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CHARACTERIZING THE DIVIDED DIFFERENCE
WEIGHTS FOR EXTENDED
COMPLETE TCHEBYCHEFF SYSTEMS

R. B. BARRAR AND H. L. LOEB

Newman and Rivlin have shown that there is a 1-1 correspondence
between the nodes and weights of the nth order divided difference of nth
degree polynomials. Their method applies only to polynomials. In this
paper we develop a new approach and apply it to extend their results to
the setting of Extended Complete Tchebycheff Systems.

0. Introduction. In [7] Newman and Rivlin (see also the reference
there to S. Karlin’s results) were able to characterize the weights which
appear in the nth order divided difference formula with respect to the
base functions {u;(x) = xf}J":O and to establish a 1-1 correspondence
between these weights and the corresponding set of nodes, 0 = x, < x, <
-+ <x,, used in the formula. We propose in this paper to extend this
result to the setting where the family {u,(x)}/_, forms an Extended
Complete Tchebycheff System (E.C.T.S.) on [0, o0). This means for each
k, where 0 < k < n, any non-trivial linear combination of the functions
{ug,...,u,} has at most k zeros (including multiplicities) in [0, co) where
each u, € C"[0,0). We further assume that uy(x)=1. For the re-
mainder of this paper we shall postulate that these basic hypotheses
concerning {u }7_, hold.

Among the E.C.T.S. for which these results are valid, we will highlight
the families generated by the Cauchy Kernel and the Exponential Kernel.

1. Statement of problem. Let
(1) S={x=(x,...,x,) CR:0<x,<---<x,}, xo, =0.

A is defined to be the set of all a = (ag,...,a,) € R""' such that the
following properties are valid

@) (=1D)""a,>0 (i=0,1,...,n);

1

) (i) 2a=0

(i) (-1)"7Sa,>0, j=1,...,n.

i=j
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The sets S and A4 are related through the classical concept of divided
differences. For each x € S and each real-valued function f defined on
[0, 00), consider the nth order divided difference of f with respect to the

points (x,, x,,...,x,) defined as follows.
U[uo,...,un_l,f}
XgyeensX),
(3) fIXgs-esx,] = —— ,
UuO’---,un
]
where

XgseosXy
We then set
U[uo yeens unle
A P 7R S TS
(4) a, — (_l)n+1 0 1 1+1 n ’ j O, 1’ n
U[uo, ’un]
xO’ ’xn
Clearly,

flxgrexd = B af(x).

The {a,} are called the weights of the divided difference formula. Cramer’s
Rule, together with (3), (4), shows that for a given x € S, a = (q,,...,qa,)
satisfies (4) iff

(5) zai“j(xi):6n,, j=0,1,...,n,
=0

where §,, is the Kronecker delta symbol.

Thus for each x € S, we can associate an a via the relationship (4).
Let g be the map defined by (4), that is g(x) = a. The main purpose of
this paper is to show that g is a 1-1 map of S onto 4. As we indicated in
the introduction, Newman and Rivlin proved this result for the special

l

case of polynomials; that is, where u, = x'.

LEMMA 1. g maps S into A.
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Proof. Since (uy,...,u,) form an Extended Complete Tchebycheff
System (E.C.T.S.), it is clear from the definition of the weights a, in (4)
that a = g(x) satisfies (i) and (ii). (In this regard recall that u, = 1.)

To prove (iii), for 0 <j <n — 1 pick 4" in the linear subspace U
spanned by (u,,...,u,) with the properties

@u(x)=1,i=0,1,...,j,

by u(x,)=0,i=j+1,...,n

Using (5) and the above it follows that

J n
2 ai = 2 alu(j)(xi) = bn’
i=0 i=0

where b, is the coefficient of u, in the expansion of 4. From [5, p. 379]
we infer that {(d/dx)u (x)}/—, forms an E.C.T.S. Thus by Rolle’s Theo-
rem (d/dx)u'’’(x) has a maximum set of n — 1 simple zeros consisting of
J zeros in (xg, x;) and (n —j — 1) zeros in (x,,,, x,). Further, since
u(x;) =1 and uY(x;,,) =0, du"”/dx <0 in [x,x,,,] and thus
(—1)"/(du'”/dx)(x,) > 0. Using as data these n — 1 zeros of
(d/dx)u'’(x) and x,, we conclude by Cramer’s Rule that sgn(d/dx)
u/)(x,) = sgn b,; that is,

(—n* é a,> 0.

By (2)(ii),

Finally, then
(—1)" VTS g >0. O

1=y+1

LEMMA 2. Let {x}*_, C S be a sequence with the property that the
corresponding sequence {a”)) C A (where a'”) = g(x))) has the feature
that 2" — a € A. Then if x'*) - x, we can conclude that x € S.

