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MUNEHIKO ITO

We show that every closed image of a hereditary M, -space is
hereditarily M,. This answers positively G. Gruenhage’s question.

1. Introduction. J. Ceder [3] introduced the M,-spaces, i = 1,2,3
and proved that M, = M, = M,. He asked whether the converses hold. G.
Gruenhage [4] and H. Junnila [8] independently proved that M, = M,.
Recently R. Heath and H. Junnila [6] showed that every M;-space is the
image of an M,-space under a perfect retraction. Thus M, = M, if and
only if for every M,-space, every closed image of the space is M,.
However, in general, it is not known whether the closed image of an
M,-space is M,.

G. Gruenhage [5] proved that the closed image of an M,-space X with
the property (*) is M,.

(*) Whenever H and K are closed subsets of X with H C K, then H has
a o-closure preserving outer base in K.

If an M,-space X has the property (*), then every closed subspace of X is
M,. He then posed the following question.

If every closed subspace of a space X is M|, is every closed image of X
also M,? ([S], Question 3.4.)

The aim of this paper is to give a positive answer to this question.

Secondly, we study the class of spaces with a o-almost locally finite
base which was introduced by K. Tamano and the author [7]. This class is
contained in the class of M,-spaces and contains every metrizable space
and every M,-space. Recently G. Gruenhage [5] proved that every F-
metrizable M;-space is M,. In §3 we shall show that every countable
dimensional F,-metrizable M;-space has a o-almost locally finite base.

All spaces are assumed to be regular 7, and maps to be continuous.
The letter N denotes the positive integers. For undefined notion see [S].

2. Main results. Let X be a paracompact o-space. If every closed
subset of X has a o-closure preserving outer base, then X is an M,-space.
However, it is not known whether every closed subset of an M;-space has
such a base. Our first theorem shows that every closed subset of a
hereditary M,-space has a closure preserving outer base. This result leads
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us to the main theorem. To prove the first theorem we start with the
following lemma.

LEMMA 2.1. Let X be a space, U a clopen set of X and % a closure
preserving family of subsets of X. Then { B N\ U: B € B} is closure preserv-
ing in X.

Proof. Let B’ C P and x & U{CAB N U): B€R').If x & U, then
obviously x € CLU{B N U: B € ®'}. Let x € U. Then for every B € %',
x & C1B. Hence x € CLU{B N U: B € %'}.

The following results are well known and the proofs are omitted.

LemMMA 2.2. Let X be a space, S a regular closed set of X and T a
regular closed set of S. Then T is a regular closed set of X. Thus every
closure preserving family of regular closed sets of S in S is a closure
preserving family of regular closed sets of X in X.

LEMMA 2.3. Let X be a space. Then X is an M,-space if and only if X
has a o-closure preserving quasi-base consisting of regular closed sets of X.

THEOREM 2.4. Let X be an M,-space such that every regular closed
subspace of X is M,. Then every closed set of X has a closure preserving
outer base.

Proof. Let F be a closed set of X. Take a family {H,: n € N} of
regular closed sets such that

X=HDOIntH, DH,D -, (1 H =F.

neN

Set
S, = Cl(IntFU (U {H,, , — Hypin EN})); and
S,=Cl(Int FU (U (H,, — Hy,i:n ENY)).

Then S, and S, are regular closed sets of X and cover X. Fori = 1,2, let
U, cn B,(i) be a o-closure preservig quasi-base of S, such that for every
n€N,B (i) CB,, (i) and every B € B, (i) is a regular closed set of .
Set

@, ,={BNH,,_:BEB(l)},n € N;and
&, ={BNH,:BERB,(2)},nEN.
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Then for each n € N, H,, | and H,, are respectively clopen sets of S,
and S,, so by Lemma 2.1, @,, , and @,, are respectively closure preserv-
ing families of regular closed sets in S, and S,. By Lemma 2.2, every @, is
a closure preserving family of regular closed sets of X in X. Set

(@,:« € D) = {@:@c Ue,Fcint u@}; and

nenN
QA = {Uaz U@a:aED}.

