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We answer a special case of a problem of Z. Ditzian. The obtained
estimate for the Peetre K functional is applied to the characterization of
functions for which ||7, f — f|| = O(n™*) (0 < a < 1), where T}, is either
the Bernstein, Szasz-Mirakjan or Baskakov operator or their Kantoro-
vich-invariant and || - || denotes either the L? (p = 1) or the supremum
norm.

1. Let (a, b) be an interval, B = L?(a,b) (1=p< o) or B=
Cla, b], ¢ a non-negative function on (a, b) and r =1 an integer. Z.
Ditzian [6] estimated the Peetre K functional

K, f)= inf  (If—gls+ lleg?ls)

2,8 Vabs. cont.

by norms of second order differences of f when ¢ had certain regularity
conditions. In connection with this he raised the problem if in the case
(a,0) =(0,1), B=L"(0,1) (I1=p<o), o(x)=x* («>0), fEB,
(support f) C (0, 3/4), the estimate

(1.1) Dwi*(f, 1) = K, (1%, f) < Dy *(f, 1)

holds, where

w3 *(f.1) = sup {/(I_C 8y p )

n=<t ry)t/d-e

+ sup. {f

p=r/0-0

1/p
|A2n’f(x)|”dx} for0<a<l,

l/p
|A2,,’xaf(x)}”dx} fora =1,

1/(0—a)

at (/0 =sup ([

n<r \“(rn)
and

A5 f(x) = f(x = h) = 2f(x) + f(x + h).
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In §2 we justify this for the special case » =1 in a more general
setting. Even this has many applications, e.g., the characterization of the
function classes

(MK =l =Kn*n=12,..} (0<a<l),

where the K, are the Kantorovich polynomials, as well as other problems
concerning Kantorovich type operators. Finally, in the last section we
briefly discuss the analogous problem in the C-metric.

2. As we have already mentioned, Ditzian’s result is complete when
@ behaves like x* (a > 0), however his “modulus of smoothness” is rather
complicated and the case of an infinite interval or an infinite singularity at
the endpoints is not covered. Ditzian also showed how the general case
can be reduced to that where ¢ has no singularity inside (a, b).

We want to estimate

(2.1) K(tz’ f) = inf (”f‘ 8l Lrapy T t2“(PZg””LP(a,b))

g’ abs. cont.

by norms of second differences of f which contain the function ¢ itself
and not another one of the same order. This will cause several problems,
but it turns out to be very fruitful in applications.

Since a linear substitution brings (a, b) to either (0, 1), (0, c0) or
(— o0, 00), we may suppose (a, b) is (0, 1), (0, o0) or (— o0, c0). We also
assume ¢ is positive and twice continuously differentiable on (a, b). We
need further assumptions on ¢ around the endpoints, which we give for
a = 0 and b = oo with the agreement that similar conditions hold around
b =1 or a = —o0. Thus, we suppose:

(1) @ is convex or concave in a right (“left”) neighbourhood of a = 0
(b= o0);

(2) there is a constant C = 2 such that in these neighbourhoods

(1/C)p(x) = @(y) = Cop(x) forx <y =<2x,

and

()= 2 g = C"”if)

are satisfied;
(3) furthermore, if ¢ is concave in the mentioned neighbourhood of

def
a =0 and o0 + 0) = lim, _g4+09(x) =0, but p(x)/x - 00 as x - 0 +
0, then there is a y < 1 such that ¢(x)/x” decreases in a neighbourhood
ofa=0.
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For the sake of accuracy we give the analogue of (2) atb = 1:
(1/C)p(x) =¢(y) = Co(x) for (1 —x)=(1—y)=2(1-x),

)= B g = o2
(1-x)*

For example our assumptions are satisfied for the functions
x*(log(1 + | x])?, x*|log x |, x*(1 — x)? provided that at the second one
a#* 1whenf8>0anda=0.

Let us agree that K denotes a constant not necessarily the same at
each occurrence, but C, C;, 4 and 4, always denote the following
constants:

(a) Cis as in (2);

(b) A4 is the constant in

1
1 v = A G s + (0 = @I ey )

valid for alla’ < b/, f, f” € L?(a’, b’) (see [6, Lemma 2.1]);

(c) 4, = 2 and, for p > 1, 4, is the constant in the maximal inequality
(A4, =205p/(p — 1))?; see[14, p. T]);

(d) finally, we set

(2.2) C = 48C"AAP.
Let ¢ be a twice continuously differentiable function on (0, co) with
_ 1 ifx=1,
(2:3) 1P(")_{o if x =2,

and 0 = y(x) =< 1 otherwise. We may assume C is so large that |{’'|< C
and |¢" |< C are also satisfied.
For small 2 > 0 let

(2.4)
h* = inf{x|x — he(x) >0} when (a, b) = (0,1)or (a, b)
h* = inf{x|x + ho(x) <0} when (a, b) = (—o0,0);

(0, 00),

furthermore

h** = sup{x|x + he(x) <1} when (a, b) = (0,1),

h** = sup{x|x — ho(x) >0} when (a, b) = (0, ) or (—o0, ).
By our assumptions ¢(x)/x is monotone around the endpoints; hence for
small 4, x = ho(x) € (a, b) when x € (h*, h**), and, for (a, b) = (0, 1)

or (0, o), (h*, h**) is the largest interval with this property. We also have
ho(h*) =|h*| in every case, ho(h**) = h** when (a, b) = (0,0) or
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(— o0, ), and he(h**) = 1 — h** when (a, b) = (0, 1), provided A* and
h** are finite, respectively.
After these preliminaries we define, for small ¢ (see (2.2)):

Qo(f, 1) = Qo) = sup ”Azh«pf”LP((C,h)*,(C,h)**)’

o<h=t
QO(¢) = sup ||A2hf“L1’(h,2(C,h)*+h)’
o<h=r*
Q"(r) = sup “Azhf”LP(Z(CIh)**—l—h,l—h)’
o<h=r*
) =
29(1) ‘ = o )
2(-—151/2) |)
Tff( )( 5 | du ,
LP(1)

where i = Q0 or 1, I, = (0,2(C,2)*), and I, = (2(C;¢)* — 1, 1). Finally with
the agreement [° f = [Z% f = 0, we put

Q1) = NN Lo, /2,00y
Q1) = NN Lr—o0 2¢ci0y%)

(note that 2 and Q" (j = 1,2) are the same conditions around a = 0
and b = 1, respectively).

