A CONSTRUCTION OF INNER MAPS PRESERVING THE HAAR MEASURE ON SPHERES

Boguslaw Tomaszewski
We show, for $n > m$, the existence of non-trivial inner maps f: $B^n \rightarrow B^m$ with boundary values $f_\partial: S^n \rightarrow S^m$ such that $f_\partial^{-1}(A)$ has a positive Haar measure for every Borel subset A of S^m which has a positive Haar measure. Moreover, if $n = m$, the equality $\sigma(f_\partial^{-1}(A)) = \sigma(A)$ holds, where σ is the Haar measure of S^m.

In this paper C^n is an n-dimensional complex space with inner product defined by $\langle z^1, z^2 \rangle = \sum z^1_i z^2_i$ where $z^j = (z^j_1, z^j_2, \ldots, z^j_n)$ for $j = 1, 2$, and the norm $|z| = \langle z, z \rangle^{1/2}$. Let us introduce some notation:

$$B^n = \{ z \in C^n : |z| < 1 \}, \quad S^n = \partial B^n;$$

let d be the metric on S^n:

$$d(z, z^*) = (1 - \text{Re}\langle z, z^* \rangle)^{1/2} = \frac{1}{\sqrt{2}}|z - z^*| \quad \text{for } z, z^* \in S^n,$$

and finally

$$B(z, r) = \{ z^* \in S^n : d(z, z^*) < r \} \quad \text{for } z \in S^n \text{ and } r > 0.$$

For every complex function $h: X \rightarrow C$ we define $Z(h) = h^{-1}(0)$. A holomorphic map $f: B^n \rightarrow B^m$ is called inner if

$$f_\partial(z) = \lim_{r \rightarrow 1} f(rz) \in S^m \quad \text{for almost every } z \in S^n$$

with respect to the unique, rotation-invariant Borel measure σ_n on S^n such that $\sigma_n(S^n) = 1$. If a continuous function $g: \overline{B}^n \rightarrow C^m$, defined on the closure of B^n, is holomorphic on B^n, we write $g \in A_m(B^n)$ or $g \in A(B^n)$ when $m = 1$. The theorem stated below is a generalization of the result of Aleksandrov [1]. Corollary 1 answers the problem given by Rudin [3]. Corollary 4 is a result of Aleksandrov obtained independently by the author.

THEOREM. Let $n \geq m$ and let $g = (g_1, \ldots, g_m) \in A_m(B^n)$, $h \in A(B^n)$ be maps such that $|g(z)| + |h(z)| \leq 1$ and $h(z) \neq 0$ for some $z \in B^n$. Then there exists an inner map $f = (f_1, f_2, \ldots, f_m): B^n \rightarrow B^m$ such that $f(z) = g(z)$ for every $z \in Z(h)$ and $f_i(z) = g_i(z)$ for every $z \in B^n$ and $i = 1, 2, \ldots, m - 1.$
COROLLARY 1. For every \(n \geq m \) there exist inner maps \(f: B^n \to B^m \) such that for every Borel subset \(A \subset S^m \) the inequality \(\sigma_n(f^{-1}(A)) > 0 \) holds provided \(\sigma_m(A) > 0 \). Moreover, if \(m = n \), the equality \(\sigma_n(f^{-1}(A)) = \sigma_n(A) \) holds and \(f \) is not an automorphism of \(B^n \).

COROLLARY 2. For every \(n \geq 1 \) there exist inner maps \(f: B^n \to B^m \), not automorphisms of \(B^n \), such that

\[
\int_{S^n} (h \circ f) \, d\sigma_n = \int_{S^n} h \, d\sigma_n
\]

for every continuous function \(h \) on \(S^n \).

Corollary 2 is an immediate consequence of Corollary 1. Let us assume that \(n \geq m \) and \(n \geq 2 \). To deduce the assertion of Corollary 1 from the Theorem let us take a holomorphic function \(k \in A(B^1) \) and the map \(g \in A_m(B^n) \), \(g(z) = p(z) + \frac{1}{4}z_n^2r(z_n) \), where \(p(z) = (z_1, z_2, \ldots, z_{m-1}, 0) \), \(r(z) = (0, \ldots, 0, k(z_n)) \) for \(z \in B^n \). Define \(h(z) = \frac{1}{4}z_1^2z_n^2 \). Then

\[
|g(z)| + |h(z)| \leq |p(z)| + \frac{1}{4} |z_n^2| + \frac{1}{4} |z_n^2| \leq \sqrt{1 - z_n^2} + \frac{1}{2} |z_n^2| \leq 1.
\]

By virtue of the Theorem there exists an inner map \(f = (f_1, f_2, \ldots, f_m): B^n \to B^m \) such that

1. \(f_j(z_1, z_2, \ldots, z_n) = z_j \) for \(j = 1, 2, \ldots, m - 1 \),
2. \(f_m(0, 0, \ldots, 0, z_n) = \frac{1}{4}z_n^2r(z_n) \),
3. \(f(z_1, z_2, \ldots, z_{n-1}, 0) = (z_1, z_2, \ldots, z_{m-1}, 0) \).

