Vol. 112, No. 1, 1984

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Inequalities for eigenvalues of the biharmonic operator

Gerald Norman Hile and R. Z. Yeh

Vol. 112 (1984), No. 1, 115–133
Abstract

Let D be a bounded domain in Rm with smooth boundary. The first n + 1 eigenvalues for the problem

Δ2u − μu = 0 in D,  u = ∂u-= 0 on ∂D
∂n

satisfy the inequality

∑n    √ μ-       2 3∕2  ∑n
-----i---≥ -m-n----(   μi)−1∕2
i=1 μn+1 − μi  8(m + 2) i=1

For the first two eigenvalues we have the stronger bound

μ2 7.103μ1 (in R2),
μ2 4.792μ1 (in R3).

The first two eigenvalues for the problem

Δ2u+ νΔu  = 0 in D, u = ∂u-= 0 on ∂D
∂n

satisfy the inequality

ν2 2.5 ν1 (in R2),
ν2 2.12ν1 (in R3).

Mathematical Subject Classification 2000
Primary: 35P15
Milestones
Received: 13 April 1982
Published: 1 May 1984
Authors
Gerald Norman Hile
R. Z. Yeh