Setting
5 — 0 ife(0+0)=0,
° " 11 ife(0+0)>0,
5 — 0 ife(l—0)=0,
: 1 ife(l1—0)>0
and

0 if lim ‘L(f‘—)‘<

X—+ 00 X

O = ?(x)

1 if lim ——‘:

X—-*00 X
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we can now define for small ¢, say 0 < ¢t < 7,,, our moduli of smoothness:

w(f, 1) = 8(0) + (1 = 8)200(1) + 58(1)
+ (1 —8))Q"(z) + 6,2(z)
when (a, b) = (0,1);
w(f, 1) = Qolr) + (1 — 8)Q(r) + 8,QP(¢) + 8,98(¢)
when (a, b) = (0, 0);
and
w(f, 1) = Q1) + 8,.90(2) + 6_ 05 *)(¢)

when (a, b) = (— o0, );

and for these we have

THEOREM 1. Let @, K(t, f) and w be as above. There is a constant K
independent of f € L?(a, b) (1 = p < ) and 0 < t < t, such that

(1/K)o(f, 1) <K(¢?, f) < Ko(f, 1)
holds.

REeMARKS. (1) If there is a constant K > 0 such that for A* < x < h**
we have 1 = ho’(x) = K, then we can write

Q&(¢) = sup ”Athaf”LP(h',h“)
O<h=t
rather than (7). Also, in lieu of 2{”(7) and Q{"(¢) we can always write
QrO(r) = sup |14 HMrone

O<h=r*

and

QO(t1) = sup ”A2hf”L”(é,l——h)
O<h=r*
(£ € (0,1) is fixed). The estimate of Theorem 1 holds just as well. Both of
these statements follow easily from the proof below.
The above remark enables us to write convenient bounds at the norms
in the applications, e.g. if (a, b) =(0,1) and ¢(x) = yx(1 — x), then
h* = h%/(1 + h?), h** = 1/(1 + h?), but we shall write

_ 2
w*(f, 1) = sup ||A2hq;f||u(h2,1—h2) + sup ”Ahf”LP(h,l—-h)

O<h=t o<h=<i?
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rather than w, and the estimate
(1/K)e*(f, 1) = K(2?, f) < Ko*(f, 1)
holds just as well as in Theorem 1.
(2) When (a, b) = (0, 1) and ¢(x) = x (a > 0), then we obtain (1.1)
for r = 1 (see also Remark 1). The case r > 1 remains open.
(3) Q)(¢) and Q{=*)(¢) are not true moduli of smoothness. They

simply measure the growth of f around the endpoints (for the sake of
clarity we remark that in Q{,

1) = g o) d = 2LV = 1) a

is the “orthogonal projection” of f onto the set of the linear functions, i.e.
{, is the only linear function for which

l,(t)dt = t)dt and () dt = | tf(¢)de).
Juoydi=[£0) fa e de= [ () )
We mention two corollaries which are by no means trivial.

COROLLARY 1. If @, and @, are two functions satisfying our conditions
and if @, and w, are the corresponding moduli of smoothness, then
¢, =< Ko, implies

wo ([ 1) =K, (f, 1)  (0<t=1,)
for all f € L?(a, b) with K, independent of f and t.

COROLLARY 2. w( f, At) < KNw(f, t) for A = 1 with K independent of
A=1,feLP(a,b)yand 0=t =<y,

Proof of Theorem 1. First we show that K(¢2, f) < Kw( f, t).

(I) The case (a, b) = (0, 1). It is enough to prove that for f € L”[0, 1]
and (support f) C (0, 3/4), we have K(t?, f) < Kw( f, t) (see [6, p. 310)).

(a) First let us suppose (0 + 0) = 0, ¢ increases and ¢(x)/x de-
creases in the interval (0, d) and lim,_ 4.0 @(x)/x = oco. In this case
0, = 0 and A* > 0 for all & > 0 (see (2.4)).

We show the existence of a function f, for which

(2.5) W= fllerqe,nras + tzll‘szz"“LP((C,:)*J/S)

12C3A

Ko(f,t)+ LK(e2, f)

1

provided ¢ is sufficiently small (here K is independent of f and 7).
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We may suppose 0 <t < 1/8. For the function
(2.6) f(x)= fduf x +op(x)) + f(x —op(x))) do
we have (see Minkowski’s inequality in [14, p. 271])
= Blirccararm =5 [ [ 1850 L nqcerasm do = o(£.1),

and a simple calculation shows that, with ¢ = @(x),

o (x) = (29”9 + 69 )(f, — )
+ (99" — 4¢') fA f(x) d
@A f(x) + 1720, f(x)

+ zt(f Ot[f(x +19) — flx — 1)

—2f(x + up) + 2f(x — ue)] du

Hence, using the fact that for (C,#)* < x < 7/8 and sufficiently small ¢
we have, by o(y) # O(y) (y - 0),
PP o i (L1121 TG §
(Clt)*z (Cl[)z t2>
we obtain from Minkowski’s inequality

2 2407
N N Lecey 778

5 pt
2,-2 _ 2
=1 {SHft e a8 T 7_/(;[|Auga||y((c,u)*,7/8) du

+4%, f ||LP(<Clr>*,7/8)}
HIA I Lo a8 + B(S)
< 15w(f,t) + B(f)

where

B(f)=

f(x + 1) — f(x — 19)

—2f(x + up) + 2f(x — ue)) du

L"((Cxt)*ﬂ/?‘).

