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STIEFEL’S THEOREM AND TORAL ACTIONS

J. A. DACCACH AND A. G. WASSERMAN

The second Stiefel-Whitney class of an orientable manifold admit-
ting an effective codimension three toral action is shown to be Poincare
dual to the fixed point sets of circle subgroups and cyclic subgroups of
even order.

0. Introduction. Stiefel [S] proved that the second Stiefel-Whitney
class of an orientable 3-manifold is zero. A simple generalization of this
theorem is that the second Stiefel-Whitney class of an orientable (n + 3)-
manifold, M, vanishes if M admits a free action of T", the n-torus. If T"
acts almost freely and effectively on an orientable manifold M"*3, that is,
if all isotropy subgroups are finite, then w,( M) need not vanish; in fact
w,(M) is Poincaré dual to the fixed point sets of cyclic subgroups of even
order. :
In this note, we consider an arbitrary effective action of 7" on an
orientable manifold M"*? and show that the Poincaré dual of w,(M) is
represented by the fixed point sets of circle subgroups and cyclic sub-
groups of even order.

In §1 we establish some notation and give a precise statement of the
theorem. In §2 we reduce the proof of the theorem to the case of compact
manifolds having only cyclic or circle isotropy subgroups. In §3 we study
the cases of only cyclic isotropy subgroups or only circle isotropy sub-
groups and in §4 we prove the theorem by reducing to the two special
cases of §3.

1. Statement of Theorem. If M is a manifold with a smooth action
of T" and H is any subgroup of T” then E(M, H) = {x € M|T = H}
where T is the isotropy subgroup at x; E(M, H) is open in F(M, H) =
{x € M|h(x) = x for all h € H}, the fixed point set of H [3]. If X is any
component of F(M, H) then X is a closed submanifold of M and
X N E(M, H) is either empty or dense in the 7" /H space X by [3]; hence
E(M, H) is a union of disjoint closed submanifolds of M.

If A is a closed submanifold of a manifold B?, the Poincaré dual of
A, D(A) € H % B; Z,) =~ Hom(H,_/(B; Z,); Z,), is defined by
(D(A), Z)= number of points in 4 M Zmod2 where M indicates the
intersection of 4 with the cycle Z in general position [4].
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If T" acts smoothly and effectively on an orientable manifold M" "3,
then for any cyclic subgroup H C T", E(M, H) is a codimension two
submanifold since H must act linearly, effectively, and in an orientation
preserving manner on the three dimensional slice. If H is isomorphic to
S', E(M, H) will in general have components of codimension two and
four; let E,(M, H) denote the components of codimension two. Finally,
for T" acting smoothly and effectively on an orientable manifold M" ",
we define A(M) € H*(M; Z,) by

A(M) = ZID(EZ(M,H))+ ~2 D(E(M, H)).

THEOREM. If T" acts smoothly and effectively on an orientable (n + 3)-
manifold, M"*3, then A(M) = w,(M), the second Stiefel-Whitney class of
M.

The remainder of the paper is devoted to the proof of this theorem.
2. First reduction.

LEMMA 1. It is suffficient to prove the theorem for compact manifolds
without boundary.

Proof. We wish to prove that A(M) = w,(M) for an arbitrary orienta-
ble (n + 3)-manifold M with effective smooth 7" action. If A(M) —
wy(M) # 0 € H*(M; Z,) then there is a singular cycle Z € Hy(M, Z,)
with (A(M) — w,(M), Z)# 0. But any such cycle is contained in a
compact, invariant, submanifold with boundary X that is Z =i, Z’ for
Z' € Hy(X; Z,),i: X = M. Hence

(A(M) —wy(M), Z)= (A(M) — wy(M), i,Z')
= (i*A(M) = i*wy(M), Z') = (A(X) = wy(X), Z)

and so it is sufficient to prove the theorem for compact manifolds,
possibly with boundary. Finally, let Y = X U,, X be the double of X and
j: X = Y. Then

(w(Y) = A(Y), juZ')= (j*A(Y) — j*wy(Y), Z)
= (4(X) — wy(X), Z')

so it is sufficient to prove the theorem for Y, that is, for compact
manifolds without boundary. O
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If T" acts effectively on the orientable manifold M"*3, then T", the
isotropy subgroup at x, can only be isomorphic to one of {e}, Z,,, S,
S'X Z,, T? or T? because the isotropy subgroup must act linearly,
effectively, and in an orientation preserving manner on the slice at x.

LEMMA 2. It is sufficient to prove the theorem for compact manifold M
without boundary, such that E(M, H) = ¢ for H isomorphic to T?, T* or
S' X Z_ and such that E(M, H) = E,(M, H) for H isomorphic to S'.