For any \(z \in B^{m-1} \) and \(l \geq m \) let

\[
B_z^l = \{ z^* \in B^l : z^*_j = z_j \text{ for } j = 1, 2, \ldots, m - 1 \},
\]

\[
S_z^l = \{ z^* \in S^l : z^*_j = z_j \text{ for } j = 1, 2, \ldots, m - 1 \},
\]

let \(\sigma_z^l \) be the rotation-invariant measure on the sphere \(S_z^l \) such that \(\sigma_z^l(S_z^l) = 1 \) and let \(f_z, f_z^* \) be the restrictions of \(f, f_* \) to the sets \(B_z^n \) and \(S_z^n \) respectively. From (1) it follows that \(f_z: B_z^n \to B_z^m \) and (2) says that \(f_z(w_1) = w_2 \), where \(w_1, w_2 \) are the centers of the balls \(B_z^n, B_z^m \) respectively. Since \(B_z^m \) is a one-dimensional complex ball, the equality \(\sigma_z^m((f_z^*)^{-1}(C)) = \sigma_z^m(C) \) holds for every Borel subset \(C \) of \(S_z^m \) and every \(z \) for which \(f_z \) is an inner map (see [4] p. 405). The function \(f_z \) is inner for almost every \(z \in B^{m-1} \) (with respect to the usual Lebesgue measure \(\lambda \) on \(B^{m-1} \)) because the map \(f \) is inner. Let us notice that there are positive functions
$s_1, s_2: R^{m-1} \to R_+$ such that for all Borel subsets $C^1 \subset S^n$, $C^2 \subset S^m$ we have

$$
\sigma_n(C^1) = \int_{B^{m-1}} s_1(z) \cdot \sigma^1_z(C^1) \, d\lambda(z),
$$

$$
\sigma_m(C^2) = \int_{B^{m-1}} s_2(z) \cdot \sigma^m_z(C^2) \, d\lambda(z),
$$

where $C^1_z = C^1 \cap S^n$, $C^2_z = C^2 \cap S^m$. Substituting $C_1 = (f^*)^{-1}(C_2)$ and using the equality $\sigma^m_z(C_1^1) = \sigma^m_z(C_2^2)$ (which holds for almost every z), it is easy to see that both of the above integrals are positive or equal to 0. If $n = m$ then $s_1 = s_2$ and the equality holds. This ends the proof of Corollary 1.

The following proof of the assertion of the Theorem is based on Löw’s construction of inner functions [3]. Let g and h be maps satisfying the assumptions of the Theorem. Then $\sigma_n(F) = 0$, where $F = Z(h) \cap S^n$. (This fact can be proved by induction. For $n = 1$ it is well-known theorem.) For $\delta > 0$ let

$$
F_\delta = \{ z \in S^n : d(z, F) < \delta \} \quad \text{and} \quad \| s \|_\delta = \sup_{z \in F_\delta} |s(z)|,
$$

where $s: S^n \to C^m$ is a continuous map. Observe that there exist constants A_1, A_2 such that for every $0 < r < \sqrt{2}$,

$$
A_1 r^{2n-1} \leq A(r) \leq A_2 r^{2n-1},
$$

where $A(r) = \sigma_n(B(z, r))$ for any $z \in S^n$.

Let $S \subset S^n$ be any closed subset of S^n, $\sigma_n(S) > 0$. Assume that for some number $r > 0$,

$$
\sigma_n(S_r) \leq 2\sigma_n(S),
$$

where $S_r = \{ z \in S^n : d(z, S) < r \}$. Let $\{ B(z^j, r) \}_{j=1}^{N(r)}$ be a maximal family of disjoint balls with centers $z^j \in S$. Since $S_r \supset \bigcup_{j=1}^{N(r)} B(z^j, r)$ and $S \subset \bigcup_{j=1}^{N(r)} B(z^j, 2r)$, applying inequalities (4) and (5), we get

$$
2\sigma_n(S) \geq \sigma_n(S_r) \geq \sigma_n\left(\bigcup_{j=1}^{N(r)} B(z^j, r) \right) = \sum_{j=1}^{N(r)} \sigma_n(B(z^j, r)) = N(r) \cdot A(r) \geq A_1 r^{2n-1} \cdot N(r)
$$
\[\sigma_n(S) \leq \sigma_n\left(\bigcup_{j=1}^{N(r)} B(z_j, 2r) \right) = \sum_{j=1}^{N(r)} A(2r) = N(r) \cdot A(2r) \leq N(r) \cdot A_2 \cdot (2r)^{2n-1} = N(r) \cdot A_2 \cdot 2^{2n-1} \cdot r^{2n-1}. \]

So we have proved the existence of positive constants \(C_1 \) and \(C_2 \) (\(C_1 = 1/2^{2n-1}, C_2 = 2/A_1 \)) such that

\[\frac{C_1}{r^{2n-1}} \cdot \sigma_n(S) \leq N(r) \leq \frac{C_2}{r^{2n-1}} \cdot \sigma_n(S). \]

Let us assume now that \(r > 0, z \in B^n, k \) is a natural number and \(M_k \) is the maximal number of disjoint balls of radius \(r \) and with centers in \(B(z, (k+1)r) \). Because these balls are included in \(B(z, (k+2)r) \), an argument similar to the above gives the estimate

\[M_k \leq C_3 k^{2n-1} \]

for some constant \(C_3 \). Let \(\varphi: (0,1) \to \mathbb{R} \) be the continuous, positive function defined by

\[\varphi(a) = \frac{1}{4\pi} \cdot C_1 \cdot A_1 \cdot \arccos(a) \cdot \left[\log \frac{1}{a} \right]^{(2n-1)/2}. \]