Let g € L?(0,1) be a function the derivative of which is locally
absolutely continuous with ¢?g” € L?(0, 1). Clearly,

(2.7) B(f)=B(f—g)+ B(g)
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and

B(f-g)=2( swp |¢'(x)])

(C)*=x=<7/8

X 61 supl|( f— g)(- +“‘P)”LP((C,:)*,7/8)

YES
(P((Clt)*)

<2120
1

Nf— gl

4C
STHf gllzr

where we used the fact that for the substitution p = x + ug(x) we have

(2.8) do=(1+ u¢'(x))dx = (1 - tc%) dx
C 1
(1 —~C—l) dx Zidx

when |u|<t¢,  =x > (C;t)* and ¢ is small enough. Also, for small ¢,
7 = x> (Ct)* and |v|< tp, we have

x+02x(1 —tﬂ(xx_)) Zx(l _tq)(((é;t)i*))

t X
11— ===
( Ct) 2’

x+o=<x(1+19(x)/x)=<2x,

and, hence, by Taylor’s formula,
t
lfo(g(x + t9) — g(x — t9) — 2g(x + up) + 2g(x — ug)) du
=| [5(x)arp — 4up) du
0
t 14+ —tp
+ to —v)g’(x +v)do— —tp —v)g’(x +v)dv
L9 =o)g"x+0)do — [""(~19 ~ 0)g"(x +0)
ug
—2[ (up — v)g”(x + v) do
0
—up
+2f (—up —v)g"(x + v) dv} du

i<t (pz(x +v)

< 6t3q>2( max ) ¥’g”;
=6C’M(9’g";x) (3

=x = (C)*),
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where M( g; x) denotes the maximal function of g. This and the maximal
inequality give, for 1 < p < oo and small ¢,

@9)  Blg)=2-6c%(  max  19(0)I)IM(e%g s

<124 t3———‘p(((ci)i )H 2"

< 12C%4,C7 '1|9%8 | -

llz»

Forp =1,

iuq)

(xup —v)g”"(x + v) dvdu

ol |
B b=t @?(x + v)

= Clpp~? j;dufo P (x £79)|g"(x £ 19)|@dr

f+ "9 (x + 0)|g"(x + v)| do|du

= [ '(1 = r)g(x = 19) 8" (x = r9) | d7
0
= 22 ‘G (x = 1g) |g"(x = 1) | dr,
0
and so, by Taylor’s formula,

2.10) B =2-6C%*? !
(2.10) B(g) (o max 19'(x)))

X max
*

[#(x=9)1g"(x = r9) | dr

L'(C\1)*,7/8)
7/8
< 12C3C,~'tftf (@?1g” 1) (x = 79(x)) dx dr
0y
<24CCT 9% s

where at the last step we used (2.8).
By (2.7), (2.9) and (2.10)

B(f) = 12C°A,C7M I/ = gl + 19°8" .o )-
Taking on the right side the infimum over all possible g, we obtain
B(f) = 12C3APC1"‘K(t2, f)

for all sufficiently small ¢, and (2.5) has been verified.
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For the function
/2

f*(x) = ﬁ; f(;/ f(x+u+v)—f(x+ 2(u+v)))dudv,
t*
we have, for small ¢ (see e.g. [6, pp. 319-320)),

W= 7N v accynm = w(t) (= wl(f, 1),

and since in our case @(x)/x" decreases around x = 0 for some y < I, we
also have

tZH‘szz*”“z,f'(o,z(clz)*) = tzq)z(z(clt)*)”f;*””LP(O,Z(C,t)*)
< CPQ*((Cy1)*)(1*) (1)
((€n)?) )W—”)

= a(e) Pl |l I
< (1) u(1)g? (cltw(tﬂ )‘/“”)
(%)’

= (1) w(1)@*(Cl/0r¥)
< K3 (1) (1)@ (1*) < Kw(1);
hence

(2.11) W= F* N ro2cc,m T IZH‘sz;*N”LP(o,z(Clz)*) = Ko(1).

Now if ¢ is the function of (2.3) and
g(x) = $((Cy)*x) fx(x) + (1 = $((C,1)*x)) £(x)

(let £,(x) = 0 for § < x < 1), then from (2.5) and (2.11) we obtain (using
[6, p. 310))

2 12C3A1,2AC3 5
INf— 8llLrony T2 llp7g; “L"(O,l) =Ko(f, 1)+ _——‘é—l_——K(t ) f)7
by which (see (2.2))
K(t*, f) = Ko(f,t) +1K(%, f),

and the proof is complete.
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(b) If @(x)/x increases in a right neighbourhood of x =0 or if
@(x)/x is bounded there, then h* = 0 for small £, and for f, as in (2.5) we
have, for small ¢,

W= flleron + t2||q92fz"||Lf’(0.7/8) =Kw(f,1)

(see the above proof).
Finally, if ¢(0 + 0) > 0 we can also argue as above, except we must
use the linear function

L (12x = 6]1)) 11|
o) = gy ) du ot SR = e
1=1(0,2(Cy1)%)

rather than f* (for £** our assumption gives

1= £ oy NP N oy = 1 = ¥ Loy = (1))

(IT) The case (a, b) = (0, ). Here we must show that for f € L?(0, o0)
and (support f) C (1, c0), we have K(12, f) < Kw( f, t) (see (I) and [6, p
310]). If ¢(x)/x is bounded as x — oo then h** = oo for small 4 and the
proof of (I)(a) holds here also (even f* need not be used). If, moreover,
@(x)/Xx = o0 as x — oo then A** < oo for all 4. By the method of (I)(a) it
can be proved that

W= Flleea jaqceysy T tzll(pzf;”“L"(l/2,(Clz)**)
=Ko(f, 1) +6C4,C'K(¢2, f),

and since we also have

WA Lrqcioy= /2.0y = w(f, 1),

the proof can be completed as above.
The case (a, b) = (— o0, o0) can be treated similarly.
We now turn to the proof of w( f, t) < KK(t?, f). The estimate of

Qo(f, 1) = sup HAzh(prL”((C,h)*,(C,h)**)

O=h=t

is standard: Let g, be chosen so that it satisfies

(2.12) 1f = &llircany T 121978 M Loy = 2K(22, f).
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Considering (2.8), which holds for (C,¢)* = x < (C,t)**, we obtain, for
p > 1 from the maximal inequality (see also the considerations above),

ﬂO(f’ t) = QO(f_ gn t) + Qo(gt’ t)
=8|f— gt“L"(a,b)

ho/2
1

2
— p(tuto)
~he/2 (Pz( +u + D)

+ sup

O0<h=t

x|g/(-+u+ v)|dudo

LP((Ch)* (C1h)*™)
— 2 ’”
=38|f— 8llLrca,py T Kle 2(/1(;0) M(q)zgr ; ')”LP(a,b)

< K(I1f = 8l Lrasy T 219°8) N Lrary)
< KK(?%, f).