Proof. Assume the result is false. We treat two cases. Case (1):
x{? - x, =0 for all i. Thus using (5) for j = n we find the limit function
satisfies

Ea L0) =1,



4 R. B. BARRAR AND H. L. LOEB

which contradicts (2)(ii). Case (2): For some i where 1 <i=n—1,
Xo <X, = Xx;,,- Thus by exploiting the fact that a satisfies (2)(ii1) and (5),
we can find a set of numbers {b }*_,, where b, Z0 with0 <k <n — 150
that for the k + 1 distinct components of the limit vector x, say
{x,o,. .. ,x,k}, we have

k
2bhu(x)=0 (j=0,1,....,n—1).
i=0
This contradicts the fact that {u,}7=) form an E.C.T.S. Thus the proof is
complete. O

2. Main results. In this section we will develop the topological
tools which we will use to prove our principal result; that is, gis a 1-1 map
of S onto 4. We will employ a differential equation approach which has
been exploited by Fitzgerald and Schumaker [4]; Barrar, Loeb and Werner
[2]; Barrar and Loeb [1, 3].

Our approach, in contrast to other attacks on these types of problems,
has the important property that it does not require any type of a priori
uniqueness. In this regard see Fitzgerald, Schumaker [4] or Newman,
Rivlin [7]. where such information is used.

Consider a fixed z* € A. We want to demonstrate that there is
exactly one x* € S which satisfies

Saru(x)=38, (j=01,...n).
i=0

Since 27_,af = 0 and u, = 1, this is equivalent to demonstrating it for
the system

(6) 2 az*(uj(xi) - uj(xO)) =6,,, J=1...,n
i=1
For each x € S, consider the system of » ordinary differential equations

U é«l—T>a,+m:*)<u,<x,~<f>>—M)) =0,

j=1,...,n,

where a = g(x) and the initial conditions are x(0) = x = (x,,...,x,,).
Here 7 is the independent variable, x(7) = (x,(7),...,x,(7)), and a =
(ay,...,a,). Integrating (7) we find that

®) X1 —1)a,+ Taj")(uj(x,(fr)) — uj(xo)) =c¢, Jj=1l,...,n.

Jj=1
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We evaluate the constants ¢, by setting 7 = 0. One finds using (6) that

8, = Dafu(x)—ulx))=¢c, Jj=1L...n,

i=1

and indeed at 1 = 1,

é a;k(uj(xi(l)) - uj(xo)) = 8nj (j=1,...,n).

Thus, one notes that a* = g(x(1)) and x(1) is a desired solution for a*. We
see then that our main problem is to show that the system of differential
equations has a solution in the interval [0, 1]. We proceed toward this goal.

For many important families of functions we will be able to verify the
following assumption.

Assumption A. If {x(V}_, C S has the characteristic that a®) =
g(x")) > a € 4 as v > oo, then {x®}2_, are bounded.

For the remainder of this section we shall postulate that Assumption A
is valid for the E.C.T.S. {u,}/-, on [0, oo] where u, = 1.
Expanding (7) we obtain

S, [raz + (1 = r)au(x,(r) T2(7)

©
= (ai—a?)[uj(xi('r)) —u/(xo)] (i=1,..,n)

1

INE

o d
with u)(x) = Euj(x).

It is important to note that for 7 € [0,1] and x(7) € S, the Jacobian
matrix of the system (9),

(10) J(1) = {(rar + (1 — m)a)u(x(7)); i, j = 1,...,n},

is non-singular. This follows from the fact that {u}};_, form a E.C.T.S.
and that (ta* + (1 — 7)a) satisfies (2)(i) when 7 € [0, 1].

Further, it is easy to check using Assumption A and Lemma 2 that
{x(7); r €0, 1]} is bounded, and if {7}, C [0, 1] has the property that
x(7,) = X, then x € S. These facts can be used to show that the system of
differential equations has a solution over [0, 1]. The basic ingredients of
such an existence proof are enunciated in [1, 2].

For each x € S, let ® be the map from S — B defined by ®(x) = x(1)
for x € § where B = {x € §: g(x) = a*}. If x € B, it is easy to verify
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that x(7) = x is a solution of (9) and, indeed, by the uniqueness of the
solution of the system of differential equations, the only one. Thus @
maps S onto B and since by the theory of differential equations @ is
continuous, ® maps the connected set S onto the connected set B.

Let x* € B. Then x* is a solution of the non-linear system (6).
Further, the Jacobian matrix of the system is

{aruj(x¥); i, j=1,...,n}.

Since a* satisfies (2)(1) and {uj(x)};-, form a E.C.T.S,, the matrix is
non-singular. We can conclude by the implicit function theorem that x* is
an isolated point of B. Since x* is an arbitrary point of the connected set
B, it follows that B consists of exactly one point. Summarizing,

MAIN THEOREM. For each a* € A, there is exactly one X* in S which
satisfies

2aru(xr)=¢8, (i=0,1,..,n),
1=0

and the map g defined by (4) is a 1-1 map which takes S onto A.

3. Applications. In this section we present some examples of
E.C.T.S. which satisfy Assumption A and thus satisfy the hypothesis of
the Main Theorem.

Consider the exponential kernel K(A, x) = e and any set of n
positive numbers 0 < A; <A, < --- <A, with A, = 0. Then we set

(11) u(x)=K(A,x), i=0,1,...,n.