Lemma 1. Let \(0 < 2\varepsilon < a < b, 0 < \delta < 2C_3 \cdot a, \varepsilon < C_3 e^{-2n}, R < 1 \). Let \(P \) be a closed subset of \(F_\delta \) and let \(v \) be a continuous map \(v: S^n \to \mathbb{C}^m \) such that \(|v(z)| > a \) for \(z \in P \). There exists a closed subset \(K \) of \(F_\delta \) and a holomorphic map \(u: \mathbb{C}^n \to \mathbb{C}^m \) such that:

(a) \[\|v + h \cdot u\|_{\delta/2} \leq \max(1, \|f\|_{\delta/2}) + 3\varepsilon; \]

(b) \[\|u\|_R = \sup_{|z| \leq R} |u(z)| \leq \varepsilon; \]

(c) \[|v(z) + h(z) \cdot u(z)| > a - 3\varepsilon \quad \text{for } z \in K \cup P; \]

(d) \[K \subset F_\delta, \quad K \cap P = 0 \quad \text{and} \quad \sigma_n(K) \geq \varphi(a) \cdot \left[\log(4C_3/\delta \varepsilon) \right]^{-(2n-1)/2} \cdot \sigma_n(F_\delta - P); \]

(e) \[|g(z)| < \varepsilon \quad \text{for } z \in B^n - F_{\delta/2}; \]

(f) \[u_j \equiv 0 \quad \text{for } j = 1, 2, \ldots, m - 1, \text{ where } u = (u_1, u_2, \ldots, u_m). \]

Proof. If \(\sigma_n(P) = \sigma_n(F_\delta) \) then the map \(u = (0,0,\ldots,0) \) and the set \(K = \emptyset \) satisfy conditions (a)–(e). Let us assume that \(\sigma_n(P) < \sigma_n(F_\delta). \)
There exists a positive number γ such that $\gamma < \delta/2$ and
\[
\sigma_n(S) \geq \frac{1}{2} \cdot \sigma_n(F_\delta - P),
\]
where $S = S^n - [(S^n - F_\delta) \cup P]_\gamma$.

Since v, h are uniformly continuous maps and S is a closed subset, there exists a positive number γ^* such that
\[
|g(z) - g(z')| < \varepsilon \delta, \quad |v(z) - v(z')| < \varepsilon, \quad \sigma_n(S_r) \leq 2 \cdot \sigma_n(S)
\]
for $z, z' \in S^n, d(z, z') < \gamma^*$ and $r < \gamma^*$.

Let r, m be positive numbers such that $r \leq \frac{1}{2} \min(\gamma, \gamma^*)$, m is an integer and $mr^2 = \log(2C_3/\delta \varepsilon)$. Moreover we assume m is large so that
\[
C_2 \cdot m(2^{n-1})/2 \cdot e^{-m(1-R)} < \varepsilon.
\]

Choose a maximal family $\{ B(z^i, r) \}_{i=1}^{N(r)}$ of pairwise disjoint balls with centers $z^i \in S^n$. Because of (9), condition (5) is satisfied, so inequalities (6) also hold. For $k = 1, 2, \ldots, \left\lceil \sqrt{2}/r \right\rceil$ and $z \in S^n$ let
\[
V_k(z) = \{ z^i : kr \leq d(z, z^i) < (k + 1)r \}
\]
and let $N_k(z)$ be the number of elements of the set V_k. Since $V_k(z) \subset B(z, (k + 1)r)$, from the definition of M_k, we have $N_k(z) \leq M_k$ and (7) gives us
\[
N_k(z) \leq C_3 k^{2n-1}.
\]

Let $g(z) = \sum_{j=1}^{N(r)} \beta_j e^{-m(1-\xi(z, z^i))}$, where $\beta_j = (0, 0, \ldots, 0, \alpha_j, \in C^n$ is defined by $\beta_j = (0, 0, \ldots, 0, 0)$ if $|f(z^i)| \geq b$. If $|f(z^i)| < b$, then let β_j be of the previous form, such that
\[
|f(z^i) + h(z) \cdot \beta_j| = b \quad \text{and} \quad |f(z^i) + \alpha \cdot h(z) \cdot \beta_j| \leq b
\]
for every $\alpha \in C, |\alpha| = 1$. Let us notice that for every $j, |\beta_j| \leq 1/|h(z^i)| \leq 1/\delta$ and that
\[
g(z) = \tilde{k} \cdot \sum_{j=1}^{N(r)} |\beta_j| \cdot e^{-md^2(z, z^i)} \cdot e^{iQ_{m,j}(z)}
\]
\[
= \tilde{k} \cdot \sum_{k=0}^{\left\lceil \sqrt{2}/r \right\rceil} \sum_{z^i \in V_k(z)} |\beta_j| e^{-md^2(z, z^i)} e^{iQ_{m,j}(z)}
\]
for some real functions $Q_{m,j}$ and $\tilde{k} = (0, 0, \ldots, 0, 1) \in C^n$.

