 7 on (2, &, p)
satisfying N(F) o T = N(t7'F). We call ((, @, p), T) the Poisson dy-
namical system with base (( X, 9, 1), 7).

The following result is shown by F. A. Marchat [7].

THEOREM 1. (a) 7 has no invariant sets of positive finite measure iff T is
ergodic iff T is weak mixing.

(b) 7 satisfies the mixing condition: wW(FN77"G) >0 as n— »
whenever F, G € $ have finite measure iff T is m-fold mixing Vm = 1 iff T
is mixing.
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We provide a (different) proof of this theorem in §1. In §2 some
technical results are recalled ([7]) and brief proofs are provided. §§3 and 4
contain the main results of this paper. It is shown that if 7 acts on
(X, 9, p) as a Markov chain with transition matrix (p; )i ens then the
corresponding Poisson dynamical system is isomorphic to a Bernoulli shift
iff pi*) —» 0 Vi, j € Nasn — oo. If in addition to the last condition, either
7 has a recurrent state or it is transient and (&, p) is not completely
atomic, then the corresponding Poisson process has infinite entropy. The
analogous results remain valid for »-step Markov chains preserving a
o-finite measure (» > 1).

Poisson processes over Markov chains have been considered by several
authors. S. Goldstein and V. L. Lebowitz [2] examined the case in which 7
is the (1, ) random walk; they showed that the corresponding Poisson
transformation is a K-automorphism. F. A. Marchat [7] obtained the same
result for any Markov chain preserving a o-finite measure. S. Kalikow [6]
showed, for the case where 7 is a recurrent random walk, that the process
{Nix(my=a): ® € Z, a € Z} forms a stationary Markov chain whose shift is
Bernoulli. This process is a factor of the Poisson process over 7, so his
result is a corollary of ours; we don’t know, however, whether the factor is
proper.

Kalikow’s work was earlier than ours, but we learned of each others’
results later, and the arguments are different.

This work is part of the author’s Ph.D. thesis [3] done under the
supervision of Professor Jacob Feldman, to whom I express my apprecia-
tion for his patience and much encouragement.

1. Ergodicity and mixing. We provide a different proof of Theorem
1, based on the computation of a dependence coefficient for certain
o-algebras contained in @. We need some definitions and notation. Let
%= {F €%: u(F) < oo} denote the ring of sets of finite measure and let
2. =o{N(H:HEeESNF},FEY.

Define

p(Zr, 2g) = Sup{|p(M NM)—p(M)p(M)|: MEZ,, M € 2G}-

Clearly p(Z,, =) = 0iff p(F N G) = 0.

LemMma 1.1.

2,2
lim P( H> H):

1.
B(H) =0 n(H)
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Proof. Since 0 < N(G) < N(H) whenever G C H, then {N(G) = n}
contains or is disjoint from {N(H) = 0} according to whether n = 0 or
n # 0, hence any set M € Z,, which is not disjoint from {N(H) = 0}
must contain it, i.e. {N(H) = 0} is an atom of X,. Therefore p(M) =
P({N(H) =0})or p(M) =1 — p({N(H) = 0}) and hence

p(Zy, Zy) =1 - p({N(H) = 0}) = 1 — exp(-p(H)).
On the other hand setting M = M’ = { N(H) = 0} we obtain
exp(-p(H))(1 — exp(-u(H))) = p(Zy, Zy).
Dividing by p( H) and taking limits the result follows. O

LEMMA 1.2. Let F,, F, and G be such that u(F, N F,) = 0. Then

P(Ef,a EGUFZ) = P(EF.’ 20) = P(EF,, 2G—Fz)-

Proof. By the definition of p, it is enough to show that
(1) p(EF,’EGUFz) SP(ZF,’EG~FZ)'
Let

e= { UCGND:CeEZ.,DEZ ,CNC= z,i;ej,Jﬁnite}.
J

Then € is an algebra of subsets and is such that 2 . = o(C). Let
M €2, and M’ € C be arbitrary. Then by independence of C, and
D, N M one gets

lp(M 0 M) = p(M)p(M)| <=3 p(C)o(Zr, 26 r) < (25, Z6-5)
J
and (1) follows by approximation. (|

COROLLARY 1.3.

p(Zp2.g) >0 asn—>oo iff p(FN17"G)—>0 asn— .

Proof. 1t follows from Lemma 1.2 that
P(Zr, Zn6) = p(Zrnergo -
Then apply Lemma 1.1.