For p = 1 use Fubini’s theorem (also compare (I) and [6, pp. 317-318])).
Around the endpoints the smoothness of f is also measured by other
terms. We shall estimate these only at a = 0 or b = oo since the cases
a = —oo or b = 1 are similar.
The term

QO(f,1)= sup ||A2hf“LP(h,2(c.h)*+h)

O<h=r*

occurs when ¢ is concave in a right neighbourhood of a = 0, (0 + 0) = 0
and lim,_ 4, @(x)/x = oo. By our assumption in this case, ¢(x)/x" is
decreasing around a = 0 for some y < 1. Forx < &,

x+h/2 x+h/2 y2v B
/ dqu ———u' "2 dy

@*(u) x ¢*(u)
K ?2‘)’ fx+h/2ul_2ydu
@*(h) /s
h2y h2

2-2Y «

=kem" T em)
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so the Holder inequality gives, for 0 < h < *,

{/c;h fx+h/2(x —u)g/(u) dupdx}l/p

{ h( x+h/2 Z(u)lg,"(u)lq)zl(lu)du)pdx}w

nl h 2"/" x+h/2 7
SK{O(q)(h f l9?(u)g; (u) F o )dudx}
/
sdh) o) 187 () 1) )
())IIQD2 N Lrca,b)
=< Kt*||g’g; Nerca,py-
This and (2.12) yield
QO(f,t) <KK(%, f),
exactly as in [6, p. 318].
If a = 0 and (0 + 0) > 0 then we have to estimate
1|72 1
WWﬁ=Wq”ﬁ BV fyioy(e— Y ar)
II' L2(])

where I = (0,2(C,2)*). Let us consider the function g, from (2.12). Since
g/’ € L\(I), we may assume the continuity of g/(x) at x = 0, i.e.

gwh¢@+[mww

Using Hardy’s inequality ([14, p. 272])

(2.13) “%/Xh(fr)dv

0

= '—_‘ h P 0 >1
Lo P — 1” 20,00 (p )
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and the fact that ¢(x) < Ke(u) for u < x <|I|, we obtain, for p > 1,

¢*( 1))

1P ——=llg.(x) — &/(0) ——g,’(O)xHLp(,)

<2 [T () - gi0) 1 n

L(I)

2
o'(x) [~ .
= K| [ 8 (w) | du

LI

1 * 2 ’” 2,17
<Z —_— <<
=K xj(; ' (u)lg, (u)|du L = K|l9g, lerca,n-

For p = 1 we obtain, similarly,

o*(|1))
1P

< ulll)fmff |g”(u)| dudy dx

< (1)) fo |g~<u>|dus1<f0 o> () |g” (u) | du.

“gz(-x) - gt(o) - gt’(o)x”L’(l)

Now @*(|1))/|I* = Kt~ ?, hence the two previous estimates can be written
as

QP(g,, 1) = Kt19°8/" | Lo(a,py>
SO
QO(f, 1) =QP(f— g, 1) + 2P(g,, 1)
=K(If = &, + ©*le’ll,) = KK (12, f).
Finally, for b = o0, ¢(x)/x = o0 (x = 00) we have to estimate

U(f, 1) = NN Locieyes /2,009 -

Since g,, 8" € L?(1, ), Stein’s inequality ([13]) gives g, € L?(1, o).
However, g, is uniformly continuous on (1, c0) (take into account that
¢’g’ € L?(1, ©)), hence lim _ . g/(x) = 0. Similarly, lim,_ ,g(x) =0
and we obtain, from Hardy’s inequality ([14, p. 272])

[”h(f)dT

X

S17||Xh(x)||u’(o,oo) (p=1),

(0,00)




INTERPOLATION AND APPROXIMATION 461

that for small ¢,
@’ (3(Cit)**)
(7(C1t)* )

Spf S )

< (Pz(x) g/(x

I t||LP((c,t)**/2 0)

LP((Cy1)**/2,00)

LP((Cy1)**/2,00)

<p|[ 2—1(;—2!&” u)|du

X

LP((Cyt)** /2,00)
22
=plle gx”HLP(a,b)’

where we used the fact that ¢ is convex for sufficiently large x (¢(x)/x —
oo!), hence @(x)/x increases for large x. Since

P(3(Cr)**)/ (J(Co)*) = Kke™> (K >0),

it follows that
ng)(f’ t) = ng)(f_ &> t) + ng)(gn t)

=|f— &llerapy Ki?||p’g N Lrca,n
< KK(1*, f),

and the proof is complete.

In applications it will be important to supplement Theorem 1 with an
estimate of K(¢?, f) by the second difference 43, f alone. Keeping the
above notation let

o(t) =o(f, 1) = sup ”Ahqnf”LP(h* B**)

0<h=t
and for this we can prove

THEOREM 2. With the assumptions of Theorem 1 let @ have limit zero at
finite endpoints of (a, b) ((a,b) =(0,1) or (0, 0)) and let p(x)/x be
bounded at infinity ((a, b) = (0, 00) or (— o0, ©)). Then there is a constant
K such that

..._.v t <
(f,)= = fo
holds for all fand 0 <t <1t,.

Specially, K(z%, f) = O(t*) and v(f, t) = O(¢+*) are equivalent for
a>0.
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REMARK. Our comment concerning the bounds in the norms in
Theorem 1 applies also to Theorem 2.

Proof. By Theorem 1 and Remark 1 we need only prove that
©) ’U( f,7)
QO(r) =K j(; — d

when f € L?(0,1), (support f) C (0,2) and ¢t* >0 for > 0 (take into
account that by assumption in this case there is a y <1 for which
@(x)/x? decreases in a right neighbourhood of x = 0; thus ¢'(x) <
Yo(x)/x thereso 1 — ho'(x) =1 — hyp(x)/x =1 — v (x = h*), and we
can apply Remark 1).

Let

K*(tza f) = irglf (”f_ g”L"((Clt)*J/S) + tzl'q)zg””L”((C,t)*,?/S))

be the incomplete K-functional. By the proof of Theorem 1
(2.14) K*(e*, f) < Ko(f,t) + B(f)
(see (2.6)—(2.7)) and, since

X p(x0) = (Ca) = - (Cl(C)) = ( - C%)(clz)*

z%(clt)* Z(Clé)* (x =(Cyt)*)

(the last inequality comes from (2.4)), we obtain, as in the proof of
Theorem 1,

B(f) = 12C°4,C7 (I = &llioqcyyararm + 2198 Wircusnrars) s
and, together with this,
B(f) =48C°4,C,'K*((1/2)", f).
This and (2.14) yield (see also (2.2))

K*(t*, f) = Ko(t) + ;K*((E) f)
<ifutn+ dof4)

+ 2n1+11<*(( 2,1{“) ,f) < Ko(1),

where we used the fact that K*(¢, f) <|| f]|,, for all ¢.
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Now
t* = tp(t*) < tp(x) for x = (Cyt)*

SO
) 2
1gf(||f"‘ g”L"((Clt)*J/S) + t*zng"“LP((c,z)*J/S)) = K*(t > f) = Kv(t)

is also satisfied and this easily implies
(2.15) ||A2t*f||LP((C,:)*+:*,7/8—:*) < Ko(1).