\[
CONSTRUCTION \ OF \ INNER \ MAPS \ 207
\]
If $V_{0}(z) = \emptyset$ or $z \in B(z', r)$ with $\beta_{j} = 0$ then, because of (11) and the inequality $mr^{2} > 2n$, we have

$$|g(z)| \leq \sum_{k=1}^{\left[\frac{r}{\delta}\right]} \sum_{z' \in V_{k}(z)} \frac{1}{\delta} e^{-m d^{2}(z, z')} \sum_{k=1}^{\left[\frac{r}{\delta}\right]} \frac{1}{\delta} |V_{k}(z)| e^{-m k^{2}r^{2}}$$

$$\leq \sum_{k=1}^{\infty} \frac{C_{3}}{\delta} k^{2n-l} e^{-k^{2}mr^{2}} \leq \sum_{k=1}^{\infty} e^{-kmr^{2}} \leq 2 \frac{C_{3}}{\delta} e^{-mr^{2}} = \varepsilon.$$

This proves part (e) of Lemma 1. If $z \in B(z', r)$ with $\beta_{j} \neq 0$ then

$$|v(z) + h(z) \cdot u(z)|$$

$$\leq |v(z') + h(z') \cdot \beta_{j} \cdot e^{-m d^{2}(z, z')} \cdot e^{2Q_{m,j}(z)}|$$

$$+ |[h(z) - h(z')] \cdot \beta_{j} \cdot e^{-m d^{2}(z, z')} \cdot e^{2Q_{m,j}(z)}| + |v(z) - v(z')|$$

$$+ |h(z) \cdot \sum_{z' \notin V_{0}(z)} \beta_{j} \cdot e^{-m d^{2}(z, z')} \cdot e^{2Q_{m,m}(z)}|$$

$$= I + II + III + IV.$$}

Because of (9)

$$III \leq \varepsilon \quad \text{and} \quad II \leq |h(z) - h(z')| \cdot |\beta_{j}| < \delta \cdot \varepsilon \cdot \frac{1}{\delta} = \varepsilon.$$}

By the same argument as in (12) we can prove that $IV \leq \varepsilon$. Moreover, we have $I \leq |v(z')| + |h(z') \cdot \beta_{j}| = b$. This altogether gives us

$$|v(z) + h(z) \cdot u(z)| \leq b + 3\varepsilon.$$}

Inequalities (12) and (14) prove part (a) of Lemma 1. Now we shall determine a certain subset V of $W = \bigcup_{j=1}^{N(r)} B(z', r)$. To do this let us fix j, $1 \leq j \leq N(r)$, and let $z = \alpha = |v(z_{j})|, s(z) = e^{-m d^{2}(z, z')}, Q(z) = \text{arg}(e^{-m(1-((z, z')))} = m \cdot \text{Im}(z, z').$

Let us assume at first that $\alpha < 1$. We define

$$V_{j} = \{z \in B(z', r): s(z) \geq \alpha \text{ and } \cos Q(z) \geq \alpha\}.$$}

Using the same notation as in (13) we can write

$$|v(z) + h(z) \cdot u(z)| \geq I - II - III - IV.$$
As before, II ≤ ε, III ≤ ε and IV ≤ ε. Assuming \(z \in V_j \), we have

\[
I = \left| \nu(z') + h(z') \cdot \beta_j \cdot e^{-m \cdot d^2(z, z')} \cdot e^{iQ(z)} \right| \\
\geq |\alpha + (1 - \alpha) \cdot s(z) \cdot e^{iQ(z)}| \\
= \sqrt{\alpha^2 + 2\alpha(1 - \alpha) \cdot s(z) \cdot \cos Q(z) + (1 - \alpha)^2} \geq a
\]

because of our assumption about \(s(z) \) and \(\cos Q(z) \), the definition of \(\beta_j \) and simple geometry.

Combining (15) and (16) we get

\[
|\nu(z) + h(z) \cdot u(z)| > a - 3\epsilon \quad \text{for } z \in V_j.
\]

Let \(\rho > 0 \) be defined by \(m\rho^2 = \log(1/a) \). Then \(\rho \leq r \) because \(mr^2 = 2C_2/\delta \epsilon \) and \(2C_2/\delta \geq 1/a \). So \(B(z', \rho) \subset B(z', r) \), and if \(z \in B(z', \rho) \) then \(s(z) \geq a \). The set \(\{ z \in B(z', \rho) : \cos Q \geq a \} \) consists of certain strips in the ball \(B(z', \rho) \). An easy geometric argument shows that these strips have a total area at least

\[
\frac{1}{2\pi} \cdot \arccos a \cdot \sigma_n(B(z', \rho)) = \frac{1}{2\pi} \cdot \arccos a \cdot A(\rho).
\]

Moreover \(V_j \subset B(z', r) \subset F_\delta \). Using inequality (4) and the fact that the above strips are included in \(V_j \), we get

\[
\sigma_n(V_j) \geq \frac{1}{2\pi} \cdot \arccos a \cdot A(\rho) \geq \frac{1}{2\pi} \cdot A_1 \cdot \arccos a \cdot \rho^{2n-1}.
\]

If \(\alpha \geq 1 \), we define \(V_j = B(z', \rho) \). Because \(\beta_j = 0 \), it follows from (12) that

\[
|\nu(z) + h(z) \cdot u(z)| \geq |\nu(z')| - |\nu(z) - \nu(z')| - |h(z) \cdot u(z)| \\
\geq a - \epsilon - |u(z)| \geq a - 2\epsilon
\]

for \(z \in V_j \).