[
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We are now ready to establish the following

THEOREM 1.4. (1) 7 has no invariant sets of positive finite measure iff T
is ergodic iff T is weakly mixing.

(2) 7 satisfies the mixing condition iff T is m-fold mixing for all m = 1
iff T is mixing.

Proof. (1) If 7 has no invariant sets of positive finite measure, it
follows from the mean ergodic theorem that

n—1
% Su(FNt7/F)>0 asn— coforall FEY.
j=0

Let A, B € 2 be arbitrary. Then by Corollary 1.3

S| =

3 [p(4 0 778) = p(4)p(5)

=

N |-

n—1
e Z,5) >0 asn— co.
j=0

For general 4, B € @, the same result holds by approximating by sets in
2y for large F € %. Hence T is weakly mixing and, in particular, ergodic.
Conversely if F € % is r-invariant and has positive measure, then N(F) is
T-invariant and non-constant so 7 is not ergodic.

(2) Assume 7 satisfies the mixing condition. Fix m =1 and F € .
Let 0=ny<n,<---=<n, be non-negative integers and put F, =
UL, 77"F, j=1,...,m. Then pW(FN F) -0 as min{n, —n,_,: s=
l,...,m} = oo. Let 4y, 4,,...,4,, € Zpand ;= NL, T4, € 2f. By
adding and subtracting p(A4,)p(C,) and using the triangle inequality one
gets

’p( ié) T“"'Ai) - iflop(Ai)’

p() = 11 pla))|.

=

Sp(E,,-, Epl) +

Repeating the same argument with 7-"14, in the role of 4., and C, in the
role of C,, one gets

p(174,0 )~ 1 p(a))

i=

<p(Zr 35) +’P(Cz) - _IiP(Ai) :
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Continuing in this fashion it follows that

p( 60 T'"'A,) - lflop(A,)

=3 o(2r 24).
j=1

Therefore
m m
p( N T‘”fAi) -1 p(4,) asmin{n, —n,_,:s=1,...,m} - co.
i=0 i=0

For general 4, 4,,...,4,, € @ the same result follows by approxi-
mating by sets in 2. for large F € 9. Hence T is m-fold mixing Vm = 1
and, in particular, it is mixing. Conversely, if 7 is mixing then, as » — oo,
we have

(N(G) o T", N(F)) - (N(G),1)(1, N(F)) = u(F)u(G) VF,G€E Y,
but one easily computes that
(N(G) o T", N(F)) = u(F)u(G) + p(F N 77"G).

Therefore T satisfies the mixing condition. O

ReMARK 1. There are 7’s that satisfy the mixing condition but the
associated 7'’s are not K-automorphisms. In [3] an ergodic 7 satisfying the
mixing condition was constructed so that T has entropy zero.

2. Conditional expectations. In this section a formula for condi-
tional expectations over certain o-algebras of @ is recalled. The results and
proofs are essentially those of [7] and are included here for the sake of
completeness.

For each o-algebra § C & such that p|§ is o-finite, let B(9) = o{ N(F):
FeJNG} C@, and let £(8F) be the linear space of simple functions
f= Z,e;¢; Xg, I finite, with finite §-measurable support. Using linearity
and setting N(F) = N(X;), we define N(f) for f € £(S); notice that
N( f) is also a Poisson random variable with mean [ f du. Define

exp N(f)
Eexp N(f)

one easily verifies that Eexp N(f) = exp Ey(f) where Y(x) = e* — 1.
On the other hand, since Y(x + y) = Y(x)P(p) + Y(x) + (), it follows
that

(¢(f).¢(g)) =E

¢(/) = forf € £(5);

exp N(f + g) __ expEy(f+g)
expE(Y(f) +4(g)) ] expE(f) +¥(g))

=exp(¥(f),¥(g)) Vf, g €L(S).
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Hence ¢( f) € L,(R, @, p). Notice that we have used inner products in
two different L,-spaces.

PrROPOSITION 2.1. The class {¢(f): f € £(8)} generates
L,(2, B(S), p) for every sub-o-algebra § of S.

Proof. Assume ¢ € Ly(R2, B(8), p) is such that (¢(f),¢) =0 Vf€E
£(9). We must show ¢ = 0. Given F,,...,F, € ¥ N § define a signed
measure on (N U {0})” by placing

f odp.
(N(Fy),..., N(F,)EB

Let i € R" arbitrary. Then the Laplace transform of », - is equal to
[ o0 2 (e |odr = expEwN)l0(1). ) =0
with
f= é} u; Xg.

