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TOPOLOGICAL PROPERTIES OF BANACH SPACES

G. A. EDGAR AND R. F. WHEELER

Let I b e a Banach space, Bx its closed unit ball. We study several
topological properties of Bx with its weak topology. In particular, we
consider spaces X such that (Bx, weak) is a Polish topological space. If
X has RNP and X* is separable, then Bx is Polish; if Bx is Polish, then X
is somewhat reflexive. We also consider spaces X such that every closed
subset of (Bx, weak) is a Baire space. This is equivalent to property
(PC), studied by Bourgain and Rosenthal.

1. Introduction. Let X be a Banach space, and Bx the closed unit
ball. It is well-known that Bx is metrizable in the relative weak topology
of X precisely when the dual space X* is norm separable. Moreover, (Bx,
weak) is compact metrizable precisely when X is separable and reflexive.
Here we address an intermediate question: When is (Bx, weak) com-
pletely metrizable?

THEOREM A. Let X be a separable Banach space. Then the following are
equivalent: (1) (Bx, weak) is completely metrizable; (2) (Bx, weak) is a
Polish space; (3) X has property (PC) and is an Asplund space; (4) (Bx,
weak) is metrizable, and every closed subset of it is a Baire space.

Property (PC) states that for every weakly closed bounded subset A of
X, the identity map (A9 weak) -> (A, norm) has at least one point of
continuity. (The letters "PC" stand for "point of continuity".) Property
(PC) is a consequence of the Radon-Nikodym property.

Examples of spaces satisfying Theorem A include: spaces with separa-
ble second dual (such as separable quasi-reflexive spaces), the predual of
the James Tree space [30], [38] (but not JT itself), and the James-Lin-
denstrauss spaces JI^S) modelled on separable Banach spaces S [29], [36].
On the other hand, if Xcontains an isomorphic copy of c0 or / \ then (Bx,
weak) is not Polish. An example of Bourgain and Delbaen [5] satisfies
Theorem A, but has dual space isomorphic to I1.

There is a natural non-metrizable version of the Polish property. A
completely regular Hausdorff space T is said to be Cech complete iff it
admits a complete sequence (<%n) of open covers. Here completeness is
defined as follows: if IF is a family of closed subsets of T such that !F has

317



318 G. A. EDGAR AND R. F. WHEELER

the finite intersection property, and ^"is ^n-small for all n (that is, there
exists Fn e j ^ a n d Un Ξ <%n with Fn c t/J, then Π&Φ 0 . Completely
metrizable spaces are Cech complete (take ΰUn to be the family of open sets
with diameter less than l/n). Locally compact Hausdorff spaces are also
Cech complete (take each °Un to be the family of relatively compact open
sets). On the other hand, the usual proofs of the Baire Category Theorem
can be easily adapted to show that every Cech complete space is a Baire
space (the countable intersection of dense open sets is dense). A space T is
Cech complete if and only if T is a Gδ set in some (every) compactification
of T. A metrizable space is Cech complete if and only if it is completely
metrizable. Cech completeness is preserved by closed subspaces, Gδ sub-
spaces, and countable products. (See [18, p. 142], [19], [1].)

If X is an infinite-dimensional Banach space, then (X, weak) is not a
Baire space, since each multiple of Bx is closed and nowhere dense. We
shall be interested in spaces X such that (B x , weak) is a Cech complete
topological space. For this to occur, it is necessary and sufficient that Bx

be a Gδ in (Bx**> weak*), or that Bx** \ Bx be weak* σ-compact, or that X
be a Gδ in (X**9 weak*). (Thus the property is preserved by linear
homeomorphisms.) We will say that X has Polish ball, if (Bx, weak) is a
complete separable metric space under some metric. Note that if (x*) is a
norm dense sequence in Bx*, then

d(x,y)=

is a metric for (Bx> weak). However, this metric is not complete unless X
is reflexive; in fact, the completion of (Bx, d) is Bx** in a natural way.

If X is separable, then X has Cech complete ball if and only if X has
Polish ball (see 3.1 and 3.2, below). In this case, X* is also separable.

THEOREM B. Let X be a Banach space. The following are equivalent: (1)

X has Cech complete ball; (2) X is isomorphic to a direct sum R Θ S, where

R is reflexive and S has Polish ball.

Theorems A and B yield structural information about spaces with
Cech complete ball. Every space with Cech complete ball is weakly
compactly generated (WCG), somewhat reflexive, and has property (PC).
If X has Cech complete ball, then X* is WCG and has the Radon-Nikodym
property (RNP). Also, X and X* have the same linear dimension and
cardinality. If X has Cech complete ball, then (X**, weak) is realcompact,
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but Z** may fail the Pettis integral property. Moreover, (Bx**, weak*)
and (Bx*, weak*) are Eberlein compacts. The dual of a space with Cech
complete ball cannot contain c0, but may contain I1. For spaces X with
Cech complete ball, these conditions are equivalent: X* Ίb Z1, X** has
property (C), (Bx***, weak*) is angelic.

Here is an indication of the organization of this paper. Section 2
reviews terminology and results from Banach space theory and general
topology. Figure 1 may be helpful in relating the various concepts. Section
3 presents the proofs of Theorems A and B. Theorem A can be derived
from results of Hurewicz ([28], [53, p. 333]) and Saint-Raymond [49] in a
more general setting. We give a self-contained proof. Theorem B builds on
results due to Amir and Lindenstrauss [2] and Valdivia [54]. Section 4
gives the basic structural results about spaces with Cech complete ball. It
includes a discussion of properties stronger than Cech completeness. For
example, the condition "Bx** \ Bx is a countable union of weak* compact
convex sets" implies both Cech complete ball and the Radon-Nikodym
property. Section 5 considers property (PC) in detail. Some partial three-
space properties are proved. In particular, if Y c X, Y has Polish ball,
X/Y has property (PC), and 7 ± is complemented in X*9 then X has
property (PC). Section 6 contains a number of examples. Table 1 sum-
marizes information about them.

Thanks are due to M. Talagrand for some helpful conversations. The
second author expresses his appreciation to the Department of Mathe-
matics of The Ohio State University for its hospitality during the time that
this research was carried out.

2. Preliminary results. Notation and terminology used here can be
found, for example, in [39]. A good reference for the point-set topology we
shall need is [18].

If X is a Banach space, we write X* for the dual space and Bx for the
closed unit ball of X. We use brackets ( , ) for the pairing between a
Banach space and its dual: if x e X and x* e X*, then (x9 x*) = x*(x).
The space X is identified with a subspace of X** via the mapy: X -* X**
defined by

(x*,j(x)) = (x,x*).

In most cases we omit mention of the map j . We write (X, weak) for the
topological space obtained by equipping the Banach space X with its weak
topology ([14, p. 419]). If A is a subset of a Banach space X, then its
annihilator is

A±= {** e X*: (a9x*) = 0 for alia eA).
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If B is a subset of X*9 then

B±= {x e X: (χ9b) = 0 for all b e 5}.

