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HYPERGROUP JOINS AND THEIR DUAL OBJECTS

RicHARD C. VREM

A hypergroup join is a hypergroup formed by the union of a discrete
hypergroup with a compact hypergroup. The compact hypergroup is a
subhypergroup of the join, but the convolution on the discrete hyper-
group is changed in the join. A characterization of compact joins in terms
of their dual objects is given which leads to a simpler criteria for their
existence. In particular, it is shown that if a compact abelian join has a
dual which is a hypergroup, then the dual is also a join. Examples of joins
are provided from the study of conjugacy classes of certain semi-direct
products of compact groups and a method is described for constructing
non-dualizable compact abelian hypergroups.

Introduction. The study of harmonic analysis on topological hyper-
groups was initiated through the fundamental papers of Dunkl [1], Jewett
[4] and Spector [6]. Most of the subsequent work on hypergroups has dealt
with the problem of extending known results for topological groups to
hypergroups. There has been considerable success in this endeavor. This
paper, however, will be concerned with a construction within the category
of hypergroups which is not possible within the category of groups. We
study the join of two hypergroups, which was introduced by Jewett [4,
10.5].

In §1 we define the join of two hypergroups and present some
elementary results concerning them. In particular, we show that the join of
a compact hypergroup with a discrete hypergroup always possesses a Haar
measure. We restrict our attention to compact joins in §2 and characterize
them in terms of their dual objects. As a corollary, a much simpler
characterization of compact joins is found. Our attention is further
restricted in §3 to compact abelian joins, where we show that the dual
object of the join can be viewed as the union of the dual objects of the
hypergroups making up the join. In fact, if the dual of the join is also a
hypergroup, then it too is a join. We conclude the paper with a number of
examples in §4. We show how joins can arise naturally from studying the
conjugacy class hypergroups of certain semi-direct products of compact
groups. Various previously discussed pathologies of hypergroups are shown
to occur in this class of examples. Also, a method is given for constructing
examples of “non-dualizable” hypergroups. We conclude with a discus-
sion of the family of countably compact hypergroups introduced by
Dunkl and Ramirez [2].
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The notation used will be that of Jewett [4] with these few exceptions:
8. denotes the point mass at x and x — x "~ is the involution on K. If K is
compact we denote the collection of finite-dimensional continuous irre-
ducible representations of K (actually M(K)) by K" . If U € K" then
d(U) denotes the dimension of the Hilbert space on which U acts. Also,
we will denote the identity and zero operators corresponding to U by I,
and 0, respectively. The explanation of other notations can be found in
[4] or [7].

1. Joins. In this section we will place no further restrictions on the
hypergroups studied except those found in the definition of the join.
Following Jewett [4, 10.5] we proceed to define the join of two hyper-
groups. Suppose H is a compact hypergroup and J is a discrete hyper-
group with H N J = {e}, where e is the identity of both hypergroups. Let
K = H U J have the unique topology for which H and J are closed
subspaces of K. Let ¢ be the normalized Haar measure on H and define
the operation - on K as follows:

()Ifs,r€ Hthend, -6, =8 *38,.

(i) Ifa,beJanda#b" thend, - 8, =8, * §,.

(i) Ifs€ Handa €J (a#e)thend - 8,=96,-6,=6,.

(ivyIfa€J and a+ e and §,v * 6, = 2, ,¢,0,, then §,v -6, = c,0
* 2y (o) S0

We call KX the join of H and J and write K = H V J.

it should be noted that if K= H V J then J V H cannot even be
formed unless both hypergroups are finite. In fact, even if both J and H
are finite, H \VV J # J V H unless either H or J is trivial.

Joins can arise quite naturally from studying groups. For example, the
hypergroup of conjugacy classes of 4, has the structure of a join (see [4,
9.10] for details). More examples are provided in §4.

For the remainder of the paper we will adopt the following notation.
If K= H V J then we will use * to denote the convolution on K (and
hence on H), - to denote the convolution on J, and J* to denote J — {e}.