Consequently ¢ dp is 0 on o{ N(F)),...,N(F,)} and, hence, is 0 on B(9).
Thus ¢ = 0. O

In order to obtain a formula for the conditional expectation
E(¢(f)|9(8)) we need to extend the definition of ¢(f) for all f €
L,(X,&,pn). Let f,g € Ly(S) and find sequences (f,) and (g,) in
£(S) such that f, —» fand g, — g in mean. Then

lo(£) — o(£la = expllv (£l + explv( £y
—2exp(¥(£,), ¥(/;,))-

Therefore (¢( f,)) is fundamental in mean and hence converges in mean to
some limit in L,(R, &, p), which we define as ¢( f). Similar arguments
show that the identity (¢(f), ¢(g)) = exp(¥( f), ¥(g)) remains true.

THEOREM 2.2. Let § C & be a o-finite, sub- o-algebra. Then
E(¢(f)18(9)) = ¢(y ' pr(¥(f) |L,(9))) Vf € £(5),

where pr( o | L,(§)) denotes orthogonal projection onto the indicated sub-
space.
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Proof. For simplicity write yg( ) = pr(¢(f) ] L,(§)). We first show
that ¢ ~'ys( f) € L,(9). Since ¢( f) € £(8), there exists ¢ > —1 such that
Y(f) = c. Hence Y4(f) = ¢, also. On the other hand there exists d =1
such that | ~'(x)|=|log(1 + x)|< d|x| whenever x = ¢ > —1. Therefore
4™ f) € Ly(8).

Let g € £(9) be arbitrary. We have

(6(f), ¢(g)) = exp(¥( 1), ¥(g)) = exp(¥s(f), ¥(g))
= exp(¥(¥7'¥(£)). ¥(8)) = (6(¥7¥(/)). 8(g))-
Since {¢(g): g € £(9)} spans L,(%B(9)) one has

o(vs(f)) = pr(o(f) 1 L,(B(9))) = E(¢(f)1D(9)). O

REMARK. Analogous results for the case p( X) < co are worked out in
Neveu [9, pp. 162-168].

3. Poisson process over Markov chains. We introduce some nota-
tion that will be used throughout the sequel. Let P = (p, ), 7, j € N, be a
stochastic matrix and let 4 = (p,(P)) denote a stationary measure for P,
ie. X p,p,, = p, Vj€N. By a well-known result of T. E. Harris and H.
Robbins [4], every irreducible recurrent stochastic matrix has a stationary
measure unique up to multiplication by a constant (see [1] for terminol-
ogy). The pair (P, p) is called positive or null according to whether
(2, p,(P))! is positive or zero, respectively. Let (P, p) denote a null pair.
We define the (two-sided) Markov shift 7 = 7, ,, as follows: Let X = NZ,
& = the o-algebra generated by cylinder sets, and let p be the unique
o-finite measure satisfying

p{x € X:x(n) =i, ,....x(n+ k) =i}
TP T P i Vn€Z k=1, Inses sl © N

and 7: X — X given by (7(x))(i) = x(i — 1), € Z. It is well known that 7
is an automorphism which is ergodic iff P is irreducible and recurrent.

Let G, = {x € X: x(0) =i}, i €N, and let P = {G,, G,,...} denote
the O-time partition; so u, = u(G,) and

P, = p{x(1) = j1x(0) = i} = p(G |77'G,).
Define 3, = o(%), the 0-time o-algebra, and
b b
H=V1H,, asb€Z, and P'=V 7P,

i=a i=a
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as usual 9° = o{ P a € N} and P2, = o{®": a <b € Z). Finally set
Y, = B(Hg) and @, = ViZ_ T 'y,; Notice that &, CQ, C - - C @,
and @ 1 @ ass - oo. (Proof:

[> o] 0 e o]
Q=R(5)=B(P=)= V TB(F)= V T Vy,
i=-o00 i=-00 s=0
= \/ \/ T_Iys: v @s)
s=0 i=-00 s=0
We need the following lemma.
LEMMA 3.1.
0
p(AITNy,) =p(A4|T™My) as. VAE V Ty,
i=—k

s, r, k =0, whenever N > r.