Occasionally, we will need to refer to more than one topology in the
same argument. We write wcl(̂ 4) for the closure of A in the weak
topology, and w*cl(^4) for the closure in the weak* topology of X**. If X
is a Banach space, we write X <^ I1 if X has a closed subspace isomorphic
to the space Z1, and X ^° Z1 if not.

In this paper we are primarily concerned with topological properties
of the weak topology on a Banach space X or its subsets. Some classical
results in this direction are:

(1) X is reflexive if and only if (Bx, weak) is compact, or (equiva-
lently) (X9 weak) is σ-compact ([14, V. 4.7])

(2) If A is a (closed) subset of (X9 weak), then A is sequentially
compact if and only if A is compact. (Eberlein-Smulian Theorem, see [14,
V. 6.1])

(3) (X, weak) has countable tightness; that is, if A c X and x e
wcl(^), then there is a countable set D c A with x e wcl(£>). [56, p. 229]

(4) (Bx, weak) is metrizable if and only if X* is separable [14, V. 5.2].
Also (Bx*, weak*) is metrizable if and only if X is separable [14, V. 5.1],
so in this case (Bx*> weak*) is a compact metric space.

Corson [8] initiated the detailed study of (X, weak). Godefroy [21, 22]
used the Cech complete and Polish properties of (B x , weak) in his study
of unique isometric preduals. Some of the Banach space ideas used in this
paper are discussed in [15,16].

2.1. DEFINITIONS. Let X be a Banach space.
(1) The space X is weakly compactly generated (WCG) iff there is a

weakly compact subset whose linear span is dense in Z(see [37]).
(2) The space X is somewhat reflexive iff every infinite-dimensional

closed subspace contains an infinite-dimensional reflexive subspace. If a
space is somewhat reflexive, then it cannot contain c0 or I1. The converse
is an important open question.

(3) The space X is an Asplund space iff every separable subspace of X
has a separable dual space. It is equivalent to require that X* have the
Radon-Nikodym property [50, 51]. Asplund spaces have a topological
characterization: the space X is an Asplund space iff every separable
subset of (Bx, weak) is metrizable, or iff every Radon measure on (Bx,
weak) has metrizable support.
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(4) The space X is a Godefroy space iff (a) X* is separable; (b)
X* ^ Z 1 ; and (c) Xx is weak* separable in X***. Note that Xx =
(X**/X)*, and the weak* topology on X1- in this pairing coincides with
the relative weak* topology of X***.

(5) The space X is separably distinguished iff there is a (norm)

separable subspace Y of X* such that if * x |7 =
then x** e X. It is equivalent to require that 7 1 c I * * be a subspace of
X.

(6) The space X has property (PCA) iff X has property (PC) and X is
an Asplund space.

(7) The space X has the Radon-Nikodym property (RNP) iff for every
non-empty bounded set A, and every ε > 0, there exists a linear functional
x* G l * and scalar a such that A Π {x: (x, x*) > a} is non-empty and
has diameter less than ε. (Other equivalent definitions are discussed in
[13].)

Some of the relationships among these properties are shown in Figure
1. Several examples and counterexamples are discussed in §6.

Some special properties of the spaces c0 and I1 will be useful.

Godefroy

r e g u l a r l y embedded Cech complete ba l l

separably d i s t i n g u i s h e d * — C e c h complete bal l . R N P

WCG X* WCG

A s p l u n d

,(PCA)

(PC)

FIGURE 1

2.2. PROPOSITION. (1) // a Banach space X admits a continuous linear
map onto lι(A), then lι(A) is ίsomorphic to a complemented subspace of X.
(2) // X* <^/\ then X *^lι. (3) if Y is a closed subspace of X such that
Y <^lι and X/Y <^l\ then X <+> I1. (4) If X is separable, then X* *- I1 if
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and only if c0 is isomorphic to a quotient space of X. (5) X* <-* c 0 // and only

if I1 is isomorphic to a complmented subspace of X, and then l°° is isomorphic

to a complemented subspace ofX*.

For the proof of (1), see [39, p. 107]; (2) follows from (1). For (3), see
[12, p. 42]; (4) is [39, 2.e.9]; (5) is [39, 2.e.8].

Cech completeness for a completely regular Hausdorff space T was
defined in the Introduction. In the definition we may take each of the
open covers °Un to be a base for the topology of T and to be closed under
finite unions [19, 20].

A pseudobase for a topological space Γis a collection &> of non-empty
open sets such that every non-empty open set contains a member of 0>.
The space T is almost Cech complete iff it admits a complete sequence of
pseudobases. A space is almost Cech complete if and only if it has a dense
Gδ subset that is Cech complete [1, p. 28]. Every almost Cech complete
space is a Baire space [1].

A norm on a Banach space X is called a Kadec norm iff the weak and
norm topologies coincide on Sx= {x: \\x\\ = 1}. Now S^is dense in (Bx,
weak) if X is infinite-dimensional. If the norm is a Kadec norm, then (Sx,
weak) is a Polish space, hence Cech complete, hence a Gδ in (Bx, weak),
so that (Bx, weak) is almost Cech complete. Every WCG space is locally
uniformly convexifiable, hence admits a Kadec norm [11].

Kerstan [34] studied spaces that are Cech complete and Lindelόf.
Such spaces are characterized among the completely regular spaces T by
each of the following: (1) If S is any compactification of Γ, then S \ T is a
countable union of compact Gδ subsets of S; (2) T admits a perfect map
onto a Polish space; (3) T is homeomorphic to a closed subset of RN X K,
where K is compact. From Theorem B, the Cech complete ball of a
Banach space satisfies (3) for an Eberlein compact K.

The proof of the following proposition is left to the reader. Note that
(2) is clearly preserved by linear homeomorphisms.

2.3. PROPOSITION. The following are equivalent conditions on a Banach
space X: (1) (Bx, weak) is Cech complete; (2) X is a Gδ-set in (X**,
weak*); (3) BX**\BX is weak* σ-compact; (4) X**\X is weak* σ-com-
pact.

2.4. DEFINITION. A Banach space X has regularly embedded Cech
complete ball iff BX**\BX = U^=1 Kn9 where each Kn is weak* compact
convex and d(Kn, X) > 0.
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Here d(Kn, X) is the distance from Kn to X, defined by inf{ ||y - x\\\
y e Kn, x G X). This property is preserved by linear homeomorphisms.
Indeed, if Cx is the closed unit ball for an equivalent norm on X, with
Cx c mBx, then

00
cx** \cx = cx** n {™Bχ** \ mBx) = U (Q** Π

where each Cx** Π m ^ is weak* compact convex, and has positive
distance from X with respect to the new norm. We do not know if
Definition 2.4 is equivalent to the same condition with "d(Kn, X) > 0"
deleted. Note that if x** is a point in X** whose distance r from X is not
attained, then [y**: \\y** — JC**|| < r) is a weak* compact convex set
with zero distance from X.