PROPOSITION 1.1. Suppose K = H \ J, where H has normalized Haar
measure o, and J has discrete left Haar measure 7. We define * on K via
™x)=0ifx € Handt*(x) = 7(x)if x € J*. Then m = 0 + 7* is a left
Haar measure on K.
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Proof. Clearly m is supported on K so we need only check that m is
left-invariant. Let f € Cy,(k), x € K and consider

(1) Jofodm= [ fOcx0)do(e) + 3 flxxs)(s).

seJ*

If x € H then the fact that § * 8, = §, for all s € H shows that (1) is
equivalent to [y f. dm = [i fdm as desired. If x € J* then (1) can be
written

(2) fkfxdm=f(x)+ S fxxs)ti(s) = 3 f(xxs)1(s)

sEJ* seJ
= 3 flx-s)r(s) +f(x= xV)r(x")
seJ—{x")
=3 flx-s)r(s) = flx - xV)r(xY) + flx = xV)7(x").

seJ
However,
8§ -8v=2¢8 and 8§ x8.=co+ X 8,

teJ teJ*

50 (2) can be written

/f dm = f(x-s)r(s) + 7(x [/ f(t)do(t) f(e)]'r(xv

seJS

= 3 f(s)r(s) +fo(t)do(t) :fodm.

sEJ*

ProrosiTION 1.2. If K= H V' J and X\ is a Haar measure on H then
A8, =8 *AN=ANforally € Hand A+ 8, =8, X =38 forall x € J*.

Proof. Clearly, if y € H then A x §, = §, * A = A. Now, if y € J* and
f€ C(K) then

ffdé‘y £ A :foKf(z) ds, * 8,(1) dN(b)

:fH/Kf(t)dB_V(t)d}\(b) =f(y).

A similar argument holds for A = §,.

It is easily shown that J is never a subhypergroup of K unless either H
or J is trivial. The next proposition shows that we can view J as a quotient
of K.
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ProrosiTiON 1.3. If K= H V J then K/ /H is hypergroup isomorphic
to J.

Proof. Wehave K//H = {H * {x} + H: x € K}. But §_* 6, = §, for
all x €J* and y € H, so we may write K//H = {H} U {{x}: x € J*}.
If we adopt the notation that x = H » {x} * H,then K//H = {x: x € J}.
Thus, we clearly have a bijection 8: x » X between K//H and J. It
follows easily from Proposition 1.1 and [4, 7.1B] that K//H is discrete.
Therefore, it suffices to show that 8 respects the hypergroup convolution.
Suppose we have x, y € J with x # y ¥ . Then it follows that

6,:6,=48. %6, = > b,

seJ

and, hence,

o*(ﬁx*Sy)*o: E co*0 %0 = 2 c,0; = 20383(3).

seJ seJ seJ

Furthermore,

§.x8v=co+ 3 cd,,

seJ*

SO

ox(8,x8v)*0o=co+ > g5y = ECSSB(X).

seJ*

2. Compact joins. All hypergroups under consideration in this sec-
tion will be compact, so if K = H V J then J is finite. We begin with two
lemmas which will be used in the characterization of the dual object of K.

LEMMA 2.1. Let K be an arbitrary compact hypergroup with J* a finite

subset of K with the following properties:
(1) K — J* = H a subhypergroup of K.

(ii) supp(8, * 8,) C J* for all x,y € J* withx # y "~ .

(i) 8, * 8,v,y; = k,0 for z €J*, where k,>0 and o is normalized
Haar measure on H.

Then J = J* U {e} can be made into a discrete hypergroup as follows:

(a) Involution z -z as on K.