Proof. Any atom of ¥y is of the form H, where a = (a(0),...,a(s))
€ N°*"'and H; = N;_,77' G, . Hence the family

v#(Ha)

is an orthonormal basis for L,(7 ¥J(j). Consequently, VF € 5N I’
one has

XHJOTH = +1
—L_—:a€ N*"'suchthatu(H;) >0

prix sl Ly(77495)) = Zu(Flr="Hg)xy, o 7"

a

By the Markov property u(F|7 VH;) = M(FIT*NGG(O)) whenever N > r;
substituting we obtain

pr(x rl La(77V9Cs)) = pr(xr1 La(77VC,)).-
By linearity of the projections we obtain
pr{f1Ly(77"95)) = pr(f1Lo(775,))  Vf € £(3C7,).
Consequently, by Theorem 2.2,
E($(/)1T M) = E($())IT™y) allf € R(7,)

whenever N > r. Since {¢(f): f € £(IC7,))} is a basis for L,(B(I(})), it
follows, by approximating any x , with 4 € V {__, T"'y, C ®(I(}) by
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basic functions and convergence properties of conditional expectation,
that

0
p(A|1TMy,) =p(4|TNy,) as. VAE V Ty,
i=-k

whenever N >r. [
We now come to one of the main results.

THEOREM 3.2. Let T be a Markov chain with stochastic matrix P and
measure . Then T is Bernoulli iff p{") » 0, Vi, j EN, as n > oo.

Proof. If T is Bernoulli, then it is mixing and, hence, 7 satisfies the
mixing condition. In particular,

P =u(G,N7"G)u(G)" -0 Vi, jENasn - c.

Conversely, we first show that the system ((£2, @,, p), T') is Bernoulli,
by showing that every finite partition Q which is y,-measurable is weak
Bernoulli, i.e. we must show that given ¢ >0, 3N = N(¢) such that
Vk =1,Q° L:QN*k(see[10] for definitions).

Let k = 1. Since y, C V i_o Ty, C B(IC;¥), it follows from the
last lemma, by taking conditional expectations with respect to V *_, T~ Y,
and replacing s by r + k, that

k
p(A|T‘N V T’iy,) = p(A4|T "y,) whenever N > r;
i=0
fors =r,

p(A1T ) =p(4]1 T Ny,).

Consequently,

K 0
p(AlT‘N V T~"y,) =p(4|T™y,), k=0,Vv4€ V Ty,
i=0 i=-k
whenever N > r. Therefore for any atoms B € T-¥Q and B, € T-NQk
with @ # B, C Band N > r, one has

0 0
dist( V T"Q|B) :dist( V T"QlBk).
=k i=-k

Hence it is enough to verify that Q° 1:7T-"Q, Vk = 1, for some N =
N(e) >r. Equivalently Q L°Q-¥_,, Vk =1, for some N >r. On the
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other hand, by applying the same arguments to the reversed Markov chain
one has that VC € T"Q and C, € TVQ®, with @ # C, C C, dist(Q|C)
= dist(Q| C,) whenever N >r. Consequently we need only show Q
12 TMQ for some N > r. By assumption u(G, N 77"G;) - 0,Vi,j € N, as
n - oo, and since P generates S under 7, it follows that 7 satisfies the
mixing condition; therefore 7 is mixing and Q 1 TNQ if N is chosen
large enough.

Hence ((2,&,, p)T) is Bernoulli, and since & 1 & as r — oo, it
follows by a theorem of Ornstein ([10] page 53), that (2, &, p), T) is
Bernoulli. O

REMARKS. An irreducible null-recurrent Markov chain or a transient
Markov chain preserving a o-finite measure satisfies the condition p(") -0
as well as Markov chains with periodic states that are recurrent and null
(see [1] page 33, Theorem 4 for a complete study of the limiting behavior
of p( n))

If 7 is a »-step Markov chain (» > 1), then after minor modifications
in the conclusions of Lemma 3.1, we obtain the following

THEOREM 3.3. Let T be a v-step Markov chain (v > 1) preserving a
o-finite measure .. Then T is Bernoulli iff p{") - 0, Va, b € N”, as n > oo,
where

p=wp{x(n+j)=b()|x(j)=a(j):0=j=<»—1}.

4. Entropy of the Poisson process over Markov chains. We start by
establishing a formula for the entropy of 7, if 7 is a Markov chain.

PROPOSITION 4.1. Let T be a Markov chain and T its Poisson transfor-
mation. Then

h,(T) = hm

1 -
— 7 sup{H,(QIT7'0): 0(Q) C,, H,(Q) < w0}
Proof. Since &, 1 @ it follows by well-known properties of entropy

that h,(T) = lim,_ . h (T, @,). Let Q be a y,-measurable partition with
finite entropy. We have by Lemma 3.1 that

dist(Q|T-"Q) = dist(Q|T-"Qk) Vk =1 whenever N >r;

so for N = r + 1 it follows that

dist(Q|T-"7'Q) = dist(Q| V, T—<r+'>fQ) Vn=1.

i=1
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Hence h (T, Q) = H(Q|T™""'Q) so

sup{H,(Q|T~7'Q): 6(Q) C v,, H,(Q) < o0},

1
n(T,@,) = ——~
from which the result follows O

We first evaluate h,(7T) for some special kinds of Markov chains
which we describe below.