Proof. Let H,,...,H, be the isotropy subgroups isomorphic to 72, T?
or §' X Z, and suppose that H, is isomorphic to T°. Then H, is a
maximal isotropy subgroup and hence E(M, h,) = F(M, H)) is a closed
submanifold of M of dimension n — 3 since 7> must act effectively on
fibre of the normal bundle of F(M, H,) in M. Let U be a closed, invariant
tubular neighborhood of E(M, H,), 9U the boundary of U. Then we have
H*(M, M — U, Z,) ~ HU, 3U, Z,) by excision and H*(U,dU; Z,) =
H, (U Z,)~H,, (F(M, H); Z,) =0 by Poincaré¢ duality, and hence
we have in the exact sequence

HXM, M - U; Z,) » HX(M; Z,) SH*(M — U, Z,)

that i, is injective and hence it is sufficient to prove i*(A(M) — wy(M))
=0, thatis A(M — U) = wy(M — U).

By doubling M — U as in Lemma 1 we see that it is sufficient to
consider compact manifolds without boundary having isotropy subgroups
H,,...,H,. Repeating this argument a finite number of times removes all
isotropy subgroups isomorphic to 72, If H_ is isomorphic to 72 and if
E(M, H) = ¢ for H isomorphic to 7> then E(M, H,) = F(M, H,) is a
closed invariant submanifold of codimension four and hence
H, (F(M, H); Z,) =0 as before and we may repeat the argument.
Continuing in this manner, we remove next F( M, H) for H isomorphic to
S' X Z,, since codimension F(M, H) is four in this case and finally we
remove the components of F(M, H), H isomorphic to S', whose codimen-
sion is four. O

3. Two special cases.
PROPOSITION 3. Let T" act effectively and smoothly on the closed

orientable manifold M"*> with all isotropy subgroups finite. Then wy(M) =
A(M).
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LEMMA 4. With the same hypothesis of Proposition 3, M"*3/T" is a
closed orientable 3-manifold.

Proof. Let m: M"*3 - M"*3/T" denote the orbit map. To give a
chart (U, ¢,) in M"*3/T" it is sufficient to give a smooth invariant map
¢ 7 (U) - R’ If x € M with T" = e then the slice at x, S, is diffeo-
morphic to R® [1], and we take U=T" X S, ¢: T"X S - S =R If
T'=2Z, then S, =~ C X R with g € Z, acting linearly on C X R via
g(z, 1) = (&z, t) for £ an mth root of unity. Define ®: 7" Xz S, > CXR
via (X, z,t) = (2", t).

To prove that M/T" is orientable we note that 7" acts freely on

M- U, . F(M, H) so that (M — U,_,F(M, H))/T" is orientable
and U, F(M, H)/T" consists of isolated curves in M/T" so M/T" is
orientable also. O

Proof of Proposition 3. Let x € H,(M; Z,) and let x be represented by
a submanifold Q2 C M [6]. We must show (wy,(M), Q)= ( A(M), Q).
We may assume that Q intersects each fixed point set F( M, H) transver-
sally, that 0 N U, F(M; H) = {p,,...,p,}, and that in a neighbor-
hood of an intersection point p, € Q N F(M, H,), Q coincides with a
fiber of a tubular neighborhood. More precisely, there is a slice at p,,
S, = C X R and a neighborhood U, of p, in @ with U, C CX 0. To
compute (wy(M), Q) we split T(M)/Q as 9" @ 9? where 67" is a
trivial bundle and then (wy(M), Q)= (w(n?), 0)= (x(n*), Q)=
number of zeroes of a generic section of n? mod 2, where x denotes the
Euler class. First note that we have a splitting (M) = 6" ® & where 6",
the bundle of tangents to the orbits, is trivial since all isotropy subgroups
are finite. We must now split £/Q = *> ® 0'. We have dn: T(M) -
T(M/T") is an epimorphism with kernel 6" off the fixed point sets;
therefore dm: ¢ - T(M/T") is an isomorphism off the fixed point sets,
and at a fixed point x of H, dm,  has rank 1. Since every orientable
3-manifold is parallelizable by Stiefel’s theorem [5], we can find vector
fields X|, X,, X; which are linearly independent at every point of M /T".
Around each point p, we can choose a slice S, = C X R with coordinate
functions (z, t) such that 7(S, ) is a coordinate chart of M/T" at n(p,)
with coordinate functions (w,t) where #(z,¢t) = (z™,t). So we can
consider in 7(S,) the vector fields d,/9x, d/dy, d/d¢ where w = (x, y).
Since, up to permutation of the indices, the frame X, |7(S,), X, |7(S,),
Xy |7(S,,) is homotopic to the frame 9,/9x, 9,/9y, 3/3: we can modify the
vector fields X, X,, X5 to X, X, X; so that in the neighborhood 7(S, )
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we have X, = 9/dx, X, = 9/dy, X, = 3/0t. Note that the vector field ¥,
on S, given by Y, = 9/0¢ satisfies dw(y,) = X,. Then on Q — P, we have
a well defined nonzero vector field Y, that corresponds via dm to the
vector field X,, since d is an isomorphism off the fixed point set.
Restricting the vector field Y, to U, we have that Y, = Y, in U, — {P,}. So
Y, extends to a nonzero vector field Y in Q. Let us use this vector field to
split £|, ~7>® 0. Now Z =dn"'(X)) is a section of #*|Q — {P).
Denoting by x, the index of Z at P, we have that x(n*)mod2 =
2/_yx;mod2. The map = restricted to U, is given by 7(z) = z™ and
dn(Z) = d/0x for Z| U, — p,. Writing this in a matrix form we have