Finally, we define \(K = \bigcup_{j=1}^{N(c)} V_j \). We observe that inequality (17) holds for \(z \in K \). If \(z \in P \), then \(V_0(z) = \emptyset \) and inequality (12) gives us

\[
|\nu(z) + h(z) \cdot u(z)| \geq |\nu(z)| - |u(z)| \geq a - \epsilon.
\]
This altogether proves part (c) of Lemma 1. It is easy to check that $K \cap P = \emptyset$. Inequalities (18), (6), (9) and the definitions of ρ and mr^2 yield

$$\sigma_n(K) \geq \sigma_n \left(\bigcup_{j=1}^{N(r)} V_j \right) = \sum_{j=1}^{N(r)} \sigma_n(V_j)$$

$$\geq N(r) \cdot \frac{1}{2\pi} \cdot A_1 \cdot \arccos a \cdot \rho^{2n-1}$$

$$\geq \frac{C_1}{r^{2n-1}} \cdot \sigma_n(S) \cdot \frac{1}{2\pi} \cdot A_1 \cdot \arccos a \cdot \rho^{2n-1}$$

$$\geq \frac{1}{4\pi} \cdot C_1 \cdot A_1 \cdot \arccos a \cdot (mr^2)^{-(2n-1)/2} \cdot (mp^2)^{2n-1} \cdot \sigma_n(F_\delta - P)$$

$$= \varphi(a) \cdot \log(4C_3/(\delta\varepsilon))^{-(2n-1)/2} \cdot \sigma_n(F_\delta - P).$$

This proves part (d) of Lemma 1. Finally, if $|z| \leq R$ then $\Re(1 - \left< z, z' \right>) \leq 1 - R$ for $j = 1, 2, \ldots, N(r)$. Because of the inequalities $mr^2 \geq 1$, (10) and (6), we have

$$|u(z)| \leq N(r) \cdot e^{-m(1-R)} \leq C_2 \cdot \frac{1}{r^{2n-1}} \cdot e^{-m(1-R)}$$

$$= C_2 \cdot m^{(2n-1)/2} \cdot e^{-m(1-R)} \cdot (mr^2)^{-(2n-1)/2}$$

$$\leq C_2 \cdot m^{(2n-1)/2} \cdot e^{-m(1-R)} \leq \varepsilon.$$

This proves part (d) of Lemma 1 and ends the proof.

Lemma 2. Let v be a continuous map $v: S^n \to \mathbb{C}^m$ such that $\|v\|_\delta < b < 1$ for some $\delta < C_3$. Let $\frac{1}{4} > \varepsilon > 0$, $R < 1$. Then there exists a holomorphic map $u: \mathbb{C}^n \to \mathbb{C}^m$ and a closed set $K \subset F_\delta$ such that:

(a') $\|v + h \cdot u\|_\delta < b + \varepsilon$;

(b') $\|u\|_R \leq \varepsilon$;

(c') $|v(z) + h(z) \cdot u(z)| > b - \varepsilon$;

(d') $\sigma_n(K) \geq \sigma_n(F_\delta) - \varepsilon$;

(e') $|u(z)| \leq \varepsilon$ for $z \in S^n - F_\delta$;

(f') $u_j \equiv 0$ for $j = 1, 2, \ldots, m - 1$, where $u = (u_1, u_2, \ldots, u_m)$.

Proof. Let $a = b - \frac{1}{2}\varepsilon$ and choose a sequence $\{\varepsilon_j\}$ satisfying the assumptions of Lemma 1 and such that $6\Sigma_{j=1}^{2} \varepsilon_j < \varepsilon$. We can assume $\varepsilon_j = A \cdot \exp\{-(\tau \cdot j)^{2/(2n-1)}\}$, $A = 2C_3/\delta$ and τ is some large number.
Apply Lemma 1 to the data $a, \epsilon, R, \nu, P = 0$ to produce a holomorphic map $u_\lambda: \mathbb{C}^n \to \mathbb{C}^m$ and a closed set $K_1 \subset F_\delta$ such that:

(a) $\|v + h \cdot u_1\|_{\delta} \leq b + 3\epsilon_1$;
(b) $\|v_1\|_{R} \leq \epsilon_1$;
(c) $|v(z) + h(z) \cdot u_1(z)| \geq a - 3\epsilon_1$ for $z \in K_1$;
(d) $\alpha_1 = \sigma_n(K_1) \geq \varphi(a) \cdot \left(\log\left(A/\epsilon_1\right)\right)^{(2n-1)/2} \cdot \sigma_n(F_\delta)$;
(e) $|u_1(z)| \leq \epsilon_1$ for $z \in S^n - F_\delta$;
(f) $u_j \equiv 0$ for $j = 1, 2, \ldots, m - 1$, where $u_1 = (u_1^1, u_2^1, \ldots, u_m^1)$.