DEFINITION 4.2. Let ( f,) be a sequence of non-negative real numbers
such that 22_, f, = 1; put

< n —_— n — 1
f(X) 'Elfn}\ and u(A) nzou,,)\ IR

The sequence (u,), is called a recurrent renewal sequence, as is any
sequence obtained in this fashion from an (f,) satisfying the above
requirements. Observe that every probability distribution ( f,) determines
a unique recurrent renewal sequence, and conversely every recurrent
renewal sequence comes from a unique probability distribution. We will
write # = (u,). Given u and the probability distribution ( f,) from which
it comes, define a doubly infinite matrix P; = ( p; (%)), ,en as follows:

foifi=1,
p(E)=11 ifi=2,j=i—1,
0 otherwise.

M8

Then P, is stochastic, irreducible and recurrent and p{} = u,. A sta-
tionary measure m = (m,(u)) for P; is given by m,(u) = 22 z .f;- Conse-
quently, P; is positive or null according to whether (22_, nf,)™! is positive
or zero, respectively.

Denote by 7; the Markov shift with stochastic matrix P, and sta-
tionary measure m = m(u) for a recurrent renewal sequence # and let T}
be its associated Poisson transformation.

PROPOSITION 4.3. If Py is null, then h (T;) = o
Proof. Define H: [0, c0) — [0, 0) by
- %
Hx)=-Y X log2 —
n=0 n!

where, as usual, 0log0 is defined to be 0. H(x) is just the entropy of the
Poisson distribution with parameter x. It is easy to show that H is
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continuous, H(x + y) < H(x) + H(y), H(x) » oo as x — o0 and
H(x)/x - o0 asx - 0.

Let ( f,) be the probability distribution associated with #. By assump-
tion, 2¥_, nf, = co. Consequently 3%, 2nf,, = o0 or Z3_,2n + 1)f,, 4,
= oo. We will consider just the first case, the other being entirely similar.
By the last proposition

H,(T;) = sup{H,(Q|7;'Q): 0(Q) C vy, H,(Q) < 0}.

Let m; = {{N(G) = n}}i_y VG € §. Then H (7n;) = H(p(G)); put Q, =
7g, V -+ Vg , where G; = {x: x(0) = i}. Then because of the form of P;
we have G,, N 77'G,, = @, i # j; therefore, by independence,

! ! !
Hp(Qll T,'0,) = 21 H,(7g, ) = 2 H(m,,) ZH( ; mZi)‘

i=1 i=1

Letting / — oo, we get h,(T;) = co. | O

DEFINITION 4.4. Let 7 be an automorphism of a o-finite measure
space (X, S, u) and let E € ¥. We say that E is a recurrent set iff for every
sequence

O=ny=n =---=ng,

k k
l"'E( N ’T_"’E) = I[ pe(r~m="-VE)
j=1 j=1

where p(F) = p(E N F)/u(E). 1t is clear that every set of the 0-time
partition of a Markov shift is recurrent.

Assume E is a recurrent set of some conservative automorphism 7.
Since E C U;_, 77"E (mod p), we can define the induced transformation
7 a.e. on E by setting 7-(x) = 7 (x) for x € UZ_ | E N 77"E, where rg
denotes the return-time function defined by

rg(x) = min{k € N: 7*x € E}

(See S. Kakutani [5].) Let E, = r;'(n). Then R(E) = (E,, E,,...} is a
partition of E, called the return time partition of E relative to . Since E is
recurrent, it is not hard to show that the sequence (u,(E) = p(77"E)) is
a recurrent renewal sequence, with associated probability distribution
(f. = ng(E,)). Let Py, denote the stochastic matrix associated with the
sequence #( E). Then by Kac’s theorem

0

S m(E) = (E)" 3 in(E) = w(E)" [rp .

i=1
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Consequently, Py, is positive or null according to whether or not
[ rpdp is finite. On the other hand, p(E*) = u(E)™'f rpdp where E* =
U%_ 7 "E. Denote by (X', &', m) the space of the shift 7; . Then one
can define a.e. an onto map ¢: E* — X’ such that:

H¢'S"CSNE;

(i) ¢ © T|ge = Ty, © ¢; and

(iii) p o ¢7' = p(E)m.
We multiply the stationary measure by u( £) and, by abuse of notation,
we still can call this new shift 7 .. It is clear that also & ,(7,)) = oo if
p(E*) = oo. On the other hand, since 7 is conservative, E* is actually
invariant and, hence, T can be written as the union of the transformations
restricted to E* and X — E* and, therefore, T can be written as the direct
product of the Poisson transformations associated with the restrictions to
E* and X — E*. Collecting the above remarks we have the following;:

PROPOSITION 4.5. Let 7 be a conservative automorphism and suppose it
admits a recurrent set E with p(E*) = oco. Then 7|g. has a Markov shift as
a factor for which the associated Poisson transformation has infinite entropy.

The next proposition shows that “factors correspond to factors”.

PROPOSITION 4.6. Let 7 and 7' be endomorphisms of o-finite measure
spaces (X, S, p) and (X', &, ), respectively. Let (R, &, p),T) and
(', &', p), T") be the Poisson processes over the given bases, respectively.
If 7' is a factor of 7, then T’ is a factor of T. In particular h (T, &) =
h, (T, &").

Proof. Let ¢: (X,8,p) —» (X,d,p') be an onto map such that
'S CS, por=1cpand pe ¢! =pu'. Let @ = B(¢'S’). Then @”
is a sub-o-algebra of @. Define a map ¢: (2, Q", p) — (¥, @, p’) by
sending {N(¢™'G) = n} onto {N(G) =n}, VG €EF NS, Vn=0. Then
poT=To¢on {{N¢$(G)=n}: GEFNS,n=0} and po ¢! =
p’ on {{N(G)=n}: GEF NS, n=0}. But these classes generate @”
and @', respectively. Consequently 7" is a factor of T. O

By the remarks and results of this section we obtain:

THEOREM 4.7. Let 7 denote a conservative automorphism that admits a
recurrent set E with p(E*) = oo, or a Markov chain satisfying pf_’;) - 0,
Vi, j € N, as n = oo such that it has a recurrent state or is transient and
(S, ) is not completely atomic. Then h (T) = oo.
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Proof. Let T.. denote the Poisson transformation corresponding to
7|+ Then by the last proposition,

h(T)=h,(Tp.) = h,(Ty) = .

If 7 is a Markov chain satisfying the hypotheses, then by earlier results it
follows that 7 does not have invariant sets of positive finite measure.
Assume 7 has a recurrent state i, € N. Let / denote the irreducible class
containing i,. Since I is closed (see [1]),i.e. Z,c,p;, = 1 Vj € I, and I is
T-invariant, we have: p(1%) = 3 ,erk; = oo and 7|,z is an ergodic Markov
shift. Clearly E = {x € I% x(0) = i,} is a recurrent set with u(E*) =
i(I%) = oo. Therefore by the first part, h,(T) = oo.

Now assume 7 is transient and (&, p) is not completely atomic, i.e. 3 a
set X, €S with p(X,) >0, SN X, is non-atomic and X — X, is a
countable union of atoms. Since X, is T-invariant we have p(X;) = oo.
Since 7 is dissipative so is 7|y acting on the o-finite, non-atomic measure
space (X,,® N Xy, n). Hence IF € 5 N X, of positive finite measure
such that {77"F}, .y is pairwise disjoint. For each n > 1 find disjoint
subsets G{™,..., G whose union is F and such that p(F) = nu(G™),
i = 1,...,n. Therefore, by independence

hp(T, \/ WGIM,) 2 H (750) = nH( (nF))

i=1 i=1

where H is the entropy function discussed above; since lim ,_ o ( H(x)/x)
= o0, letting n — oo, we obtain h(T) = co.

REMARK 1. The analogous results remain true for p-step Markov
chains (v > 1).

REMARK 2. If (X, 5, p) is completely atomic and o-finite, and if 7 is a
dissipative automorphism, it might happen that 2 ,(7') < co or 4 (T) = 0.
For, X is (mod p) the disjoint union of countably many atoms (E,) of
finite measure; since 7"FE; is also an atom Vn € Z, we can write X =
U, cz 7"W (disjoint) (mod p) with W a union of atoms {E } ., such that
T™E,NE, =@, Vn€Z j#j in J. Then h(T)=hy T, ) =
H(u(W)) and so is finite or infinite according to whether p(W) < oo or
w(W) = oo.
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