(b) Define - on J via

8,-8,=6.+8,, ifx,y€J,x#y",

82v '82 = H’z(‘])_lnu‘z].l
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where

#z = 82 * 6ZV_ (82 * 82\/({e}) - kz)8e'

Proof. We have J is finite and ||8, * §,|| ;) = 1, so by [4, 2.4B] it
follows that - has a unique extension to a positive continuous bilinear
mapping from M(J) X M(J) to M(J). It is immediate from the defini-
tion of - and condition (ii) that §, = §, is a probability measure with
compact support on J for each x, y €J. We need only check that
e € supp(§, - §,) if and only if x = yV . Clearly, if e € supp(8d, * §,) then
x =y because 8, - 8, = 8, » §, whenever x 5 y . Also,

8, 8,v({e}) = p,(J) 'k, >0,

which implies e € supp($, * §,+). Thus (J, -) is a discrete hypergroup.

LeMMA 2.2. If K= H V J is a compact hypergroup with normalized
measure m and H has normalized Haar measure o with neither H nor J
trivial, then there exists a proper subset P of K ™ with {1} (; P such that

I, forallUE€P,

N U —
") {OU forallU€ K" —P.

Proof. If U € K" then 6(U) = (o * 6)"(U) = [6(U)]* and 6(U)*
= (oY) (U) = 6(U), s0 6 is a projection operator on H,,. Thus, there is
an orthonormal basis {{; ---{y,} for H, and an integer /[, €
{0,1,...,d(U)} such that

¢ ifj=<1,,
ooy -[f 42t

Using Proposition 1.2 it is immediate that UU, = U,U, for all x € K, so
by Schur’s Lemma (see, for example, [5, 6.3]), U, = kI, for some constant
k. This forces either I, =0 or /[, =d(U).If [,=0forall U € K" —{1}
theno” =m" ,and if [, = d(U) forall U € K" theno” = §/", in both
cases a contradiction by the uniqueness of the Fourier-Stieltjes transform
[7, 3.2].

The following theorem characterizes compact joins in terms of their
duals.
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THEOREM 2.3. Suppose K is a compact hypergroup with nontrivial
subsets H and J with the properties that H UJ = K and H N J = {e}.
Then K= H N J if and only if there exists {1} CP CK" such that

Uy =1y for all UE P and U, ,. =0, for all UE€ K" ZP (where J* =

J — {e}).

Proof. Suppose P exists as described. We first note that if U € K"
then I(U) ={x € K: U, = I,} is a (closed) subhypergroup of K. This
follows easily from the fact that &, * §, is a probability measure and the
observation that

I, = fKU, ds, x8,(t)
for all x, y € I(U). Furthermore, we claim

(1) H= (1 I(U).

vep
Clearly, we have H C M., I(U). If H+# N,_,1(U) then there exists
x € J* with U, = I, for all U € P. Therefore, we can write

X

I, ffUeP,
~lo, ifUeKk”-P.

Thus U; s = UU, = U, for all U€ K" and, hence, (8, *8,)" =4.
The uniqueness of the Fourier-Stieltjes transform [7, 3.2] shows that
8, = 6. = 6 . Similarly, 6,v = §,. But this is a contradiction since

e € supp(d, * 8,v) = supp(d, +8,) = {x} C K — H.

This establishes (1).

The fact that each I(U) is a subhypergroup of K, together with (1),
gives that H is a subhypergroup of K. Now, if x € H, y € J* then, for
eachUe K",

k8, T Xy y? U:?v*sx:Uy’
for if U € P then U, = I), and if U € K" — P then U, = 0. Again, the
uniqueness of the transform shows that §, %8, =8, +§ =4, for all
xE€H yeJ*

Now suppose y, z €J and consider ¢ € supp(d, = §,). Thus, for
! € H we have z € supp(8,v * §,) = supp(8,v) and hence z = y" . There-
fore, if y # z ¥ then supp(8, * 8,) CJ*. If z € J thenz¥ € J, since H is a
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hypergroup and e € supp(8, * 8,+). If ¢+ € H then (using the notation of
[4,3.2])

(f={y{ey c{t}»{} {7} ={2}»(z"}.
Thus H C supp(8, * 8,v) for all z € J. In fact,
8,%(8,%8,v)=8,%8,v,

50 8, * 8,y = ko, where o is normalized Haar measure on H.
We have P < K", sochoose U € K" —P. Clearly,

J*C{x€EK:U =0,}

and, hence, H = K — J* has nonempty interior, which implies H is open
by [4, 10.2A]. For each x € J* we have {x} » H = {x} is open, which
implies J* is discrete. Thus both J* and J are finite.