Suppose that holomorphic maps $u_1, u_2, \ldots, u_{p-1}$ ($u_j: \mathbb{C}^n \to \mathbb{C}^m$ for $j = 1, 2, \ldots, p - 1$) have been chosen together with closed sets $K_1, K_2, \ldots, K_{p-1}$ such that if $W_i = \bigcup_{j=1}^{i} K_j$ then $K_{i+1} \cap W_i = \emptyset$ and $\sigma_n(K_i) = \alpha_i, K_i \subset F_\delta$. A map $u_p: \mathbb{C}^n \to \mathbb{C}^m$ and a closed set K_p is then obtained by applying Lemma 1 to the data $a - 3\sum_{i=1}^{p-1} \epsilon_i, \epsilon_p, R, v + h(z) \cdot (u_1 + u_2 + \cdots + u_{p-1}), W_{p-1}$. This produces a sequence $\{v_k\}$ of holomorphic maps $v_k: \mathbb{C}^n \to \mathbb{C}^m$ for $k = 1, 2, \ldots$ and a sequence $\{K_k\}$ of disjoint closed sets such that $K_k \subset F_\delta, \sigma_n(K_k) = \alpha_k$ and:

(a) $\|v + h \cdot \sum_{k=1}^{p} u_k\|_{\delta} \leq b + 3 \cdot \sum_{k=1}^{p} \epsilon_k < b + \epsilon$;
(b) $\left\|\sum_{k=1}^{p} u_k\right\|_{R} \leq \sum_{k=1}^{p} \|u_k\|_{R} \leq \sum_{k=1}^{p} \epsilon_k < \epsilon$;
(c) $|v(z) + h(z) \cdot \sum_{k=1}^{p} u_k(z)| \geq a - 3 \cdot \sum_{k=1}^{p} \epsilon_k$

$\geq a - \frac{1}{2} \epsilon = b - \epsilon$ for $z \in W_p$;
(d) $\alpha_p = \sigma_n(K_p)$

$\geq \varphi\left(a - 3 \cdot \sum_{k=1}^{p-1} \epsilon_i\right) \cdot \left(\log\left(A/\epsilon_p\right)\right)^{(2n-1)/2} \cdot \left(\sigma_n(F_\delta) - \sum_{k=1}^{p-1} \alpha_k\right)$

$\geq \varphi(a) \cdot \left(\log\left(A/\epsilon_p\right)\right)^{(2n-1)/2} \cdot \left(\sigma_n(F_\delta) - \sum_{k=1}^{p-1} \alpha_k\right)$;
(e) $\left|\sum_{k=1}^{p} u_k(z)\right| \leq \sum_{k=1}^{p} |u_k(z)| \leq \sum_{k=1}^{p} \epsilon_k < \epsilon$ for $z \in S^n - F_\delta$;
(f) $u_j^k \equiv 0$ for $k = 1, 2, \ldots, p$ and $j = 1, 2, \ldots, m - 1$,

where $u_k = (u_1^k, u_2^k, \ldots, u_m^k)$.
If $\Sigma_{k=1}^{\infty} a_k < \sigma_n(F_\delta)$, (d) shows that there is a constant C_4 such that for every positive integer k,

$$\alpha_p \geq C_4 \cdot \left[\log \frac{A}{\epsilon_p}\right]^{-(2n-1)/2} = \left[C_4 \cdot (\tau p)^{2/(2n-1)}\right]^{-(2n-1)/2} = \frac{C_4}{\tau p}. $$

This is impossible, because then $\Sigma_{p=1}^{\infty} \alpha_p = \infty$ and α_p are the measures of the disjoint sets. Hence, we may assume that $\Sigma_{k=1}^{\infty} a_k = \sigma_n(F_\delta)$. It follows that for p sufficiently large and $P = W_p$ we have $\sigma_n(P) = \Sigma_{k=1}^{p} \alpha_k > 1 - \epsilon$, which is part (d)' of Lemma 2. Letting $h = \Sigma_{k=1}^{p} u_k$, parts (a)', (b)', (c)', (e)', (f)' are just (a)$_p$, (b)$_p$, (c)$_p$, (e)$_p$, (f)$_p$. So we have proved the assertion of Lemma 2.

Assume now that g and h satisfy the assumptions of the Theorem. Then $\|g\|_\delta \leq 1 - \delta$. To prove the Theorem, take a sequence $\delta_1, \delta_2, \ldots$ of positive numbers such that $\delta_1 < C_3$ and $\delta_{i+1} < \delta_i/2$ and let $a_1 = b_1 = 1 - \frac{1}{2}\delta_1$, $\epsilon_1 = \min(\frac{1}{10}, \frac{1}{4}\delta_1)$, $R_1 = \frac{1}{2}$. Apply Lemma 2 to the data $g_1 = g$, b_1, δ_1, R_1 to get a map u_1 and a set $K_1 \subset F_\delta$ such that, for $p = 1$ and $g_1 = g$:

(i)$_p$ $\|g_p + h \cdot u_p\|_{\delta_p} < b_p + \epsilon_p < 1$;
(ii)$_p$ $\|u_p\|_{R_p} \leq \epsilon_p$;
(iii)$_p$ $|g_p(z) + h(z) \cdot u_p(z)| > b_p - \epsilon_p$ for $z \in K_p$;
(iv)$_p$ $\sigma_n(K_p) \geq \sigma_n(F_\delta) - \epsilon_p$;
(v)$_p$ $1 - |g_p(z) + h(z) \cdot u_p(z)|$

$$\geq \left(1 - \sum_{i=1}^{p} \epsilon_i\right)|h(z)| \quad \text{for } z \in S^n - F_\delta;$$
(vi)$_p$ $u_j^p \equiv 0$ for $j = 1, 2, \ldots, m - 1$ where $u_p = (u_1^p, u_2^p, \ldots, u_m^p)$.