2.5. DEFINITIONS. Let Kbe a compact Hausdorff space.
(1) K is an angelic compact (also called a compact Frechet space) iff

the closure of every subset A is the set of limits of sequences from A.
(2) K is an Eberlein compact iff K is homeomoφhic to a weakly

compact subset of a Banach space (see [37]).
(3) K is a Rosenthal compact [23] iff K is homeomoφhic to a pointwise

compact set of functions of first Baire class on a Polish space.
The Odell-Rosenthal Theorem [43] asserts that if X is a separable

Banach space and X ^ Z 1 , then K = (Bx**, weak*) is a Rosenthal com-
pact with respect to the Polish space (Bx*, weak*). Every compact metric
space is both Eberlein and Rosenthal compact, and each of these is
angelic. The product of two Eberlein compacts is an Eberlein compact,
and the product of two Rosenthal compacts is a Rosenthal compact.
While the product of two angelic compacts need not be angelic, we do
have the following result (cf. [24, Th. l(d)]).

2.6. THEOREM. // K is an Eberlein compact and L is a Rosenthal
compact, then K X L is angelic.

Proof. Let A c K X L and p = (k0, lQ) e A. Let U be an arbitrary
closed neighborhood of k0 in K. Then

p e A Π(UX L), so l0 e π2(A Γ\(U X L)).

Since L is angelic, there is a sequence (kf, If) in A Π (U X L) with
If -> /0. Since # is angelic, we may assume that kf -> zu e tΛ As the
closed neighborhood £/ of A:o decreases, we have zu -+ k0. Choose a
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sequence (Uj) with ZUJ -> k0. Now we have (k0, lQ) in the closure of the

countable set

B = {(k^j, Ifj): /, 7 = 1,2,...} c A.

Thus p ^ B Q πx{B) X L. Now π^B) is a separable Eberlein compact,

hence compact metrizable [37], hence a Rosenthal compact. Thus πλ(B)

X L is a Rosenthal compact, so angelic. Thus some sequence in B

converges to p. D

3. Polish ball and property (PC). We begin with a proof of Theo-

rem B. This factorization of spaces with Cech complete ball reduces their

study to the separable case, where the special properties of Polish spaces

can be used to advantage.

3.1. LEMMA. If X is a separable Banach space with Cech complete ball,

then X* is separable.

Proof. By Proposition 2.3, we may write X = Π^ = 1 Un9 where each Un

is a weak* open subset of X**. Each Un contains a basic neighborhood of

0, determined by a finite set Fn in X*. Since Λ'is separable, (X*9 weak*) is

also separable. Let D be a countable dense subset of (X*9 weak*), and let

Y be the norm closed linear span of D U U^ = 1 Fn in X*. The annihilator

γ± = i^** G x**. (y^ χ**^ = o for all y e 7 } is a subset of each ί/Λ,

and contains no non-zero member of X. Thus Γ ± = {0}, so Y = X*, and

X* is separable. D

Note that the proof actually shows that if X is a Banach space with

Cech complete ball then X* is norm separable if and only if it is weak*

separable.

3.2. COROLLARY. A Banach space has Polish ball if and only if it is

separable and has Cech complete ball.

Proof. The necessity is obvious. Since a separable metrizable Cech

complete space is Polish [18, p. 190], the sufficiency follows from 3.1. D

THEOREM B. Let X be a Banach space. The following are equivalent: (1)

X has Cech complete ball; (2) X is isomorphic to a direct sum R Θ S, where

R is reflexive and S has Polish ball.
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Proof. (2) => (1). Since (X, weak) is topologically isomorphic to (i?,

weak) X (S, weak), the unit ball (Bx, weak) is homeomorphic to a closed

subset of (BR, weak) X (BS9 weak). The topological property of Cech

completeness is preserved by closed subsets and countable products [1, p.

14].

(1) => (2). Choose (Un) and (Fn) as in 3.1, and let G be the closed

linear span of U^= 1 Fn in X*. Then G± is a weak* closed subspace of X**,

and G± c Π^= 1 Un = X. Since the ball of G± is σ(X**, X*)-compact, this

makes i?x = G"1 a reflexive subspace of X Since (X/i?1)* = G is separa-

ble, X//?χ is separable. Let S\ be a separable subspace of X that maps

onto X/i?! under the quotient map. Thus Rλ + Sτ = X. Now X is WCG,

since X is the closed span of BRι + ̂ 4, where A is a sequence converging to

0 in SΊ with span dense in Sλ. By a theorem of Amir and Lindenstrauss

[2], there is a separable subspace S of X such that S\ c 5 and 5 is

complemented in X Hence X is isomorphic to R θ S, where /? = Ays =

(X/S^/XSySΊ). But X/Sλ is a quotient of Rv so i? is a quotient of i?1?

and thus R is reflexive. Finally, S is separable and has Cech complete ball,

so it has Polish ball by 3.2. D

Note that Theorem B shows that a space X with Cech complete ball is

WCG. Also, X* = R* θ S*9 where Λ* is reflexive and S* is separable, so

X* is WCG.

3.3. EXAMPLE. The space c0 has separable dual, but its ball is not

Polish. Indeed, the ball of c0 is not a Baire space in the weak topology: it

can be expressed as U^= 1 An, where each

An= [x: \xk\ < 1/2 for all k > n)

is closed and nowhere dense. But if c0 is renormed using Day's norm [11,

p. 94], which is locally uniformly convex, then the unit sphere is a dense

Gδ Polish subspace of the ball, so the ball is a Baire space.

The following result is due to Godefroy.

3.4. THEOREM. A Godefroy space has Polish ball.

Proof. Recall that a Godefroy space X has these three properties: X*

is separable, X* ^ Z 1 , X1- is weak* separable. Let (yn) be a countable

dense subset of (X± , weak*). Since X* is separable and X* ^ / ^ by the

Odell-Rosenthal Theorem [43], each yn is the weak* limit of a sequence
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(x*k)inX*. Then

X= {x**: (x**,yn) = Oforallw}
00 00 00

= n n u
n=lm=lk=m

is a weak* Gδ set in X**. By Corollary 3.2, X has Polish ball. D

In particular, every Banach space with separable second dual has
Polish ball [22]. This holds for separable quasi-reflexive spaces and the
separable long James spaces /(α), a countable [17].

An examination of this proof may suggest the following generaliza-
tion.

3.5. DEFINITION. A Banach space has property (A) iff there exist
norm one vectors^* in X* (1 < / < mn, n ̂  N) such that if we define

pn(x**) = m a x f K ^ , x**)\: 1 < / < mn}9

then (1) limpn(x) = 0 for all x e X, but (2) liminf pn(x**) > 0 for all
x** e X**\X.