A)=03)

where z = re® and Z = (z}, z3) so in Uj the vector Z can be written in the
form Z = (1/m,r™)(cos(m; — 1)8, —sin(m; — 1)@) which shows that the
degree of Z at p,is 1 — m,. Then x(n*)mod 2 is the number of p,’s mod 2
such that m, is even. O

. | cos(m; —1)8 —sin(m; — 1)
mrm
! sin(m, — 1)8  cos(m; — 1)8

LEMMA 5. Let m: E™"*3 — B""! be a smooth T" vector bundle v such
that
G) F(E™*3, H) = E(E"*3, H) = B"*" for some H = S,
(ii) E is an orientable manifold,
(iii) T" acts effectively on E"*'.
Then wy(E"*%) = A(E"*>) = D(B"*).

Proof. Since H acts effectively on the fibers of E by (iii), 7" = e for
x & B and hence A(E""?) = D(B"*'). We have T(E) = #*(T(E)|B) =
7*(T(B) ® v). Since H =~ S' acts effectively on E, E has a complex
structure and is hence orientable and thus B is orientable and w,(E) =
7*(w,(B) + wy(v)). Since T"/H =~ T"~! acts freely on B, B/T" ' is an
orientable 2-manifold and thus w,(B/T""') = 0. From the fibration p:
B — B/T"" ! we have that T(B) = p*T(B|T""") ® T, where T, the
tangent bundle along the fibers is a trivial bundle [1] and hence w,(B) =
p*wy(B|T"" ") = 0. Thus w,(E) = m*w,(»). Now any z € hy(E; Z,) can
be written as z = i,z’, z’ € Hy(B; Z,) and z’ can be represented by a
2-manifold Q C B. Then

(A(E),z)= (D(B),z)= Q th Bmod 2
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and
(w(E), z)= <7r*w2(1/), i*z’>= <w2(v), w*i*z’>
= (w(»), /)= (m(»10), 2)= (x(»10). Q)

= number of zeroes mod 2 of a generic section s,

where x denotes the Euler class. But this generic section can be used to
put Q in general position with respect to B and the number of points in
the intersection s(Q) N B is just the number of zeroes of the section. [J

4. Proof of Theorem.

DEFINITION. A T" manifold M"*? is said to be a nice 7" manifold if
(i) M is closed and orientable,
(ii) every isotropy subgroup is cyclic or isomorphic to S,
(iii) for H isomorphic to S', such that E(M, H) # ¢, E(M, H) has
codimension two,
(iv) for every component F of E(M, H), H isomorphic to S,
wy(v»(F, M)) # 0 where »(F, M) is the normal bundle of F in M.

LEMMA 6. The theorem is true for nice T" manifolds.

Proof. Let E be a tubular neighborhood of U, _¢ E(M, H) with
boundary 9dE. Consider the cohomology Mayer-Vietoris sequence for
(M, E, M — E) with Z, coefficients

_ iy
SH(E)® H(M—-E)" > H'(OE) > HX(M)

"5 HY(E) ® HY(M — E).
By Proposition 3, j*wy(M) = wy(M — E) = A(M — E) = j¥A(M), and
by Lemma 5 j¥w,(M) = wy(E)= A(E) =j*A(M), hence wy(M) —
A(M) € image 8. To prove the lemma it suffices to show i¥: H'(E) —
H'(3E) is onto and hence that § = 0. To prove that i} is onto, we
consider the Gysin sequence for one component «: E, — F of the vector
bundle E - U,_a E(M, H)

- H'(E) SH'(3E) S H(E) S H(E,)

and note that H%(E|) =~ Z, since E, is connected and that a(1) =
7*w,(v(F, E))) [2}, and 7*w,(»(F, E,)) # 0 by condition (iv). Hence «a is
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1-1, B is zero and i¥|H'(E,) is onto. Taking direct sums over the
components of E yields i¥: H'(E) - H'(3E) is onto. O

To complete the theorem we need one final reduction lemma.
LEMMA 7. It is sufficient to prove the theorem for nice actions of T".

