Vol. 113, No. 2, 1984

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Imbedding punctured lens spaces and connected sums

Daniel Ruberman

Vol. 113 (1984), No. 2, 481–491
Abstract

We investigate codimension-one imbeddings of punctured lens spaces and connected sums of lens spaces. For |π1(L)| a prime power we show that L B2k1 imbeds in S2k if and only if L is of a certain special form. If L#Limbeds in S2k, then L Land L is homology cobordant to L. For |π1(L)| a prime power, this implies (via Smith-theory) that LL.

Mathematical Subject Classification 2000
Primary: 57R40
Milestones
Received: 6 September 1982
Published: 1 August 1984
Authors
Daniel Ruberman
Department of Mathematics
Brandeis University
MS 050
Waltham MA 02454
United States
http://people.brandeis.edu/~ruberman/