Any Banach space with property (A) has Cech complete ball, since
00 00 -j .

X= Π U lx**:pn(x**)< J

We do not know if every space with Cech complete ball has property (A).
Theorem 4.14 is a step in this direction.

3.6. EXAMPLE. The predual B of the James Tree space JT satisfies
property (A), hence has Polish ball. (Basic material on the space JT is in
[30], [38].) Note that B is not a Godefroy space, since B± is a nonsepara-
ble Hubert space [38, Theorem 1], and not weak* separable. The>>*z can be
taken to be the usual boundedly complete basis in JT, called {eni:
1 < / < 2", n G N) in [38]. The bi-orthogonal functionals {fnι} form a
shrinking basis for B, and a weak* basis for JT* = 5**. If x e J?, then

lim max \{x,enι)\ = 0
n \<ι<2"

(see Lemma 1 of [38]). If *** e JT* \B, then l imj(e m V JC**)| > δ > 0
for some branch {(«, in)\ n e N} of the binary tree, so

liminf max \(enι, JC**)| > δ > 0.
n l<i<2

The space B has Polish ball, but fails the Radon-Nikodym property
[38, Corollary 4], and is therefore not isomorphic to a dual space. The ball



TOPOLOGICAL PROPERTIES OF BANACH SPACES 327

of JT is not Polish, since JT has non-separable dual. The space JT* does
not have Cech complete ball, since it is not WCG. Since B c JT* and
JT*/2? both have Cech complete ball, this shows that there is no three
space property for Cech completeness of the ball. This proof that B has
Polish ball is formally a strengthening of the fact that B has property
(PC), which was asserted in [6].

Cech complete ball implies property (PC); the converse holds for
spaces with separable dual. The proof centers on the notion of a huskable
set (in French, epluchable [21], [22]). It is convenient to state the definition
in some generality.

3.7. DEFINITION. Let X be a Banach space, and let τ be a locally
convex topology on X that is coarser than the norm topology. A subset
A of X is τ-huskable iff for every τ-open set U with U Π A Φ 0 and
every ε > 0, there is a τ-open set V with 0ΦVΠAQUΠA and
diam(FΠ A) = sup{||x - y\\: x, y <Ξ V Π A} < ε.

Another way to say this is: for each ε > 0, the collection of non-
empty, relatively τ-open subsets of A with diameter less than ε is a
pseudobase for (A, T). In practice, T will be either the weak topology on X
or the weak* topology on a dual space. Kenderov [33] showed that a dual
space has the RNP if and only if each weak* closed bounded set is weak*
huskable. The term "huskable", unmodified, shall mean huskable in the
weak topology.

3.8. PROPOSITION. Let A be a subset of a Banach space. Then the
following are equivalent. (1) A is huskable; (2) wcl(̂ 4) is huskable; (3)
w*cl(A) is weak* huskable in X**.

Proof. (1) => (3). Let U c w*cl(^4) be a non-empty relatively weak*
open set, and let ε > 0. Then A contains a non-empty, relatively weakly
open set V with diameter less than ε/2 such that V Q U Π A. Choose a
relatively weak* open set W in w*cl(^l) with W Q U and W Π A = V.
Since Fis weak* dense in W, diam(PF) < ε/2 < ε. D

3.9. PROPOSITION. Let A be a norm-closed subset of X. Then A is
τ-huskable if and only if the identity map (A, τ) -» (A9 norm) is continuous
at each point of a τ-dense τ-Gδ subset of A.

Proof. Assume A is τ-huskable, and let Un = U{ U c A: U is relatively
τ-open in A, and diam(ί7) < !/«}. Then Γi™=1Un is exactly the set of
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points of continuity of the identity. We need to show that this set is

τ-dense in A. Let F b e a non-empty, relatively τ-open subset of A. Choose

recursively a sequence (Wn) of relatively τ-open subsets of V with

diam(P^) < \/n and the τ-closure of Wn in A contained in Wn_ι for each

n. Since A is norm closed, the unique point in ΠWn is a member of

V Π (Π Un). This shows Π Un is dense in A.

The converse is left to the reader. D

3.10. PROPOSITION. Let A be a weakly closed and bounded subset of X,

Then (1) => (2a) <=> (2b) <=> (2c) => (3). // A is separable, then all five

conditions are equivalent.

(1) A is huskable;

(2a) (A9 weak) is almost Cech complete',

(2b) A contains a dense Gδ subset of w*cl( A);

(2c) A is residual in w*cl(^4);

(3) A is a Baire space.

Proof. (1) => (2a): %= {U c A: Uis relatively open and diam(C/) <

1/n) is a complete sequence of pseudobases of A. (2a) => (2b): A has a

dense Cech complete subspace [20], which is necessarily a Gδ in its

compactification w*cl(A). (2b) => (2c): Obvious. (Residual = comeager

means that vt*cl(A)\A is first category in w*cl(v4).) (2c) => (2a): A

contains B = Π Un, where each Un is a dense open subset of v/*cl(A). Then

5 is a dense Gδ in w*cl(^l), hence a dense Gδ Cech complete subset of A.

(2a) => (3): This holds in general topology [1, p. 28].

Now assume A is separable in the weak topology. Then the norm-

closed linear span Y of A is norm-separable, so every subset of (A, norm)

has the Lindelόf property. Let U be a non-empty, relatively open subset of

(A9 weak) and let ε > 0. Then U is a countable union of norm-closed balls

of radius less than ε, intersected with U. Since (U, weak) is a Baire space,

one of these weakly closed subsets of U must have a weak interior point

(for the relative topology of U of A). This proves that A is huskable. D

The following is motivated by a similar result concerning dentability

[40].

3.11. PROPOSITION. A subset A of X is huskable if each countable subset

is huskable.

Proof. If A is not huskable, then there is a non-empty relatively

weakly open subset U of A and ε > 0 such that each non-empty relatively
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weakly open subset of {/has diameter > 2ε. Choose any x0 G U. Then x0

is in the weak closure of {x G U: \\X — xo\\ > ε}. By the countable

tightness of the weak topology [56, p. 229], there is a countable subset C\

of {x G [/: ||JC — JCO|| > ε} with x0 G wclίQ). Next, for each point x l π G

C\ there is a countable subset C2 π of ( X G ί/: \\x — xln\\ > ε} with

xln G wcl C 2 π; let C2 = ί/C2π. Continue in this way, and let C = {xQ} U

U Cn. Then C is a countable subset of A that is not huskable. D

3.12. COROLLARY. Let A be a weakly closed and bounded subset of X.

Then A is huskable if every weakly closed separable subset is a Baire space.

Proof. This follows from 3.8, 3.10, and 3.11. D

The converses to 3.11 and 3.12 are not true. If X is c 0 with Day's

norm (Example 3.3), then A = Bx is huskable by 3.10, but no multiple of

the usual ball U of c0 is Baire, so some countable subset of U is not

huskable.