To prove that QU is closure preserving, let ¢ # D’ C D and x &
U{ClU,: « € D'}. Then x & F, so there exists a unique # € N such that
x€ H,—H,,, Then

X eCl(H,hL1 N ( U (U, a ED’})); and

(U {Usaen))—H,, c U {A:A e( U @a) n( U @,)}.
aED’ i=1
For each 4 € (U ., @) N (UL, &), x&ClA. Since U @, is
closure preserving,

xezc1( U {A:AE( U @a) N ( L'_ZJ@,.)}); and

x€Q(( U (UsaeDy) —H,,).

Therefore x & CI(U {U,: « € D'}).

To prove that Q' is a quasi-outer base of F, suppose F C W and W is
open. For each x € Fwe define@, C U, _, @, as follows. If x € S, N S,,
then there exist n € N, B(1) € B,(1) and B,(2) € B,(2) such that x €
Intg B(1) C B(1) C Wand x € Intg B(2) C B,(2) C W. Define

G)’x = {Bx(l) N HZn—l’ Bx(z) N HZn}'

If x€ S8, —S,, there exist n € N and B/(1) € B,(1) such that x €
Intg B(1) C B(1) C W. Define

€. = {B.(1) N H,,_,}.

If x €S, — S, then we define analogously @,. Let € = U{@,: x € F}
and U= U@. ThenU €U and FCIntUC U C W.

Let A = {IntU,: a« € D}. It is easy to show that for every a € D,
Cl1U, = Cl(Int U,). Then clearly QL is a closure preserving outer base of F
and the proof is completed.
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The proofs of the following two theorems are straightforward, and are
thus omitted.

THEOREM 2.5. Let X be an M,-space with dim X = 0. Then every closed
set of X has a closure preserving outer base.

THEOREM 2.6. Let X be a space and {S,: « € D} a locally finite cover
of X consisting of regular closed M,-subspaces. Then X is an M-space.

COROLLARY 2.7. Let { X,: a € D} be a family of M,-spaces such that
each X, satisfies one of the following conditions.

(1) Every regular closed subspace of X, is M,.

(2) dim X, = 0.

(3) X, is first countable.
Then for every p € B, X,, &, is M,. (Here B, X, is the box product space of
{X,: @ € D} and &, is the subspace {x € B, X,: x, # p, for at most finitely
many o} of B, X,.)

Proof. This follows from Theorem 2.4, 2.5 and [10], Theorem 3.1.

Before stating the main theorem of this paper, we note the following
lemma holds. Then a space X is hereditarily M, if and only if every closed
subspace of X is M,. Therefore Theorem 2.9 is a positive answer to G.
Gruenhage’s question ([5], Question 3.4).

LEMMA 2.8. Every dense subspace of an M,-space is M,.

Proof. This follows from the fact that the closure of an open set is
equal to the closure of the intersection with a dense subset.

THEOREM 2.9. Let X be a hereditary M,-space. Then every closed image
of X is hereditarily M,.

Proof. Let f: X - Y be a closed onto map. It is enough to show that ¥
is M,. Let H and K be closed sets of X with H C K. Then K is hereditarily
M, and H is closed in K. So by Theorem 2.4, H has a closure preserving
outer base in K. Then X satisfies the property of [S], Theorem 3.2. Hence
by [S], Theorem 3.2, Y is M,.

Problem 2.10. Is the countable product of hereditary M,-spaces
hereditarily M,?
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More basically:

Problem 2.11. If X and Y are hereditary M,-spaces, is X X Y heredi-
tarily M,?

If the answer to Problem 2.10 is positive, then the class of hereditary
M -spaces is one giving a positive answer to [5], Problem 3.6.

