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For a locally compact group G let L\G, ωλ) be the weighted group
algebra. We characterize elements g E U(G, ωλ) for which the operator
Tg(f) = / * g (/ E L](G, ωλ)) is compact We conclude a result due to
S. Sakai that if G is a locally compact non-compact group, then 0 is the
only compact element of L](G, λ), and a result due to C. Akemann that
if G is a compact group, then every element of L\G, λ) is compact.

In a recent paper ([2], Theorem 2.2) W. G. Bade and H. G. Dales,
among other things, characterize compact elements of L\R^, ω). Niels
Gr#nbaek, in his Ph.D. thesis ([6] Proposition 2.4), for a large class of
semigroups (including cancellation semigroups) characterizes compact ele-
ments of the discrete weighted semigroup algebras.

In this paper, we characterize the compact elements of the weighted
group algebras of locally compact groups. S. Sakai has proved that if G is
a locally compact non-compact group, then 0 is the only compact element
of Lι(G, λ), (see [10], Theorem 1), and C. Akemann has proved that if G
is a compact group, then every element of L\G, λ) is compact ([1],
Theorem 4). These two results will immediately follow from our char-
acterization of the compact elements of the weighted group algebras. Also,
a technique somewhat similar to ours provides other proofs for the
Bade-Dales theorem (for bounded ω) and the theorem of Gr#nbaek.

By a weight function on a locally compact group G we mean a
positive and continuous function ω on G such that ω(st) < ω(s)ω(t)
(s, t E G). If λ is a left Haar measure on G and ω is a weight function on
G, we set

L\G, ωλ) = {/: ||/|| = £\f(t)\ω(t) dλ(t) < oo}.

Then, L\G, ωλ) is a Banach space: as usual, we equate functions equal λ
almost everywhere. Under the convolution product defined by the equa-
tion

(/* g)(χ) = / f(xy~l)g(y) dλ(y) (/, g e LX(G9 ωλ))
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Lι(G, ωλ) becomes a Banach algebra. We call an element g E LX(G, ωλ)
compact if the operator Tg(f)=f*g ( / E Lλ(G, ωλ)) is a compact
operator.

Now we state the main result of this paper.

THEOREM 1. An element g E Lλ(G, ωλ) is compact if and only if the
function Fg defined on G by

(1.1) Fg(s) =

vanishes at infinity.

Before we proceed to prove Theorem 1, we let C0(G, ω) be the Banach
space of all complex functions/on G such that//ω E CQ(G)9 and where
the norm is taken to be

sup ---•'-
xEG «(*)

Let M(G, ω) be the Banach space of all complex regular Borel measures μ
on G such that

then by the pairing (μ, ψ> = fc ψ(x) dμ(x) (μ E M(G, co), ψ E C0(G, ω))
we have (C0(G, co))* = M(G, ω) and we can define the product of μ,
y E M(G, ω) by

U(x)d(μ*v)(x) = [ U{xy) dμ(x) dv(y) (ψ E C0(G, ω))

to make M(G, ω) a Banach algebra. The map /-» μ/5 where dμf(x) —
f(x) dλ(x) defines an isometric isomorphism from L\G,ωλ) into
M(G, co), and LX(G, ωλ) can be identified with a closed ideal of M(G, co).
We define the topology (so) on M(G, co) as follows: for a net (μα) C

(so) || J|

M(G, co) we let μα -> μ if and only if μ α * / - ^ μ * / , for every / E

L !(G, ωλ), (see [4] and [5]). The algebra Lι(G, ωλ) possesses a bounded

approximate left identity (see [8], p. 84).
The proof of the next lemma is formally the same as the proof of

Theorem 20.4 of [7] and is therefore omitted.
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LEMMA 1. The map x -* \/ω(x)δx from G into M(G,ω) is (so)
continuous.

LEMMA 2. An element g E L\G, ωλ) is compact if and only if it is a
compact element of M(G, ω).

Proof. Suppose that the operator Tg(f)=f*g (fEL\G,ωλ)) is
compact. It is to be shown that the operator Tg(μ) — μ * g (μ E M(G, ω))
is compact.

Let {fa: a E A] be a bounded approximate left identity for L\G, ωλ).
Ifμ EM(G,ω), then

Tg(μ) = μ * g = lim μ * fa * g = lim Γg(/ι * / J .

Hence the set {Tg(μ): \\μ\\ < 1} is contained in the norm closure of the set
{Tg(μ * fa): \\μ\\ < 1, α E 4̂}, which is compact by compactness of Tg.
Thus, Tg is compact.

The converse is obvious, since L\G,ωλ) is a closed subspace of
A/(G, ω) and is invariant under 71 the restriction of which to Lι(G, ωλ)
is Tg.

Proof of Theorem 1. Suppose g is a compact element of L\G, ωλ),
then by lemma 2 it is a compact element of M(G, ω). If the function Fg

defined by (1.1) does not vanish at infinity, then there exists an a > 0
such that for every compact set K C G, there exists s & K, with

(1)

The set % of all compact subsets of G is a directed set under set
inclusion. For each K E X, choose s(^) £ ,SΓ such that

(2)
_ c ω(s(K)t)

ho, \g(t)\dλ(ή > a.