3.13. THEOREM. Let X be a Banach space. Then the following are

equivalent.

(1) X has property (PC);

(2) Every weakly closed bounded subset of X is huskable;

(3) Every weakly closed bounded subset of X is almost Cech complete;

(4) Every weakly closed bounded subset of X is a Baire space.

Moreover, it is sufficient that every separable subspace have (PC), or that

every weakly closed obunded separable subset have property (2), (3), or (4).

Proof. The equivalence of (2), (3), (4) and their separable variants

follows from 3.10 and 3.12. Proposition 3.9 shows that (2) => (1). Finally,

the (separable) version of (1) implies the (separable) version of (2), since if

A c X has no relatively weakly open subsets with diameter < ε, then the

identity (A, weak) -> (A, norm) has no points of continuity. D

3.14. COROLLARY. Banach spaces with Cech complete ball and Banach

spaces with the RNP have property (PC).

Proof. If X has the RNP, then every bounded subset is deniable [13,
p. 136], and therefore every bounded subset is huskable. If X has Cech

complete ball, then every weakly closed bounded subset is Cech complete,

hence a Baire space. D
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The properties (PC) and RNP are "separably determined". However,
/(ω1) and JT* (see §6) do not have Cech complete balls but every
separable subspace has Cech complete ball. The predual B of JT has
Polish ball, but fails the RNP. The space I1 has the RNP, so that the unit
ball is huskable for every renorming, but the ball is not Cech complete
(since the dual of I1 is not separable, see Lemma 3.1). The space JT* has
(PC), but does not have Cech complete ball, and fails the RNP.

The next few results establish the equivalence of (PC) and Polish ball
for spaces with separable dual. This leads directly to Theorem A.

3.15. DEFINITION. A Banach space X is quasi-Cech complete iff
X = Ci™=ι(Fn U Un), where Fn is closed and Un is open in (***, weak*).

Of course, if X* is separable, then (Bx**, weak*) is metrizable, so a
set of the form Γ\™=ι(Fn U Un) is a Gδ-set. Assertion (3) of the following
shows that quasi-Cech completeness is preserved by linear homeomor-
phisms.

3.16. PROPOSITION. The following conditions on a Banach space X are
equivalent: (1) X is quasi-Cech complete; (2) (X**\X9 weak*) is σ-locally
compact; (3) // A is any weakly closed bounded subset of X, then A =
Γ\™=ι(Fn U Un)9 where Fn is compact and Un is open in w*cl(^4); (4) If A is
any weakly closed bounded subset of X, then w*cl(^4) \A is weak* σΊocally
compact.

Proof. To see that (1) <=> (2), note that locally compact spaces are
precisely the open subsets of compact spaces. Thus if X is quasi-Cech
complete, then X = Π^==1(Fn U Un), so that

x**\x= U \J((X**\Fn)n(kBx**\Un))
n = l k = \

is σ-locally compact. The argument is reversible. The proof that (3) <=> (4)
is similar. For (2) => (4), observe that w*cl(A)\A is a closed subset of
X**\X. For (4) =̂  (2), consider A = Bx. Ώ

3.17. PROPOSITION. For Banach spaces, Cech complete ball => quasi-
Cech complete => (PC).

Proof. The first implication is clear. If X is quasi-Cech complete, and
A is a weakly closed bounded subset of X, then (by 3.16 (3))
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By adjoining the interior of Fn to Un, we may assume that each Un is

weak* dense in w*cl(yί). Thus A is residual in w*cl(yl). Now 3.10 and

3.13 show that X has property (PC). D

The next result is the main step in the proof of Theorem A. Part (2)

can be deduced from a theorem of Hurewicz [28] on analytic sets. We

include here a self-contained proof.

3.18. THEOREM (1) IfXis separable and has (PC), then X is quasi-Cech

complete', (2) If X* is separable and X has (PC), then Bx is Cech complete.

Proof. (1) Let A c X be a non-empty, weakly closed, bounded set

(such as Bx). Fix ε > 0. We define recursively a transfinite sequence Aa of

closed subsets of A, and a sequence Ua of open sets in (X**9 weak*). Let

Ao = A. Suppose Aa has been defined, and is non-empty. Let °Ua = { V c

X**: V is weak* open, VΠ Aa Φ 0 , and diam(FΠ Aa) < ε}. Since X

has (PC), °l/a is a non-empty collection. Let Ua = Ό Wa. Then yfα+1 = Aa

\ Ua is a closed proper subset of 4̂ α. If λ is a limit ordinal, let ^4λ =

We claim that ^4γ = 0 for some countable ordinal γ. If not, (Aa)a<ωι

is a strictly decreasing sequence of weakly closed sets. Since X is separa-

ble, every subset of (X, weak) is Lindelδf, so

A\ n Aa= u (Λ\ΛJ= u u\Λγ)

for some γ < ωl9 which contradicts the strictly decreasing property of the

Aa. Hence there is a least γ such that Ay = 0 .

Let Ba = w*cl(^ J , Ca = BaU (Uβ<a Uβ) for each a < γ. Then

We claim that if x** e H a < Y Q , then J(x**, ^ ) < ε. If x** e Ba Π t/α

for some α < γ, then certainly d(x**, 4̂) < ε, since there is F G Φ α with

x** e Ba Π F c w*cl(^α n F), and diam(^ α n F) < ε. But if *** e

Π f l < y Q , then x** G 5 O . But x** ί 2?γ, so there is a least α 0 such that

x** £ i?αo. Since x** G Cαo, we have x** G Uβ for some )δ < α 0 . Thus

x** G 5g°n Uβ. So d(x**, ^ί) < ε, as claimed.

Since A is weakly closed in X, it is norm closed in Z**. If we take

ε = \/n in the preceding discussion, we obtain (Can)a<Ύj and so

A = n n Q,n.
« = 1 <*<γ,2
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Each Can is the union of a closed set and an open set in (X**, weak*). So
Zis quasi-Cech complete.

(2) If X* is separable, then X is separable, so the preceding construc-
tion can be carried out. But (Bx**> weak*) is metrizable, so the weak*
compact sets Ba are Gδ sets in w*cl(^4). Thus each Cα is a Gδ, so A is a Gδ,
and thus A is Cech complete. D

The significance of quasi-Cech completeness lies in the fact that (for
separable X) it gives a one-set criterion for property (PC), as opposed to
conditions on all closed bounded sets.

The proof of 3.18 yields an open cover characterization of property
(PC) that is valid even for nonseparable spaces.

3.19. COROLLARY. A Banach space X has property (PC) // and only if
there is a sequence {Van: a < γ n } π e N of transfinite open covers of (Bx,
weak) such that

imί^nkΛ U vβ,n))<\
\ V β<a l) H

for all a < yn.