Proof. We shall show that for any smooth effective action of 7" on an
orientable manifold M"*? and any x € H,(M; Z,) there exists a nice
action of T" on a manifold M"*® and an % € Hy(M, Z,) such that
(wy(M), x)= (wy(M), %) and (A(M), x)= (A(M), %). Clearly that
will prove Lemma 7.

We may assume, by Lemma 2, that the action of 7" on M" "3 satisfies
the niceness conditions (i), (ii) and (iii). Let x be represented by a closed
submanifold Q% C M"*? which is transverse to F(M, H) for every isot-
ropy subgroup H isomorphic to S'. To construct the manifold M we will
first choose an invariant neighborhood U of Q2 and then construct M so
that U is contained in M. The class £ will then be represented by
Q C U C M. Clearly then

(A(M),i,0)= (i*A(M), Q)= (A(U), Q)= (j*4(M), Q)
and
(wy(M),i,0)= (i*wy(M), Q)= (wy(U), Q)
= (j*wy(M), Q)= (wy(M), j.0)

where i: U = M, j: U = M are inclusions.

Since Q is transverse to U, F(M, H) the intersection is finite, say
{P,,...,P}. Also for any isotropy subgroup H =~ S', F(M, H) is an
(n + 1)-dimensional oriented closed manifold with free action of 7" /H =~
T" ' hence F(M, H)/T" is a 2-manifold and =: U, _g F(M, H) -
Uyt F(M,H)/T" is a union of principal 7”~' bundles. Choose
neighborhoods V; of #(P,) in F(M, H)/T" with V, diffeomorphic to the
open disc D% Then #~'(V;) = T"/H X V,. Let C= U, _x F(M, H) —

"_, 7 (V;). Note that C is compact and invariant and hence M — C is
an open invariant neighborhood of Q. Let U be an open invariant
neighborhood of 9, Q CUC M — Csuchthat UCM — Cand Uis a
manifold with boundary and let M'*3 = double of U= U U,;U =
d(U XI). Note that M, is not a nice 7" manifold, in fact, the normal
bundle of every fixed point set F(M,, H) in M, is trivial. But M, does
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have the property that H?(F, Z,) # 0 for any component F of a fixed
point set F(M,, H), H=S'. (One could have a T2 action on M°> for
example, with F(M°, H) =~ §3). To prove the last statement we note that

U FU,H)c U F(M—C,H)= U T"/H, XV,
H=S"' H=S§" i=1

and hence
U FO.H)= U T"/H X W,

H=S! i=1

for W, a compact 2-manifold with boundary C V, = D?. Thus

U F(M,, H) = U T"/H, X (W, Uy, W,)
H~S! 1=1

and

H(W, Uaw, Wis Z,) #0.

To construct the manifold M we shall modify the manifold M, by
twisting the normal bundle at each component of each fixed point set
F(M, H), H=S' to satisfy condition (iv) of niceness. Let F,,...,F, be
the components of U, o F(M, H) and let {p,....p,} = Q0N
U, . F(M,, H) with p, € F,, F, a component of F(M,, H;). Choose
q; € F; so that p, and ¢, are on different orbits. Choose a tubular
neighborhood C, of the orbit g,, diffeomorphic to 7" X, C X D?.

Let

M, = (Ml - U c,') U,
i=1 i=1
where

C/=T"%X,CR2)X D>  C'=T"x,C(1)x D,

where C(r) denotes the closed disk of radius r in C, and f: T” X u C(1) X
dD? - T" X ,; C(2) X dD* is given by f(t, z,0) = (1, ¢'’z, §). Note that
F(M,, H) = F(M,, H,)). See Figure 1.
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Finally M is constructed by choosing M; C M, so that M, is a manifold
with boundary and U ,,_q F(M,, H) C int M,, U C M, and setting M =
double of M. M clearly satisfies conditions (i), (ii) and (iii) of niceness
and Q C U C M. So we need only show that condition (iv) is satisfied. To
that end we note that »( F(M,, H,)) is a trivial bundle and therefore has a
nonvanishing section X. Then, in M,, we have a nonvanishing section of
v(F(M,, H)), M,))| F(M,, H) — T"/H, X D?. Recall that F(M,, H) =
T"/H X (W, U, W) = T"/H X B* where B?is a closed 2-manifold.
We shall show that (w,(v(F(M,, H,), H,), B*)+# 0. The section X
restricts to a section of »(F(M,, H,), M,)| B> — D? and we want to look
at this section in local coordinates on D2 Then X: D2 — C has the form
X(0) = e"X(0) where deg X = 0, X: 3D* > C — {0}, since X extends to
D? C M, and therefore deg X(6) = 1 and hence extending X generically
gives ( x(»(F(M,, h,)), B*) # 0 where x is the Euler class. O
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