By the assumptions on ¢ there is a y <1 such that ¢(x)/x” decreases
around x = 0, and for this y we have

2(e%)' 7 = 26( (%) / (1*)7) = 2e(@((20)*)/ ((20)*)")
= ((21)%)',
(22)* < 21/,

This, (2.15) and the continuity of the mapping ¢ — ¢* imply there is an L
and a K such that

2
sup | A% fll Locinass—ny < Ko(t)

h=r*

forallty =t =0.
Since
2 211 A2
|| A%, f”L"(c,d) =n ”Ah/n f”LP(C—h+h/n, d+h—h/n)>
one can easily get from the previous estimate that

(2.16) SuP||A2hf||LP(2h,3/4) < Ko(t)

h=<r*

also holds with K independent of small ¢, say ¢ < ¢,,.

Now let
(2.17) w(r) = 5“13 “Azhf”L”(h,l/z)‘
<r*
Since

N f(x) = Azh/zf(x - g) + 247, f(x) + Az,,/zf(x + g)
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it follows readily from (2.16)—(2.17) that
w(z) =w(z/2) + 3 sup 1147 2l L3 4

=w(t/2) + Kv(t).

Iterating this and taking into account that f € L?(a, b) implies w(t/2")
= o(1) (n » o0), we obtain

w(t) <K g (——)SK/O'U—(TQd

and the proof is over.
3. As a first application let us consider the Kantorovich polynomials

f(k+ 1)/(n+1)

Kf)= 3 [0+ 1 fu) du)p, (x)  (0=x=1),

k/(n+1)

where

Pusil(x) = (Z)x"(l —x)"*%,  0<k=n.

These can be used to approximate a function f € L?(0,1) (1 =<p < o) in
the L?”-norm and the saturation properties of this approximation were
settled by Maier [9, 10] and Riemenschneider [12]. It has been an open
problem for some years to characterize those functions f for which
K, f—fll.,=0(n %) (0<a<1) (see [2, 3, 4, 5, 7]). We solved this
characterization problem in [18, 19] and now we give a somewhat different
characterization by the aid of Theorem 1. This new approach can be
applied to other operators (see the subsequent sections) and it treats the
cases p =1 and p > 1 simultaneously (our earlier method was very
different in these two cases, compare [18] and [19]).
Let (x) = yx(1 — x),

D = {g|g € L?(0,1), g’ absolutely continuous,
x(1 —x)g"(x) € L?(0,1)},
and
Sg(x) = (x(1 — x)g"(x), g(x)),
ISgll, = llo’g “Neeo,ny T 18l e, -

Then D C L?(0,1) is a linear dense set and S: D — L?(0,1) X L?(0,1) is
a linear operator. We set

(3.1) K(r*, f)= igf(uf— gll, + (gl + le’g”1l,))
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and notice that this K differs from the K functional (2.1) associated with ¢
only by #?||gl|,. Since in (3.1) we may assume ||g||, < 2|| f||,, we obtain
that K(¢%, f) = O(t?>*) (K from (3.1)) and K(¢?, f) = O(¢**) (K from
(2.1)) are equivalent for 0 < a < 1. If we show that

(32) \K.f—fll,=Kn"ISfl, (fE€D),
(3.3) ISK,(fll, = Knl| fll, (feLr),
and

(3.4) ISK, (I, =KISfll, (f€D)

are satisfied with a constant K depending only on p, then a result of
Grundmann [8] shows that, for 0 <a <1, ||K,f— f]|, = O(n™%) and
K(t%, f) = O(1*®) are equivalent. Combining this with Theorem 2 and
the following remark, we obtain

THEOREM 3. Let 1 < p < 0,0 < a <1 and p(x) = |x(1 — x) . Then
for a function f € L?(0, 1) we have

K, f—fll,<Kn"® (n=12,...)
if and only if
(3.5) A% fll Loghz 1 -2y < KR*® (B >0).

Proof of Theorem 3. (3.3) and (3.4) can be proved by a direct
calculation (see e.g. [17, 18]), so we justify only (3.2), the strongest of the
estimates (3.2)-(3.4).

First we show that

(3.6) I, =KiIsfl, (f€D).

Let fi(x) = f(x)¥(3x), where ¢ is defined in (2.3). Since f(x) =
F()Y(3x) + f(x)(1 — ¥(3x)) and || 1l r(1 323 = KIISFIl , (see [6, Lemma
2.1]), by symmetry it is enough to show || f{ll.»,1,3 = KIISfll,. If h €
L90,1) (1/p+1/q=1) with compact support in (0,3/4), then an
integration by parts gives

(3.7) U:f,’(x)h(x) dx] =|f0'f;'(x)(f0xh(r) d’T) dx

1
@*(*)

=< Kllo*fl Al

2
=leA'l,

fo'h(T) dr

q
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where at the last step we also used the Hardy inequality (2.13). Since
h € L90, 1) and (support k) C (0,3 /4) was arbitrary, (3.7) yields

||f1’”p = K“‘P2 1"”,; = K“q)zf””LP(O,l/3) + (max]z,b” |)||f”u(1/3,2/3)
+ (2 max|¢/|)I|fl||LP(1/3,2/3) + ||(P2f”||LP(1/3,2/3)
= K|S,
by which (3.6) is proved.
Now let

B,(fi%) = B,f(x) = 3 /(%) pulx)
k=0

be the nth Bernstein polynomial of f. By (3.6) and Jensen’s inequality (put
f’ = 0 outside [0, 1]),

K, f— B,fll,
” n k/n r4
= 2 ( (n+ l)f(kﬂ)/( T ff'(E +v) dvdu)Pn,k(')
k=0 k/(n+1)—k/n 0 n »
" k
= n + 1 ( ) ( D) dv, n :
[ o ; 7o)
1/p
Kl mnZ i/n| [k s
= ;{f 2 ((n + 1)f~1/nf(;‘_ + v) a’v)pn‘k(x)dx}
- K
< X1, = Zusn,
where we used the equality
fpnk(x n-|~1 (1<=k=n).