Proof. If Xhas (PC) and {Vβ n: β < a] fails to cover Bx, then there is
a weakly open set Van such that diam(JS^Π (Van\Uβ<aVβn)) < l/n.
Conversely, if the covers exist, and A is a non-empty weakly closed subset
of Bx, then for each n there is a least a such that Va n Π A Φ 0. Then
dmm(VanΓ)A) <l/n. D

THEOREM A. Let X be a separable Banach space. The following are
equivalent.

(1) (Bx, weak) is completely metrizable;
(2) (Bx, weak) is a Polish space;
(3) X has property (PC) and is an Asplund space;
(4) (Bx, weak) is metrizable, and every closed subset of it is a Baire

space;

Proof. For separable spaces, (1) and (2) are ways of saying that X has
Cech complete ball, using 3.2. Also, (3) and (4) are ways of saying that X
has (PC) and X* is separable, using 3.13. Thus the equivalence of (l)-(4)
follows from 3.18. D
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Property (3) is intersecting even in nonseparable Banach spaces. If X
has property (PC) and X is an Asplund space, we say that X has property
(PCA). Equivalently, X has (PCA) if and only if every separable subspace
has Polish ball, or every separable subspace has Cech complete ball.
Examples of spaces with (PCA) are/(iox) and JT* (see §6).

Another consequence of Theorem A is that if X is separable, and both
X and X* have RNP, then X has Polish ball. The converse is false: the
space B of Example 3.6 has Polish ball, but fails the RNP.

4. Cech complete ball. The results of the previous section produce
structural information about spaces with Cech complete ball, their duals
and their quotients. Here is a refinement of Theorem B.

4.1. THEOREM. If X has property (PCA), then Xis somewhat reflexive.

Proof. Since every separable subspace of X has Cech complete ball, it
suffices to show that every infinite-dimensional space X with Cech com-
plete ball contains an infinite-dimensional reflexive subspace. First,
X**\X = U™=ιKn, where each Kn is weak* compact. For each n, let
<%n = {UQX: U is a weakly open set with w*cl(C/) n Kn = 0).
Each όUn is an open cover of (X, weak). Then (^ n )^ = 1 is a complete
sequence of open covers for Bx. Indeed, if J^is a family of closed sub-
sets of Bx with the finite intersection property that is °lίn small for each n,
then Π/r€^w*cl(i7) is a non-empty subset of X** disjoint from all Kn, so
(λF^FΦ 0.

We proceed with a recursive construction. Choose xλ ^ X, xλΦ 0,
and let Px\ X -» [xx] be a projection. (We use brackets [ ] for the span of a
finite set.) Then PX(BX) is compact, and covered by basic open sets from
°lίx, so there is a finite subcover %[. Choose a finite set A1 of X* that
determines Px and the members of <%[. Let Fx = [xr] + [Aι]± this is a
closed subspace of X with finite codimension. Also, BFι is covered by <%[>
since (x — Pλx, y) = 0 for each x ^ Fλ andy e Av

Now choose x2 e [^J^XIxJ; this is possible since X is infinite-di-
mensional. Let P2: X -> [xl9 x2] be a projection. Then Pλ{Bx) is covered
by a finite subfamily °Uf

2 of the basic open sets in °ll2. Choose a finite
subset A2 of X* that determines P2 and the members of °U2. Let F2 =
[x 1 ,x 2 ]-f[^ 1 U^4 2 ]± Then F2 has finite codimension, and BF is covered
by ^ .

Continuing in this way, we obtain a linearly independent sequence
xl9 x2,... in X and a decreasing sequence Fι'D F2'D of subspaces of
X such that xy e Fk for y < A: and 1?^ is covered by finitely many basic
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open sets from %. Let F = Γ\^xFk. Then xj e F for all j9 so F is
infinite-dimensional. Also, BF is covered by finitely many sets from <%k for
all k. It follows that BF is weakly compact: If ϊF is a filter of closed
subsets of BF, then ϊF is ^-small for each n, since °Un is closed under
finite unions. Hence Π &Φ 0. Thus F is reflexive. D

This theorem generalizes a result of Johnson and Rosenthal [31]
stating that if Y embeds in a separable dual and 7* is separable, then Y is
somewhat reflexive.

Here is another result related to Theorem B.

4.2. PROPOSITION. Let X be a Banach space and Y a reflexive subspace.
Then Xhas Cech complete ball if and only if X/Y has Cech complete ball.

Proof. We have (X/Y)** = X**/Y±±= X**/Y. If TΓ: X** -+
X**/7is the quotient map, then (X/Y)** \(X/Y) = π ( * * * \X)- The
reflexivity of Y shows that π maps Bx** onto Bx**/γ, so it maps Bx** \ Bx

onto Bx**/γ\Bx/γ. The map π is σ(X**, X*) - σ(X**/7, Y1) con-
tinuous. It follows that BX**\BX is weak* σ-compact if and only if
Bx**/γ\Bx/γ is weak* σ-compact. By Theorem 2.3, Bx is Cech com-
plete if and only if Bx/γ is Cech complete. D

This proposition and Corollary 4.7 are positive results about quotients
of spaces with Cech complete ball. However, not all quotients preserve the
Cech complete or Polish properties of the ball (see Proposition 4.8 and
subsequent remarks). The space JT* admits a separable subspace B with
Polish ball such that JT*/£ is reflexive, but JT* does not have Cech
complete ball (since it is not WCG).

Spaces with Cech complete ball are separately distinguished, accord-
ing to the next result.

4.3. THEOREM. Let X be a Banach space. The following are equivalent:
(1) X is separably distinguished', (2) X is isomorphic to R θ S, where R is
reflexive and S* is separable; (3) There is a non-empty Gδ set in (X**9

weak) that is contained in X.

Proof. (1) => (2). Choose a separable subspace Y of X* such that
γ± = I J C#*. ζy^ JC**\) = Q f o r a U y e y j ^ a S u b s p a c e Qf X A s i n t h e

proof of Theorem B, Rx = Y1^ is reflexive, X/Rλ has separable dual, and
X is WCG. Moreover, Y = (X/Rx)* is a separable dual space, so it has
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RNP [13, p. 79]. Also, X*/Y = R* has RNP, since it is reflexive [13, p.
76]. Thus X* has RNP [15, Theorem 6.3], so X is an Asplund space [51].
The remainder of the argument in Theorem B shows that X is isomorphic
to R Θ 5, where R is reflexive and S is separable. Since X is an Asplund
space, S* is separable.

(2) => (3). Let (/„) be norm dense in S*. Then A = Π^=ιf~\0) is a
weak* Gδ in X**. If *** e Λ, then c** e Λ Θ {0} c X

(3) => (1). Let U be a Gδ-set in (X**, weak*) with x0 e ί/ c X Then
F = ί/ - JC0 is a Gδ set and O G F C I S O there is a countable subset C
of X* such that C x c F c X (as in the proof of Theorem B). If Y is the
closed span of C, then 7^ c X, so Xis separably distinguished. D

Note that (3) cannot be replaced by (3'): There is a non-empty Gδ set
in (Bx**, weak*) that is contained in Bx. Indeed, the usual norm on I1 is a
Kadec norm, so the unit sphere of I1 is such a Gδ, but I1 fails (2).