Thus, we obtain a net {s(K): K E X} the terms of which satisfy (2). By
the boundedness of the net

and compactness of Tg9 there exists a subnet

1
: i E /, >
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and a measure μ such that

(3)
1

ω(s(K,))

From (2) and (3) it follows that ||μ|| > α, whence there exists ψ E C0(G, co)

with Hψll = 1 and with

(4) \(μ

By (3)

(5)

From (4) and (5) it follows that there exist z0 E /, such that for / > z0, we

have

(6) C^§W^"^ = \τ'( 1 >ί
Choose h E L\G, ωλ) with compact support Kh and such that ||g — h\\ <

a/4. Then

(7)
1 1

«(i(jsr,))

COl
\g(y) - h(y)\dλ(y)

\g(y) - h(y)\dλ(y)

Hence, for / > z0, by (6) and (7), we have

(8)
1

a

α
4"

Now, let Kφ E %, be such that

a
4(1 + \\h\\) '
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for z £ Kψ. Choose i > i0 such that Kt D K^Kj,1. Then s(Kt) satisfies (8).
But, if y E Kh, then s(Kj)y & Kφ, whence

a
4(1 + ||Λ||) '

Thus,

(9)

IΛ
v(s(Kt)y)

ω{s(Kt))
h(y)dλ(y)

a
4(1 + \\h\\)

a

which contradicts (8). Thus, Fg vanishes at infinity.
Conversely, suppose that the function Fg defined by (LI) vanishes at

infinity. If g = 0, then it is obviously a compact element. If g φ 0, then
the vanishing of Fg at infinity implies that G is σ-compact. In fact, if for
each positive integer n we let Kn be a compact subset of G such that

\F

g(
x) \< ι/n f o r x & κn> t h e n i f x e G> w e h a v e Fg(χ) ^ °? whence for

some positive integer n we have \/n < Fg(x). Hence x E Kn, which
implies G — U^= 1 AΓ̂ . By Lemma 2 it suffices we prove that the operator
7̂ (/x) = μ * g ( μ 6 M(G, ω)) is compact. The operator Tg is the adjoint of
the operator Rg defined on C0(G, ω) by

{Rgf)(χ) = fcf(χy)g(y) d\(y) ( / e C0(G,«), x e (?).

The map T: C O (G, ω) -* C0(G) defined by (T/)(JC) = / ( J C ) / « ( X ) (JC e G)
is a (linear) isometry. Therefore, it suffices to show that the operator
Rg - τRgτ~\ defined on C0(G) by

Rg(f)(χ) =

is compact.
Let (/„) be a bounded sequence in C0(G), and (Kn)™=λ be as defined

earlier. We note that Kn C Kn+U n= 1,2,....
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First we show that the sequence (Rgfn) has a subsequence the
restriction of whose terms to Kx converges uniformly to a function
hx E C(KX). Let s E Kx and (sa) C Kx be a net converging to s. Then,

< sup

sup
5

Λ1*

as 5α -> s uniformly in (/„), (by Lemma 1). Also the sequence (Rgfn) is
uniformly bounded on Kλ. Thus, by the Ascoli-Arzela theorem ([3],
Theorem 7, p. 266) the set of restrictions of the terms of (Rgfn) to Kx is a
conditionally compact subset of C(KX), whence there exists a function
hλ E C(KX) and a subsequence {RgfXyk) such that Rgf\^ -* Λl9 as A: -» oc,
uniformly on Kx.

Let us now consider sequences Sx, S29 S39..., which we represent by
the array

s\: Rgf\,\ Rgf\a R

gf\,3 ' " •

S2: Rgfl,\ Rgfl,2 Rgfl,2> ' " •

S3'Rgf3,\ Rgf3,2 Rgf3,3 Rgf3,4''

and which have the following properties:
(a) Sn is a subsequence of Sn_,, for n — 2,3,4,
(b) (Rgfn k)9 when restricted to Kn9 converges uniformly to a function

(c) The order in which the functions appear is the same in each
sequence.

Thus, Λw+1 is an extension of hn from Kn to Kn+λ9 and from the
definition of R (fn)(x) we have

| ^ , fσrxe(Kn+ι\Kn),n= 1,2,3,....
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Consider the diagonal array

S : Rgfl,\ Rgf2,2 Rgf3,3

By (c), the sequence S (except possibly its first n — 1 terms) is a subse-

quence of Sn for n = 1,2, Hence (b) implies that (Rgfnn) converges

uniformly on Kt to hι, E C{Kt), i = 1,2, Now, if h is a function on (?,

the restriction of which to Kt is equal to hi9 then Rgfn n-+ h, uniformly on

G, and the proof is complete.

REMARK. Our method of finding the convergent subsequence (Rgfnn)

is similar to the well-known process of finding a pointwise convergent

subsequence of a pointwise bounded sequence of functions defined on a

countable set, (see [9], Theorem 7.23).

COROLLARY 1. If the group G is a compact group, then every element of

LX(G, ωλ) is compact.

For the special case ω(t) = 1 (t E G) we obtain:

COROLLARY 2. (C. Akemann [1], Theorem 4.) If G is a compact group,

then every element of Lι(G, λ) is compact.

COROLLARY 3. (S. Sakai [10], Theorem 1.) If G is a locally compact

non-compact group, then 0 is the only compact element of L\G, λ).

Proof. If g φ 0 is compact, then ||g|| =\Fg(x) \< ±\\g\\ for every x $ K9

where K is a proper compact subset of G, a contradiction.
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