Hence it is enough to prove that for f € D we have

(3.8) 18,7 = 11, = SIS/,
By Taylor’s formula
f(t) = f(x) + f(x)(t = x)

" %fot_x (x +t’r;(1x:):— T) (x + 7)1 —x—7)g"(x +7)dr.
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Now forr € (0, t — x), t, x € (0, 1), we have
|t — x|
~ x(1—x)’

so, since B,(t — x; x) = 0, it follows that

| B, f(x) —f(x)l

REEE

[ (x4 —x =) |f(x +7) d’r;x).

For p > 1 we use the maximal function M(-) and the maximal

inequality to obtain
( ( — ) ( 2 f// . ) .. )
n (p ,

1B/~ 1ll, <
K
- §||M(qof"; Ny = s ll, < SISA,.

where we also used the fact that

B,((t—x)*;x) = x(1 = x) (x €[0,1]).

n
For p = 1 Fubini’s theorem yields (put p, _, =0)
“B f_f“L'(O 1/2)
172 |k/n — x|| rksn y
2'/ { ox(l——x) f u(l —u)lf (u)ldupnk(x)}
n k _ .
= '/(‘)1{’(;0 %__' '/:‘/ u(l — u)]f”(u)]du pn,k(x)} dx
_ fol{kgo ([0 ) () du)pn’k(x)} ix
= _/:{/EO k/#i(/(’)k/"u(l - u)lf”(u)ldu)pn‘k(x)} dx

[()"/"u(l - u)|fl'(u)ldu)j(;l(p,,_,,k_](x) (%)) d
fo‘"(l B u)lf"(u)ld”)(l T :L 1)

n

IA
M=

A similar estimate holds on the interval (1, 1) and the proof is complete.
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4. Generalizations. The method of the previous section solves the
characterization problem for more “wild” operators than the “regular”
Kantorovich ones; furthermore it enables us to give general direct and
indirect estimates for the order of Kantorovich approximation (cf. [11]).

First let us consider the operators

K= 3 [ [ M) (xelo.n),

k=0 lIn,kl I, «

where {1, ;},-12 .o=k=n 15 @ system of intervals C [0, 1] with centers at
the numbers {x, ,},-1, .o<k=n. If we assume:

(i) for each n {x,,}7—, constitutes an arithmetical sequence (i.e.
Xpsr1 = 37X, T X, 442), kK =0,1,...,n — 2), and

(ii) there is a constant K such that for all » and &,

K 1 K
Ixn()ls_’ Il_xnnls_’ —-S]I kIS“’
’ n : n Kn "’ n

then K behaves similarly as K,, namely [|[KXf — fll 0., = O(n™%) is
equivalent to (3.5) (f € L?(0,1), 1 =p < 00, 0 <a < 1). An example for
K is the operator

7 (k+1)/(n+2)+1/2n+k)
Kif0) = 3 ((n+h) orarmes:
k=0 (k+1)/(n+2)—1/2(n+k)

We now turn to the estimate of || K, f — fll;».1)-

THEOREM 4. Let 1 < p < o0, f € L?(0,1), o(x) = yx(1 — x),
w(f,8) = sup (”Azh‘pf”LP(hz,lfhz) + HAzhzf”LP(hz,lfhz))

0<h=<éd
and E (f) = ”an_f”L”(O,l)' Then
(D)
E(f) =K, |e|f; =] + i/
W)= pl ¥ ’\/; n lLP(O,I)’

(i1) fory > 0,

1 1 Q- 1
w(f’ ———) = Kp~Yn1 Elk YEk(f) " KP’YF”f“p'

-y
k=

REMARK. If 0 <a <1 and « + y < 1, then we obtain from (ii) that
E (f)= O(n™*) implies

w(f; —1—) <Kn" 'Y kT *<Kn %

Vn K=
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hence Theorem 4 contains Theorem 3 (see Theorems 1 and 2).

Proof. (i) follows easily from the results of the previous sections: with
a suitable g

E(f)=<E(f~g) +E,(g)
< k(17— gll, + 5 (s, + o5, )|
< k(&3 7]+,

ol £; L
n

In the proof of (ii) let L be a constant for which
ISK, fll, < LISfl, (n=1,2,...)

is satisfied for every n and f € D (see (3.4)), M = L'/ and let k;, = k, , be
defined by

=K

1
+ ;ufn,,).

n n
— < ki =—), E = min E .
M™! M wlf) n/M <k<n/M' df)

Here i = 0,1,...,i,, where i, is the first integer with n/M"»*! < 1. Now
by Theorem 1 and (3.3)

1 1 1
Ew(f; —) =<K f) =1 = K1, + 118K, 11,

n
1
= B () + LUK = Ko (F, + ISK, K 11,

Kk
=E(f)+ TOEkl(f) + %”SKklf“p <...

i,—1

K"q' Lir
sE(f)+ - 2 LkE, (f)+ —ISK, 1,
i=0
i,—1
K" 4 KA1l L
SEkO(f) + n 2 A’;iL’Ele(f) + —n_p—
i=0
i,—1
K n\? n |
BN+ 3 1) e+ KoM,
K & (n\Y _
== 3 (%) B + Knr i1,
k=1

and the proof is complete.
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5. Let us consider the Szasz-Mirakjan operators

o k . _nx(nx)k -
S0 = 315 Jsusx) sul0) = e x 20

and their Kantorovich variant (see [17])
i (k+1)/n
52 = 3 (nf " 1(w) a5, 1)
k=0 k/n
Let p(x) = Vx,
D = {f|f € L?(0, ), f’ abs. cont., xf"(x) € L?(0, %)}

and

Sf(x) = (xf”(x), f(x)), ”Sf”p = ”(pzf””LP(O,oo) + “f“LP(o,oo)-
Exactly as in §3 it is enough to justify the analogues of (3.2)-(3.4) for the
verification of

THEOREM 5. Let @(x) =yx, f€ L?(0,00), 1 =p<o0, 0<a<l.
Then

ISy f = fll 0.0y = o(n™°) iff ||A2hqof“LP(h2,oo) = O(h*?) (h—0).