Finally, we define - on J as in Lemma 2.1 and use Lemma 2.1 to
conclude (J, -) is a discrete hypergroup and K = H V J.

Conversely, suppose K = H V J with o normalized Haar measure on
H. Then by Lemma 2.2 there exists {1} g P (;. K " such that

. I, onP,
|0, onk"-—P.

If x € H then clearly 6, * 6 = 0, in which case 8.6 = 6. Therefore, 8 (U)
= I, = U,v for all x € H. Proposition 1.2 shows that §, x ¢ = §, for all
y €J* and, hence, §(U) =0, =U,v for all U €& K" —P. This com-
pletes the proof.

The preceding theorem allows us to provide an easier characterization
of compact joins.

COROLLARY 2.4. Suppose K is a compact hypergroup with nontrivial
subsets H and J with the property that H UJ =K and H N J = {e}.
Furthermore, we assume each U € K " has the property that either U, = I,
foralla € H or (I, — U,) is invertible for some a € H. Then K = H \/ J if
and only if 6,% 8, = §, for all a € H and s € J*.

Proof. Necessity is obvious. We assume §, * §, = §, for all € H and
seJx . LetP={UeK":U=1I,forala € H}.If U € K" —P, then
by our assumption there exists a € H such that (I, — U,) is invertible. If
s €J* then U, = UU, or (I, — U,) = 0,, which implies U, = 0,,. This
completes the proof.
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It should be remarked here that the additional hypothesis added to
the statement of the corollary trivially holds for any compact abelian

hypergroup.

3. Compact abelian joins. In this section the hypergroups under
discussion will be compact and abelian. We begin with a lemma.

LeEMMA 3.1. Suppose K = H V J is a compact abelian hypergroup. Then
each character x € H" extends to a character x* € K " via

R x(t) ifteH,
(1) x*(1) = {0 ift € J*.

Also, for each character y € (J, -)” there corresponds a character y* € K"
given by

(2) *(1) = {‘P(’) ifteld,

1 ift e H.

Proof. Suppose x € H” and define x* on K as in (1). Now x*
clearly continuous and hermitian. We need to show x* is multiplicative. It
is obviously multiplicative on H. If s € H and ¢t €J then x*(s *t) =
x*(t) = 0 = x*(¢)x*(s). For s, t €J*, s # ", we have supp(8, = §,) C
J*, so again x* is multiplicative. If € J* with §, - §,v = 2, ¢,0, then

x*(tx1" / X*(5) dd, = 8,4 >=ce/H x(s)da(s) + 3 c.x*(s)

zeJ*
=0 = x*(t)x*(s)

by the orthogonality conditions on H (see [7, 2.6]). Thus x* € K .

Next, we assume € (J, -) ¥ and define Y* as in (2). It is evident that
y* is continuous and hermitian so we again need to check that it is
multiplicative. We verify only the case y*(¢ ¢t V) where ¢t € J*. Suppose
8, * 8,v= 2, ,c¢,0, and consider

peer¥) = [9(s) b x 8u(s) = c. [ ¥*(s)do(s) + 3 cd(z)

=c,+ X cd(z)= X cy(z)

zeJ* z€J
=Y()Y(rY) = g*(2)*(t 7).
We conclude that y* € K.
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We now introduce the following notation:

(A)*={x*:x€H), (H)r={ye(. )}

THEOREM 3.2. If K= H V' J is a compact abelian hypergroup then
K = (H)* U (J)*.

Proof. Lemma 3.1 shows that (ﬁ)* u (J))* C K. Suppose ¢ is a
character on K. In the notation of Theorem 2.3 we have either y € P or
yEK—P.If Y is in P then ¢y; = 1. Thus we need to show ¢, =yisa
character on (J, -). It is clearly multiplicative for s, t € J* with s % ¢~ . If
t €J*with§, - §,v =3, .,c,9,, then

z7z?