LEMMA 3. The exponential family of functions defined in (11) has
the property that if a sequence {x'”))2., C S yields a sequence
(2™ = g(x))°_| with the characteristic that a® —a € A, then the
{(x1_are bounded.

Proof. Let us assume that the components of x(® are not bounded.
Then by going to a subsequence if necessary we can develop the following
situation:

(12) (a) lim x'*) = oo;

U — 00
(b) lim (x(? —x®)=¢, i=1,...,n, where

U— 00

[Zz1 and ¢, =c¢,,, i=1,...,n— 1, with ¢, finite;
() Iim (x —x®) =00, i=1,...,I—1.

[2hndiee)
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Dividing each of the relationships

n
(v)
E al(v)ehjx, — 6

nj

by eM*" and letting v — oo, we find that the limits satisfy
Nae =0 (j=1,...,n).
=1

Let ¢, >¢;, > --->¢, =0 be the distinct values of {c,}/-, where
k =n — 1+ 1= n. Then we can find numbers b,,...,b, so that

n k
fN) =S ae=3 beon,
i=l m=1
where by property (2)(iii), b, # 0. Thus since f(A;) =0, i = 1,...,n and
{e7*m}* _, form an E.C.T.S., we have reached a contradiction. This
completes the proof. (]

We claim that Lemma 3 is also valid for the Cauchy kernel, K(A, x)
=1/(1 + Ax).

LEMMA 4. Let 0 = Ay <A, < --- <A, be given and set u,(x)=
/(1 + A x) (j=0,1,...,n). Then Lemma 3 is valid for the {u;}]_,.

Proof. Again assuming that x{”) - 00, we can, by going to a subse-
quence if necessary, achieve the situation:

(@) x> 00,i =1,...,n, where [ = 1;

(b) x{?) > ¢,,i =0,...,l — 1, ¢, finite with ¢, < ¢, , and ¢, = 0.

For each relationship

n g©

2

i= 01+}\x(”)

2

letting v - o0, we find

-1 a.
I—W—O (.]_'O’,n—l)

Y

Pick out the distinct elements 0 = ¢, < --- <¢,  of the set {¢,}i_ where
k =< I =< n. Then there are k distinct numbers b,,...,b,_, so that

=3 1= 2 T
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and where by properties (2)(i), (i), (iii), by #0. Since f(A) =10
(j=0,1,...,n — 1) we have contradicted the fact that the family
{1/(1 + ¢, \)}n— forms an E.C.T.S. O
Our results can be extended to treat multiple knots also.
As an example, we have the following result, which includes the
results of [7].

LEMMA 5. Let 0 =Ay <A, < ---<A, be given and consider the
functions {x%** q¢=0,1,....m,—1; p=0,1,...,r}. If n+1=
2 —om, and if we set u (x) = x%** withj = Z/=!,m, + gand m_, =0,
then Lemma 3 is valid for the functions {u};_,. (The A, are called the knots
and the m, are designated as the multiplicities of the knots of the kernel
K(x, N) = e™*. It is well known that this set of functions is a E.C.T.S., see

(5, p.91)
Proof. Letting

n
f()\, v) — 2 a’(v)ekx,(u),

i=0

we have

d “ o
a)é(}‘ v) = anfv)(va))qe)\x'( ;

The set of equations corresponding to (5) for a, = a{”, x, = x{*) can
be written as

(13) amf(}‘ o) =8 Bgm-ny 4= 01m,

p=0,1,...,r

Assuming x(” - oo, if r = 1, we divide f(A, v) by e, and apply
Leibnitz’s rule for differentiation of a product to find, using the notation
of (12)(a), (b), (c), that in the limit as v - o0, (13), for p = 1, becomes

n
(14) dacier =0, ¢g=0,1,....m,—1;p=1,..r
i=1

Combining equal ¢;’s as in Lemma 3, this becomes

(15) Zb(c Yl =0, ¢=0,1,....m,—L;p=1,...,r,

where w=n+1—1[, b, ¥ 0 by (2)(ii1), and / = 1. In (15) we are dealing
with an E.C.T.S. of dimension <n + 1 —/ with typical term x%*»*
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Further, the function in (15) has at least n + 1 — m zeros. Thus n + 1 —
my,<n-+1-—1 thatis,

(16) my>1 ifr=1.

For any r, we divide the equations in (13) for A = A, by (x{*)? for
eachq =0,1,...,m, — 1, and take the limit as v = co. Using the notation
of (12)(a), (b), (c) the result is a set of equations

Eai(di)q:(), di—<—d,'+|, q=0,1,...,m0—1.

Combining equal d,’s we obtain a set

g
(17) 2b(d)' =0, ¢=0,1,..,m;— 1.

s=1
Note that x{*) — x{ - ¢, (finite) implies x{*/x{” > d, = 1. Thus d, = 1
(i=1...,n) with g=</ and b,.g #0. In (17) we are dealing with a
non-zero function with m, zeros generated from a E.C.T.S. of dimension
at most /. Therefore we must have

(18) my<l.
If r =0, (18) is a contradiction since my =n + 1 and /<n + 1. If
r = 1 both (16) and (18) must hold, which again is a contradiction. O
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