Inequality (v) follows from (e)' of Lemma 2, because for $z \in S^n - F_\delta$, we have $|u_1(z)| < \epsilon_1$, so

$$1 - |v(z) + h(z) \cdot u_1(z)| \geq 1 - |v(z)| - |u_1(z) \cdot h(z)|$$

$$\geq |h(z)| - \epsilon_1 \cdot |h(z)| = (1 - \epsilon_1) \cdot |h(z)|.$$

Since $g_1 + h \cdot u_1$ is a continuous map on \overline{B}^n, there exists an R_2 such that $\frac{1}{2} + \frac{1}{2}R_1 < R_2 < 1$ and, for $p = 1$,

(vii)$_p$ $|g_p(R_{p+1} \cdot z) + h(R_{p+1} \cdot z) \cdot u_p(R_{p+1} \cdot z)| > b_p - 2\epsilon_p$

for $z \in K_p$.
Suppose we have inductively found holomorphic maps u_1, u_2, \ldots, u_p, closed sets K_1, K_2, \ldots, K_p, real numbers $R_1, R_2, \ldots, R_{p+1}$, b_1, b_2, \ldots, b_p, $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_p$ such that $\frac{1}{2} + \frac{1}{2} R_i < R_{i+1}$, $\varepsilon_i > 0$ for $i = 1, 2, \ldots, p$ and $\sum_{i=1}^p \varepsilon_i < 1/8$. Let us assume $g_{j+1} = g + h \cdot \sum_{i=1}^j u_i$ and conditions (i) \ldots (vii) are satisfied for $j = 1, 2, \ldots, p$. We also assume that $1 - 1/j \leq b_j + \varepsilon_j < 1$. If $z \in (F_{\delta_{p+1}} - F_{\delta_p})$ then according to (v) p, we have

$$1 - |g_{p+1}(z)| \geq \left(1 - \sum_{i=1}^p \varepsilon_i\right) \cdot |h(z)| \geq \frac{1}{2} \cdot \delta_{p+1},$$

since $|h(z)| \geq \delta_{p+1}$. This, together with (i) p, shows that $\|g_{p+1}\|_{\delta_{p+1}} < 1$. Take any $b_{p+1} > 1 - 1/(p + 1)$ and ε_{p+1} satisfying the inequalities $1 > b_{p+1} + \varepsilon_{p+1} > b_{p+1} > \|g_{p+1}\|_{\delta_{p+1}}$ and $\sum_{i=1}^{p+1} \varepsilon_i < 1/8$. Since the map g_{p+1} is continuous on B^n, we can find a number R_{p+2} such that $\frac{1}{2} + \frac{1}{2} R_{p+1} < R_{p+2} < 1$ and such that condition (vii) $p+1$ is satisfied. Now we can apply Lemma 2 to the data $g_{p+1}, b_{p+1}, \varepsilon_{p+1}, R_{p+1}$. We get some map u_{p+1} and a set K_{p+1}. It follows from Lemma 2 that conditions (i) $p+1$ \ldots (iv) $p+1$ and (vi) $p+1$ are satisfied. For $z \in S^n - F_{\delta_{p+1}}$, by the virtue of (e)' and (v) p, we have

$$1 - |g_{p+1}(z) + h(z) \cdot u_{p+1}(z)|$$

$$\geq 1 - |g_{p}(z) + h(z) \cdot u_{p}(z)| - |h(z) \cdot u_{p+1}(z)|$$

$$\geq \left(1 - \sum_{i=1}^p \varepsilon_i\right) \cdot |h(z)| - |h(z)| \cdot \varepsilon_{p+1}$$

$$= \left(1 - \sum_{i=1}^{p+1} \varepsilon_i\right) \cdot |h(z)|.$$

So we have also proved that condition (v) $p+1$ is satisfied. Conditions (ii) p $(p = 1, 2, 3 \ldots)$ and the definition of g_{p} say that the sequence $\{g_{p}\}$ is convergent uniformly on every ball $R_p \cdot B^n$, and since $\lim_{p \to 1} R_p = 1$, this sequence is pointwise convergent to some holomorphic map f on the ball B^n. From conditions (i) p and (v) p it follows that each map g_{p} is bounded by 1 on B^n. So, also $\|f\|_{\infty} \leq 1$. For $\delta > 0$ let $L_p = F_{\delta} \cap \bigcap_{j>p} K_j$. Then, for q large enough, $F_{\delta} \subset F_{\delta_p}$ for $p > q$. We have

$$\sigma_n(F_{\delta}) - \sigma_n(L_q) = \sigma_n\left(\bigcup_{j>q} (F_{\delta} - (F_{\delta} \cap K_j))\right)$$

$$\leq \sum_{j>q} \sigma_n(F_{\delta} - (F_{\delta} \cap K_j)) \leq \sum_{j>q} \sigma_n(F_{\delta_j} - K_j) < \sum_{j>q} \varepsilon_j.$$
Hence \(\lim_{q \to \infty} \sigma_n(L_q) = \sigma_n(F_\delta) \). It is obvious from \((iii)_p\) and the equality \(\lim_{p \to \infty} b_p = 1 \) that \(\lim_{R \to 1} f(Rz) = 1 \) for \(z \in L_q \), provided this limit exists. Since \(\delta \) was arbitrary, this proves that the map \(f \) is inner, since \(\sigma_n(\cap_p (S^n - F_{\delta_p})) = 0 \). Now it is easy to check that \(f \) satisfies the Theorem.