4.4. COROLLARY. Suppose X is separably distinguished. Then X is WCG
and an Asplund space, and X* is WCG. The spaces (Bx*, weak*) and
(Bx**, weak*) are Eberlein compacts.

4.5. THEOREM. Let X be a Banach space. Then the following are
equivalent: (1) X* has Cech complete ball; (2) X**/X is separable; (3) X is
isomorphic to R Θ S, where R is reflexive and 5** is separable.

Proof. (1) => (2). Since X* has Cech complete ball, the space

X***\X* = {x* + x± :x* e X * , χ ± e X ± , χ ± ^ 0}

is weak* σ-compact. Now X1- is weak* closed, so X1- Π(X***\X*) =
X±\{0} is weak* σ-compact. Thus {0} is a weak* Gδ in Xx =
(X**/X)*, so there is a countable subset C of X**/X with Cx= {0}.
Thus the norm closed span of C is X**/X, so X**/Xis separable.

(2) => (3) is a result of Valdivia [54]. Note that X**/X and S**/S can
be identified.

(3) => (1). Since 5* is a separable dual, it has RNP [13, p. 79] so it has
(PC). By 3.18, S* has Cech complete ball, so R* Θ S* has Cech complete
ball. D

Note the relative strengths of the factorization properties in Theorems
B, 4.3, and 4.5.
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4.6. COROLLARY. Suppose X is separable. Then the following are

equivalent: (1) Bx* is Cech complete; (2) Bx* is Polish; (3) X** is separable.

4.7. COROLLARY. // X* has Cech complete ball, then X (and every

quotient space of X) has Cech complete ball.

Proof. Let Z = X/Y be a quotient of X. Then Z**/Z is separable

since X**/X is separable [41]. So by 4.5, Z = R Θ S, where S** is

separable, so Z has Cech complete ball, by 3.4. D

Thus a dual space with Cech complete ball must have the RNP, since

it is the dual of an Asplund space (or, alternatively, since it is WCG). The

predual B of James Tree has Polish ball, but fails the RNP [38], and its

dual JT does not have Cech complete ball (since JT* is not separable).

Clark [7] proved that if X**/X is separable, then X and X* are

somewhat reflexive (see also [10], [31]). Here 4.5 and 4.7 show that the

conclusion can be strengthened to: X and X* have Cech complete ball.

Kuo [35] proved that if X**/X is separable, then X* and X** have the

RNP. This follows from 4.5, which shows that such an X* or X** is a sum

of a reflexive space and a separable dual space.

4.8. EXAMPLE. If S is a separable Banach space, let X = JL(S) denote

the associated James-Lindenstrauss space [29], [36]. In more detail, X* is

separable, and admits a quotient map π onto S. If j: X -> X** is the

canonical embedding, then X** = j(X) Θ π*(S*). The space Y = ker π is

a predual of X, since 7* = Jf**/(ker π)± Thus X always has Polish ball

(whether or not S does). By 4.5, the space X* has Polish ball if and only if

S* is separable.

4.9. PROPOSITION. The quotients of spaces with Polish ball are precisely

the spaces with separable dual.

Proof. If X has Polish ball and π maps X onto 7, then 7* c X* is

separable. Conversely, if 5* is separable, then JL(S)* has Polish ball and

has S as a quotient. D

Since c0 has separable dual, it can be the quotient of a space with

Polish ball, so I1 can be a subspace of a dual of a space with Polish ball. In

fact, Example (2) in §6 has Polish ball and dual isomorphic to I1.
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If X has Cech complete ball (or is even separably distinguished), then
(X**, weak) must be realcompact. Indeed, I = i ? θ 5 , where S* is
separable. Thus (S***, weak*) is separable, so (S**, weak) is realcompact,
using Corson's criterion [8, Lemma 9]. Not much more than realcompact-
ness can be expected for X** where X has Cech complete ball. If
X = JL(/X) then X has Polish ball, but l°° is a direct summand of X**, so
X** fails the Pettis integral property. It may be helpful to consult Figure 1
of [16]; M. Talagrand has recently shown that property (C) implies the
Pettis integral property.

We have no characterization of the remainders X**/X, for X with
Cech complete ball. Any such remainder is a quotient of the dual of a
separable space, hence has at most the cardinal of the continuum. If
Γ * = l θ 7, where Y has Cech complete ball, then X has Cech com-
plete ball if and only if Y is separable. Indeed, if Y is separable, then
χ**/χ[s separable, so X* has Cech complete ball (4.5), and hence Xhas
Cech complete ball (4.7). Conversely, if X has Cech complete ball, then
X** = x e y has Cech complete ball, so X* has Cech complete ball (4.7),
and hence Y = ^Γ**/^Γis separable (4.5).

As an example, let / be James' original quasi-reflexive space of order
1. Then an uncountable I2 sum of copies of / does not have Cech
complete ball. If X* ^ / \ then more can be said about X** and X***. A
Banach space X has property (C) if any collection of closed, bounded,
convex sets with empty intersection has a countable subcollection with
empty intersection. See [45], [46].

4.10. THEOREM. Let X be a separably distinguished Banach space. Then

the following are equivalent:

(1) (2?x***, weak*) is angelic,

(2) (Bx±, weak*) is angelic;

(3) (i?x***, weak*) is sequentially compact;

(4) (Bx± , weak*) is sequentially compact;

(5) X** has property (C);

(6) X**/X has property (C);

(Ί)X** \

(8)X*

Proof. First, let X be any Banach space. Then certainly (1) => (2) =̂> (4)

and (1) => (3) => (4). The results of Pol ([45] or [46]) show that (1) => (5)

and (2) => (6). Since property (C) is preserved by continuous images,

(5) => (6). Since Z 1 ^ ) fails property (C), we have (5) => (7). Also (7) =* (8),
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for if X* <- l\ then /°° is a quotient of ***. But l°° «- l\«λ)9 so Z 1 ^ ) is
a quotient of some subspace of ^**, and thus (by 2.2(1)) we have
X** <- /H^x).

Thus it is enough to show (6) => (5), (4) => (8), (8) => (1) for separably
distinguished spaces.

(6) => (5). Suppose X**/X has property (C). Since X is separably
distinguished, it is WCG (by 4.4), hence weakly Lindelδf, and thus X has
property (C). Then Z** has (C) by the three-space property [45].

(4) => (8). Since X is separably distinguished, X = R Θ S, where i? is
reflexive and S* is separable (by 4.3). If X* <-> /\ then 5* <- Z1 by 2.2 (3).
Then by 2.2 (4), there is a continuous linear map π from X onto c0. Thus
7r** maps X** onto /°° and induces a continuous linear map of X**/X
onto /°°/c0. The adjoint is a weak* continuous injection of (/°°/c0)* into
X-1. But ((/°°Ao)*> weak*) contains a homeomorph of βN \ N, which is
not sequentially compact.