Y(r-1Y)= T ed(z)=cyle) + X c.y(z)

zeJ zeJ*

=c.f4(t)do(t) + F cy(z)

=(zx2) = P(2)P(2) = § (2)§ ().

Hence ¢ = ()*.

Ify E!& = P then ;. = 0. This time we set ¢j; = . It is straightfor-
ward that ¢ is hermitian and multiplicative. Furthermore, if S is open in C
then (¢)7/(S) = ¢~(S) N H, which is open in H, so (Y)* = .

The next theorem shows that K can be written as a join if both H and
J are hypergroups.

THEOREM 3.3. Suppose K = H NV J is a compact abelian hypergroup
with H and J hypergroups. Then K ~J \/ H.

Proof. The isomorphism here is the obvious one, namely ¢ — J*.
Clearly, J is finite (compact) and H is discrete. The theorem will follow
once we establish the following results:

() If x, ¢ € J with xy = 2, _;a,r, then x*¢* =3 _ja,r*

(ii) If x, ¢ € H with x # ¢ and x¥ = S¢c ;5 ¢, then

X=X eldr
teA—{1)}
(i) If x € J, ¢ € H — {1}, then x*y* = y*.

(vIf ¢ € H— (1} with y§ = Z,c5¢S, then 8. * 8, =
em + 2eq- M c.$*, where 7 is normalized Harr measure on J.
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Note that 7 on J is given by

n=a"

2 (%’* w(l))_l‘%]’

ves

where a = 5, 7(8; * 8,(1))7".

Parts (i) and (ii) are immediate from the definition of the bijection *.
To establish (iii) we consider x €J, ¢ € H — {1}. If y €J* then
X*¥*(y) =0=4*(y), and if y € H then x*{*(y) = IY*(x) = $*(x).
Thus x*y* = ¢*. In order to establish (iv) it suffices to show for each
Yy € H—{1):

(3) Pt =cat 3 (85 8,()) X+ D el
xeJ (eH—{1}

If y € J* then Y*y*(y) = 0. To show the right-hand side of (3) takes on
the same value, we first note that {*( y) = O foreach { € H — {1}. Also,

EA (32 * ax(l))-lx*(J/) = 2 (8 * 3X(1))-1X()/) =0

by an application of the orthogonality relations on J. Here we used the
fact that the map y: J — C via j(x) = x(y) is a character on J [4, 12.4B].
Finally, if y € H then the right-hand side of (3) can be written

et Y (8+8, (1) + 3 ck(y)

XEJ (eEA—{1}
=c + > cgf(y) = > C;f(y) =9 (»)¥(y)
ceA—{1) I$=¥:4
= *(y)v*(y),

which establishes the theorem.

COROLLARY 3.4. If KV J is a compact abelian hypergroup then Kisa
hypergroup if and only if H and J are hypergroups.

Proof. Sufficiency is contained in Theorem 3.3. To show necessity we
consider ¢, { € J. Thus *{* is positive definite which implies ¢ is
positive definite. An application of [4, 12.4] shows that Jisa hypergroup.
A similar argument holds for H.
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4. Examples. We begin with an example of how joins can arise
quite naturally from topological groups.

EXAMPLE 4.1. In this example we use the notation of [3, 2.6]. Suppose
G = W(s)S (semi-direct product) where W is a compact group and S is a
finite group. Then there is a homomorphism s — 7, which carries S onto a
group of automorphisms of W and multiplication is given by

(w, $)(w’, 5") = (w(7,(w)), s57).

Furthermore, we may identify W with a normal subgroup of G and S with
a subgroup of G such that G/W~ S = {e, s,,...,s,}. Indeed, the ele-
ments of G/W are of the form {(w, s): w € W} = Ws. We shall further
assume that W acts transitively (under conjugation) within each of the
cosets Ws (s # e). That is, given (w, s), (w’, s) in Ws there exists an
x € W such that

(x,e) " (w, s)(x,e) = (w, s5).