Proof. Again we prove only

K
(5.1) I1Sxf = fl, =—Isfll,  (f€ D)
(see also [17]). Using Stein’s inequality ([13])

18 ey = KYIEINE I, = K18l L7000y T 11871 Lr0.00))

the inequality || /||, = K||Sf]|, can be shown as the analogue (3.6) in §3.
This reduces (5.1) to

18,/ = ll, <2187, (/€ D)

(see also §3), the proof of which coincides with that of (3.8) when p > 1.
The case p = 1, however, requires a finer consideration, which we give
below. By the method of §3 the problem is the estimation of

sl .

[o¢]

(5.2) /Ow{ e KOIL

k=0
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Here

N

and since the terms under the integral sign are non-negative, we can write
(5.2) as

S oo
ZE(fO [ (u )I(fﬂr—l——,,'k(x)dx)du

[ ([T e )
= [T s ol) d d

+ /21 (fok/n +‘/:n)u|f”(u)| ('/(;MI—CZ—’;—*—XS"',(()C) dx) du,

where at the last step we used the fact that

) o

k

a—sn.k(’x) = sn,k—l(x) (k=1)

and

/ sn,((x)dx:l (k,n=1,2,...).
o n

Since [y‘[(k/n — x)/x]s, ,(x) dx increases for u < k/n and decreases for
u = k/n, furthermore [;°[(k/n — x)/x]s, ,(x) dx = 0, we have

X

[ (ax=0  (u=0).
0

Taking into account that, for fixed u, (k/n) — x is non-negative for x < u
and large enough k and that

S k/"———xs k(x):—o—_—{sno—FSn(t—x;X):S o(x),
k=1 * " * ‘ .
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we can continue the above equality as

L w1 f s olx) dx )
+f ulf"( u)}f( °° k/n Spx(x)) dx du
=/0 ul f( u)|/0 Suo x)dx
1o
T RUARIEE

and the proof is complete.

6. Let
0= 3 1[5 st

b, (x) = (”*i* l)x"(l Yx) " (x=0)

be the nth Baskakov operator and

Ve = 3 (" ) du o)

k=0 k/n

1ts Kantorovich-variant. For this we have

THEOREM 6. Let p(x) = m, I=p<wand 0 <a<1. For
an f € L?(0, c0) the statements
VS = Ml Lro.ey = O(n7°)
and
18 Ml Lont o) = O(R?%) (B = 0)

are equivalent.

Proof. We follow the arguments of the previous points. Since the
analogues of (3.3) and (3.4) for the operators V* can be proved easily (the
computations are very similar to those in [17, 18] — see also [16]), we need
only consider the estimate

WVof = Meroe =57 HSfll (f€D),
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where
D = {f|f € L?(0, ), f’ abs. cont., x(1 + x)f"(x) € L?(0, «0)},
Sf(x) = (x(1 + x)f"(x), f(x))  (f€D),
and
ISA1l, = N9*f " 120,00y + 111 20,00
By Taylor’s formula
f(6) = f(x) + f/(x)(t = x)

t—x t—x —17 "
+f0 (X+T)(1+x+7)(x+r)(l+x+fr)f (x + 1) dr,

and here for r € (0, 1 — x),

(6.1) (x +t'r_)-(lx-:):+ )
A= x| fort=% orx=<1
x(1 + x) 2 ’
xl(tl_-i—xxl) ((11::)) for0<r<7,x>1.
Thus,

|V, /(%) = f(x)|

SKV,,()EZ—I__%)C—) max(l, llj_f);x)M(t(l +1)f"(1); x)
<2 M(¢f"; x),

where M(-) is the maximal function, and where we used that V(1 — x; Xx)
= 0 and, by [16, Lemma 4],

(t— x) ( 1+x)_ _k
V"(x(1+x)max LIsr ) *) =a
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Thus, forp > 1,

K . K
WV, f = fll, < UM(*5 N, < HISA,-

Forp = 1let

[nx/2]

Ufx)= 3 S5 )b, u).
k=0

By (6.1)
[171x) = 1) +/°°| Vo /(x) = U f(x) = f(x)| dx
Ik/n = x| ,
_-Kg CE e [+ w1 (),

and the method used in the previous section shows the right-hand side is
at most (K /n)||Sf|,-
Thus it remains to prove

3]

or, by “f,”L'(O,oo) = K||Sf]l, (see §3),

2

k=0

K
bn,k(x)) dx = —ISfll

oo [ [nx/2]
1

[nx/2]
00 (k+1)/n K
62 [ X (n/ lf(u)ldu)b,,,k(x)dxs;uSﬂh.
1 k=0 k/n
The left-hand side is
*® (k+1)/n o
S (o @raa) [ b (e ds,
k=0 k/n max(1,2k/n)
and if we show that
[o0]
(6.3) f bnk(x)dxs—lsz (k=0,1,2,...),
max(1,2k/n) n

then we obtain the bound
(k+1)/n K
fk () | = 20,

for the left side of (6.2), which already proves (6.2) because || f|l 11 o) =
15711
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In (6.3) x = 2k/n, hence

b, (x)=(n+k—1)(n— l)x(n + z B 2))ck“(l +x)" 7k

n—1+k—1)

< 3n+k—1)k—(n— l)x)( i

Xxk~1(1 4 x) DT
= “3(’7 +k+ 1)(bn~1,/<(x))' (" = 3)’
so, with k = max(1,2k/n);

f:ob,,'k(x) dx < (n+k—1)b,_, (k).

By Stirling’s formula we obtain for k = [n /2],

_K_L"’__Hc_)_'fk_-]_(zlf)k< 2k)~n~k+|

(n+k— l)bn_l‘k(;c)sk/; g2 L+

2 k
(1+k/ (n+ k)"0 )

2 k
<K
ﬁ( (1+(n/2)/(n+ n/z))"’”/z’/‘"/z’)

1 n/2 _
SK\/—I;(m) <= Kn “,

sK\/;(

and, for 0 <k <[n/2],

(n k= Db,y 4(k) = (n + k= D" T EZ2pmmen

k
n
<fonfz] ) 18] e
n
n+n/2 3/2\ n
SKn(1+l/2) 2—n—n/2sKn((1+l/2) )
(172" 2

< Kn?,

because (n + k — 1)b,_, (1) increases for k =< [n/2].
We have proved (6.3) and, together with this, also Theorem 6.
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7. Finally, we sketch briefly the continuous case. Let B be any of the
Banach spaces C[a, b}, C[a, b), C(a, b] or C(a, b) with supremum norm
| Il In the first three cases we can identify B with the subspace of C(a, b)
consisting of functions having limit at a and b, at a, and at b, respectively.
This enables us to work on (a, b).