COROLLARY 3. Let \(m < n \) and let \(g \in A_m(B^m), \|g\|_\infty \leq 1 \). There exists an inner map \(f: B^n \to B^m \) such that

\[
 f(z_1, z_2, \ldots, z_m, 0, 0, \ldots, 0) = g(z_1, z_2, \ldots, z_m).
\]

Proof. Let \(\Phi: B^m \to B^m \) be an automorphism of \(B^m \) such that \(\Phi(g(0, \ldots, 0)) = (0, \ldots, 0) \). Take \(\tilde{g}: B^m \to B^m, \tilde{g}(z) = \Phi(g(z_1, z_2, \ldots, z_m)), \) \(h(z) = \frac{1}{2} \cdot z_n^2 \). By virtue of Schwartz’s lemma,

\[
 |\tilde{g}(z)| \leq \left(|z_1|^2 + |z_2|^2 + \cdots + |z_m|^2 \right)^{1/2}.
\]

So we have

\[
 |\tilde{g}(z)| + |h(z)| \leq \left(1 - |z_n|^2 \right)^{1/2} + \frac{1}{2} \cdot |z_n|^2 \leq 1.
\]

We can apply the Theorem for \(g \) and \(h \) to get an inner map \(\tilde{f} \). The inner map \(f = \Phi^{-1}(\tilde{f}) \) will satisfy Corollary 3.

COROLLARY 4. There exists an inner function \(f: B^n \to D \) such that

\[
 \frac{\partial f}{\partial z_1}(0, 0, \ldots, 0) = 1.
\]

Proof. Take \(m = 1 \) in Corollary 3 and a function \(g: B^1 \to D, g(z) = z \).

Remark. The assumption \(g \in A_m(B^m) \) in Corollary 3 is not necessary: we can take any holomorphic map \(g: B^m \to B^m \). Then the map \(\tilde{g} \), defined as before, can be prolonged to a continuous map on \(\bar{B}^n - A \), where \(A \subset S^n \) and \(\sigma_n(A) = 0 \). One can check that the Theorem is still valid for such maps.
REFERENCES

Received February 11, 1983.

UNIVERSITY OF WISCONSIN
MADISON, WI 53706
PACIFIC JOURNAL OF MATHEMATICS
EDITORS
DONALD BABBITT (Managing Editor)
University of California
Los Angeles, CA 90024

J. DUGUNDJI
University of Southern California
Los Angeles, CA 90089-1113

R. FINN
Stanford University
Stanford, CA 94305

HERMANN FLASCHKA
University of Arizona
Tucson, AZ 85721

C. C. MOORE
University of California
Berkeley, CA 94720

ARTHUR OGUS
University of California
Berkeley, CA 94720

HUGO ROSSI
University of Utah
Salt Lake City, UT 84112

H. SAMELSON
Stanford University
Stanford, CA 94305

F. WOLF
K. YOSHIDA

ASSOCIATE EDITORS
R. ARENS
E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSHIDA
(1906–1982)

SUPPORTING INSTITUTIONS
UNIVERSITY OF ARIZONA
UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF HAWAII
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
Carlos Andradas Heranz and José Manuel Gamboa Mutuberría, A note on projections of real algebraic varieties 1
Jürgen Appell and Maria Patrizia Pera, Noncompactness principles in nonlinear operator approximation theory 13
Timothy John Carlson, Extending Lebesgue measure by infinitely many sets ... 33
Donald S. Coram and Paul Frazier Duvall, Jr., Non-cell-like decompositions of S^3 .. 47
Edward Norman Dancer, Order intervals of selfadjoint linear operators and nonlinear homeomorphisms 57
Ralph Jay De Laubenfels, Well-behaved derivations on $C[0, 1]$ 73
D. Feyel and A. de La Pradelle, Sur certaines extensions du théorème d’approximation de Bernstein 81
Colin C. Graham and Bertram Manuel Schreiber, Bimeasure algebras on LCA groups .. 91
Richard Howard Hudson, Class numbers of imaginary cyclic quartic fields and related quaternionic systems 129
Carl Groos Jockusch, Jr. and Iraj Kalantari, Recursively enumerable sets and van der Waerden’s theorem on arithmetic progressions 143
J. F. McClendon, On noncontractible valued multifunctions 155
Akihiko Miyachi, Weak factorization of distributions in H^p spaces 165
Ezzat S. Noussair and Charles Andrew Swanson, Global positive solutions of semilinear elliptic problems 177
Jon Christopher Snader, Strongly analytic subspaces and strongly decomposable operators .. 193
Boguslaw Tomaszewski, A construction of inner maps preserving the Haar measure on spheres .. 203
Akihito Uchiyama, The Fefferman-Stein decomposition of smooth functions and its application to $H^p(\mathbb{R}^n)$ 217