Clearly, G cannot act transitively between cosets. Under these hypothesis,
the hypergroup of conjugacy classes of G, written G,, consists of the
conjugacy classes of W, written W), along with the cosets Ws,,..., Ws,.
We will show that G, has the structure of a compact abelian join. Let
H=W,={[w]: we& W} and J = {e, Ws,,...,Ws,}. By Corollary 2.4
and the remark following it we need only show that 8, * &, = §,, for
all[w] € Hand W, € J. But

8(w] * 8Ws = /68[1"wts] dm(t) = 8Ws
by the normality of W.

ExAMPLE 4.2. Suppose W is any compact group and form G =
W(SZ,, where Z, = {e, x} and the action is given by 7(w) = w and
7(w) = w™!. In this case G/ W consists of two cosets W and Wx. In order
for W to act transitively on Wx we must be able to find a € W for each
a € W such that

(7", e)(a, x)(t,e) = (e, x).

Applying the multiplication on G this is equivalent to the equation
(t'at, x) = (e, x) and, hence, a =1t>. Thus we need W= W®? =
(w2 w € W). Therefore, if W is a compact 2-divisible group then G, is a
compact abelian join. Note that G, has at least one isolated point, namely
x. For a finite example of this type we need only look at those dihedral
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groups D,, where n is odd. It should be noted here that (D,,), is not a
join when 7 is even.

We next indicate how joins can be used to construct “pathological”
examples.

ExAMPLE 4.3. Suppose G = W(s)Z, where W is compact and 2-divisi-
ble. If m is normalized Haar measure on G, then rit € c,(K), but m is not
a continuous measure (see [8] for other examples of this type). Also, a
slight modification of [8, 2.6] will show that G, also provides an example
of a compact abelian hypergroup where the space of continuous measures
on K does not form an ideal in M(K).

One of the most disappointing features of compact abelian hyper-
groups is that their dual objects are not always hypergroups. The follow-
ing example provides a technique for constructing many such pathologies.

EXAMPLE 4.4. Let H be any compact abelian hypergroup and J any
finite abelian hypergroup whose dual, J,is not a hypergroup (see [4, 9.1C]
or [1, 4.6] for 3 element examples whose duals are not hypergroups). It
follows from Corollary 3.4 that K = H V J has the property that K is not
a hypergroup.

The last example deals with the family of countable compact hyper-
groups introduced by Dunkl and Ramirez [2].

ExAMPLE 4.5. Let H, = {0, 1,2,...,00}, where 0 < a < 3. Dunkl and
Ramirez showed in [2] that H, can be given the structure of a countable
compact abelian hypergroup. Indeed, convolution is defined by

6,x6,=6,+x8, =4, ifm<n,

0 ift <n,
1—2 .
8,x8,({1) = 7= ift=n,
ak ift=n+k>n.

If we let H={1,2,...,00} and J; = {0, 0}, then Corollary 2.4 shows
that H, = H V J,. In this case, the convolution - on J, is given by

1 1 —2a

8, -8, = 1—a8°°+ 12

Clearly, H is a hypergroup isomorphic to H, and, hence, can also be
written as a join. Indeed, if we let H, = {k, oo} with

1 1—2a
1—a8°°+ 1—a

60.

8, %6, =

8.
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and inductively form the discrete hypergroups J, =J, , V H, whose
convolution is given by

8,8, =0,%08, =9, ifr<s,

(0 ifr<r,
1=2a &,
l1—a
8 8{1) =1 e ift=r+k=<n
n—r+1
a ifr= o0,
l1—a

then H, can be viewed as the projective limit of {J,}. l.e., H, is the
subhypergroup of the complete direct product hypergroup IS/, (with
the product topology) consisting of sequences {Xx,, x;,...} such that
I, x, = x,_,, where I, is the projection of H, onto H, .

The author would like to thank the referee for his comments regard-
ing Example 4.5.
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