3. Maps of spaces with a o-almost locally finite base. Recently K.
Tamano and the author [7] introduced the class of spaces with a o-almost
locally finite base. This class is contained in the class of M,-spaces and
contains every metrizable space and every M,-space. In this section we
shall prove that the class of spaces with a g-almost locally finite base is
closed under finite to one closed maps. As a corollary of this result, we
have every countable dimensional F,-metrizable M;-space has a o-almost
locally finite base.

DEFINITION 3.1. Let X be a space, x € X and @ a family of subsets of
X. @ is said to be almost locally fiite at x if there exist a neighborhood U of
x and a finite family % of subsets of X such that

{ANU:4 €@}
C {BNV:B €D, Vis aneighborhood of x}.

@ is said to be almost locally finite in X if @ is almost locally finite at every
x € X. Note that we can take X as above U.

Every locally finite family is of course almost locally finite and every
almost locally finite family is closure preserving. For other fundamental
results concerning almost locally finite families see [7].

LEMMA 3.2. Let X be a space and @ an almost locally finite family at
X € X. Then both {Int A: A € @} and {Cl A: A € @} are almost locally
finite at x.

Proof. By Definition 3.1, there exist a neighborhood U of x and a
finite family % of subsets of X such that

{(ANU:4 €8}
C {BNV:BE€R, Vis aneighborhood of x}.

LetANU=BNVwithd €@, BEB and V is a neighborhood of x.
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Then
IntdA=Int(BU (X—U))NnInt(4 U (UNV)); and
ClA=CI(BU(X—=U))N(Cl4 U Int(UN V)).
Therefore
{Int4: 4 € @}
C{Vnht(BU (X— U)):BeP, Vis aneighborhood of x};
and
(Cl4: 4 €@}

C{VNnC(BU (X—U)): BEB, Visaneighborhood of x}.
That completes the proof.
LEMMA 3.3. Let f: X — Y be a finite to one closed onto map and @ an

almost locally finite family of subsets of X. Then {f(A): A € @} is an
almost locally finite family of Y.

Proof. Lety € Yand f '(») = {x,,...,x,}. For each x, there exist a
neighborhood U, of x, and a finite family 9B, of subsets of X such that
{(ANU:4€@)
C {BN V:B €D, Vis aneighborhood of x,}.

We may assume {U;: i = 1,...,n} is disjoint and U, C U,. Set

B, = {B[Bl,...,Bn] :f(( L:J1 B,.) U (X~ L:_Jl U,));

B €EB,,i= 1,...,n}.

Then IGJ?)}, |<¥,. Let A € @. Then for each x,, there exist B, € B, and a
neighborhood V, of x, such that A N U, = B, N V,. There exists a neigh-
borhood V of y such that /~'(V) C U™_ (U, N V,). Then

VN B[B,,...,B] Cf(4) C B[B,,...,B)].

Set ¥, = VU (F(A) — (VN B[B,,...,B,])). Then

f(4) =V, N B[B,,...,B,];

>™n

B[B,,...,B] €%, ; and V,isa neighborhood of y.
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Therefore { f(A): A € @} is an almost locally finite family of Y and the
proof is completed.

THEOREM 3.4. Let X be a space with a o-almost locally finite base and f:
X - Y a finite to one closed onto map. Then Y has a o-almost locally finite
base.

Proof. Let U__, B, be a o-almost locally finite base of X such that
for each n € N, B, C B,,, and if B C B, then UB € B,. For each
n €N, let U, = {Int f(B): B € B,}. Then by Lemma 3.2 and 3.3, each
U, is almost locally finite in Y. It is easy to check that U __, U, is a base
of Y and the proof is completed.

COROLLARY 3.5. Let X be a F,metrizable M;-space with countable
dimension. Then X has a o-almost locally finite base.

Proof. By [9], Corollary 3, there exist a paracompact F,-metrizable
space Z with dim Z = 0, and a closed onto map f: Z — X such that for
every x € X, |f'(x)|< 8,. Since, in this case, X is M;, so is Z. Then by
[5]), Theorem 3.1, Z is an M,-space and has a g-almost locally finite base.
Hence by Theorem 3.4, X has a o-almost locally finite base.
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