We keep the notations and simplifications introduced in §2. In the
continuous case we need one more assumption on ¢: if b = oo and
lim,_ . @(x)/x = oo, then there is a y > 1 such that ¢(x)/xY 700 in a
neighborhood of b = oo (naturally a similar condition must hold around
—o0 when a = —o0).

Forf € Blet

K2, f)= inf  (If = gl + lle’g").

g’ abs. cont.

We define for small ¢;

(1) = sup ”Ah(pf”C(h* B**y

O<hst

Q%(1) = sup “Ahqaf”C(3h*/2,2h**/3)’
o<h=:

szs”’(t)=“f—5|17i|fllf(u)du LY [ w151

b

)

wherei =0or 1, I, = (0,2¢*), I, = (2t* — 1, 1),
Q5(e) = sup  |f(x) = f(y)]

X, y=r** /2
and
Q(¢) = sup |f(x) —f(»)].
X, y<=2t*
With
_ [0 ife(0+0) <o, [0 ife(l1 —0)< oo,
T ife0+0) =0, ' |1 ife(l—0)= o,
and

0 it tim 2% < o
X% 00 Ix]

1 if Lm "’(x)zoo,

X+ 00 lxl
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we can define our moduli of smoothness as
w(f, 1) = Q1) + v QP(r) + v, (r)
when (a, b) = (0,1);
w(f, 1) = (1= v,)R(1) + v, 25(2) + vQ2(¢) + v, 25(¢)
when (a, b) = (0, 0);

and
(1) = (1 = 7)1 = v-)Q(1) + (Yoo T Yoo = Yor¥—00) 25(2)
F1,25(2) + v_ Q25 (1)

when (a, b) = (— o0, 0);

for these we have

THEOREM 7. Let B, ¢, K and w be as above and f € B. Then there is a
constant K independent of f and t (0 < t < t,) such that

1

?w(f, 1) =K(t% f) < Kw(f,1).

The proof is similar to that of [6, Theorem 3.1]. We omit the details.
Just for the sake of illustration let us prove the estimate Q$°)(7) <
KK(t?, f). The term 25 occurs in w when b = o0 and lim __ . ¢(x)/x =
co. By our assumption there is a y > 1 such that ¢(x)/x" increases for
large x, say for x = x,. Let g, be given by

If— gll + 2ll9’g/ |l = 2K(2%, f).
We have for § > x = x,,

W () g () | du =~
¢ —_— =
o*(u) ‘ u’ *(x)

1
(1) 1gix) —gl@)= [ o811

so @ has a limit at infinity. Since g, is bounded on (1, c0) we necessarily
have lim, _, ,, g/(§) = 0, by which (see (7.1))

lg/(x) = 2(x/@*(x))(K(22, f)/1?)  (x=x)
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Thus, fory > x = 1* = x,,

18(x) ~ 8,(0)1=| [ i(u) du
szK(t;’f) fy(p‘z‘:;)u‘—zvdu
< KK(’;, f) xt) fyu““du < KK(I;’f) qozx(l)
- KK(t;, f) (:Ztgt/*i); - KK(t;, f) qut:t)j)
= KK(2%, f),

1f(x) —f) =21 — gl +1g(x) — g(»)]
< KK(¢?, f) (x, y =1r*)

as we stated above.

Now let us apply Theorem 6 to the following positive linear operators.
Let 7, be any of the operators:

B,f(x) = éof(f)(Z)xk(l —x)"" recl,),

s, = 3 f(k)em il seclow),

V,f(x) = éof(g)(" TR0 fe o),

i1.e. any of the Bernstein, Szasz-Mirakjan and Baskakov operators (see [1,
15, 16]). We put

“’T(fa8) OS‘:’P ”Ahq:f“C(h21 —h2y> p(x) = x(1 _x)aTn:Bn’
<h<

wT(f’ 8) Osup ”Ah(pf”C(h2 0)? (P(.X) = ‘/;’ 7;1 = Sn’
and

wr(f,8) = sup I8 fllcernrwy,  9(x) = Vx(1+x), T, =7,
0<h=$é
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respectively, and for these we have

THEOREM 8. Let T, and w = wy be as above and E,(f) = E(f) =
If = T, fll. Then
@

(i) for v >0,

w(f, —) <K 0 S kE(f).

k=0

COROLLARY 3. ||T, f — fll = o(1) if and only if w( f, 8) = o(1) (6 — 0).

COROLLARY 4. For 0 <a <1, [T, f— fll= O(n %) (n > o0) if and
only if w(f, 8) = 0(82%) (8 - 0).

REMARKS. (1) When 7, = B, Corollary 3 is simply the statement
|B, f — fllcrony = o(1) for every f € C[0, 1]. However in the cases T, = S,
or T, = V,, Corollary 3 characterizes those bounded functions for which
T, f(x) — f(x) = o(1) uniformly on the positive real line (see also [15,
16)).

(2) For T,, = B, Corollary 4 was also proved by Ditzian [6].

(3) Since, e.g.,

sup |18 fllcirromy = KR2®,  @(x) = /x,
o<h=<§d

is equivalent to
9**(x) |&(f, x) I Kh**  (x =h),
we obtain that S, f — f = O(n™%) is equivalent to
x*|f(x —h) —2f(x) + f(x + h)|< Kh*>*  (x=h)
(cf. [15])).

(4) The Meyer-Konig and Zeller operators (see [16]) could be treated
similarly.
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The proof of Theorem 8 uses Theorem 7 and the arguments applied in

§4, namely if we put

and

D = {f|f € C[0,1], f abs. cont., |x(1 — x)f"(x)|= K},
Sf(x) =x(1 —x)f"(x)  (T,=B,),
D = {f|f € C[0, ®), f’ abs. cont., | xf"(x)|< K},
Sf(x) =xf"(x) (T,=S,),

D = {f|f € C[0, x), f abs. cont., | x(1 + x)f"(x)|< K},
Sf(x) =x(1 +x)f"(x) (T,=V,),

respectively, then the estimates

and

IT, A< KIfll, IST,fil<Knllfl  (f€B)

1T,/ = Al < SUSAl. ST, Al<KISAl  (f€ D)

are satisfied in every case. We omit the details.

(1
(2]

(3]

(4]

B
(6]
(7
(8]

[

(10]
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