(8) => (1). Suppose X* <^lι. As before, X = R Θ S, where R is
reflexive and S* separable. So 5* is separable and does not contain I1. By
the Odell-Rosenthal theorem [43], (Bs***> weak*) is a Rosen thai compact.
But (BR*, weak*) is an Eberlein compact, so by Theorem 2.6, (Bx***,
weak*) is angelic. D

We close this section by considering properties formally stronger than
Cech complete ball. If Xhas Cech complete ball, then Jf** \ X = [)™=ιKn,
where each Kn is weak* compact. Additional requirements might be that
each Kn be convex, or have positive distance from X (see Definition 2.4).

4.11. LEMMA. Let X be a Banach space. Suppose X* is separable and

X* <+> Z1. Then X has regularly embedded Cech complete ball if and only if

X± is weak* separable.

Proof. Assume X has regularly embedded Cech complete ball. Then
X**\X= \J™=ιKn, where each Kn is weak* compact, convex, and
d{Kn, X) > εn > 0. If 7r is the quotient map from X** onto X**/X, then
π(Kn) is convex, and does not contain 0 in its norm closure. Therefore
there exists fn e Bx± such that fn(π(x**)) > en for all x** e Kn. So
X= {*** G X**: fn(ir(x**)) = 0 for all n) = {/„: n^N}±, so X± =
{/π: « e N}-1--1 is weak* separable.

Conversely, let (jn) be a countable dense subset of (X1-, weak*). By
the Odell-Rosenthal Theorem [43], for each n there is a sequence (xJΛ) in
X* that converges to yn in the weak* topology. Then Z * * \ X is a
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countable union of sets of the form

00 ( i \n ) ** . i/ * y **\ι > _ I
\X \\XnkiX /I - m P

k = m V m }

oo . Λ

\X ' \\Xnk> X )\ ^ M

(see the proof of 3.4). These sets are weak* closed, convex, and have
distance at least \/(m \\yn\\) from X. Indeed, if x** belongs to either of
these sets, and x e X9 then

||χ** - *|| \\yn\\ >\(yn,χ**) - (yn,χ)\ = | ( Λ , X * * > |

Intersecting these sets with balls nBx** yields compact sets. D

4.12. THEOREM. // either (1) X is a Godefroy space or (2) X* has Cech
complete ball, then X has regularly embedded Cech complete ball.

Proof. If (1) holds, then X has regularly embedded Cech complete ball
by 4.11. If (2) holds, then X is isomorphic to R Θ 5, where R is reflexive
and *S** is separable (by 4.5). Then S is a Godefroy space, so 5** \ S =
Ό™=ιLn, where each Ln is weak* compact, convex, and d(Ln, S) > 0.
Then

which is the required decomposition. D

4.13. THEOREM. Suppose X** \ X = U^= 1 Kn, where each Kn is weak*
compact and convex. Then X has the Radon-Nikodym property.

Proof. First suppose X is separable. Let (Ω, Σ, μ) be a probability
space, and let F: Σ -> X be a vector measure with H^ί 1)! ! < μ(£) for all
E e Σ. This measure has a weak* density in X** (see [13, p. 84]), that is, a
weak* measurable function /: Ω -> X** such that (/Γ(J?),x*) =
/£(JC*, f(ω))dμ(ω) for all £ e Σ and X* e X*. We will show that/has
almost all of its values in X. Since X has Polish ball, X* is separable, so Kn

is a weak* Baire set in Jf**, so Dn = f~ι(Kn) belongs to Σ [15, Theorem
2.3]. If μ(Dn) > 0 for some n, then F(Dn)/μ(Dn) is in X, so not in ̂ Γπ, so
by the Hahn-Banach theorem there is x* e X* and α such that



340 G. A. EDGAR AND R. F. WHEELER

(F(Dn)/μ(Dn),x*) > a > (x*,y**) forallj>** ΪΞ Kn. But then

(x*9f(ω))dμ(ω) < aμ(Dn) < (F(Dn)9x*)9

a contradiction. Thus μ(Dn) = 0 for all n9 s o / ( ω ) G l for almost all ω.
Then/(redefined to be 0 on a μ-null set) is weakly measurable, and is the
Pettis derivative of F. Since X is separable, / is Bochner integrable. This
shows that ^ίhas the RNP.

Now consider the nonseparable case. By Theorem B, X = R Θ S,
where R is reflexive and S is separable. Then S1** can be identified with

s±± i n χ * * ? a n d s±± is closed in (X**, weak*). If X**\X = U^=1 Kn,
where each Kn is weak* compact and convex, then

s**\s = U {s±±nκn)9
n = l

where each *S** Π Kn is also weak* compact and convex. By the first part
of the argument, S has RNP. Therefore X= RΘ S also has RNP. D

The predual B of the James Tree space has Cech complete ball, but
fails the RNP. The weak* compact sets Kn in the decomposition of
B**\B can be chosen to have positive distance from B, but not to be
convex.

Property (A) is defined in 3.5.

4.14. THEOREM. Let X be a Banach space. Then X has property (A) //
and only if there exist weak* compact sets Kn in ̂ ** with d(Kn, X) > 0
such that X** \ X = U ^ Kn.

Proof. Assume X has property (A), that is, there exist norm-one
vectors^* G X* (1 < / < mn, n e N) such that if

pn(x**) = max{|(y*, x**>|: 1 < / < mn}9

then limpn(x) = 0 for all x e X but liminf pn(x**) > 0 for all %** e
X**\X.Let

L k m = rnBx** Π { * * * : / > „ ( * * * ) > \ / k f o r a l l n > k ) .

Then X** \ X = \Jktm Lkm and d(Lkm9 X) > \/k.
For the converse, suppose first that Jf is separable. Let (xy) be dense

in X and let X** \ X = U^=1 Kn, where d(Kn9 X) > εn > 0. So if *** G
ϋ:Λ, thenrf(x**, X) > επ, so there exists gx** e ^ c ^r*** with||g^»|| = 1
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and (x**, gx**) > εn. We can find, for i E N , functionals gx**tk ̂  Bx*
with (xj, gx**^k) < \/k for 1 <j < k and (x**, gx**,k) > εn. This shows
that, for each k,

so (by compactness of Kn) there is a finite subcover, say

i

where / runs over a finite set {1,2,... ,mnh), and/w/A: e Bx*, (x , /rt/Λ) <
\/k for 1 <j < k, and if*** e #„, then m a x ^ ^ m ^ (x**, fnik) > εn for
all k. Define

Pk(x**) = m a x { | ( x * * , O | : 1 < n < k, 1 < i < mnk}.

Now if x** £ X then x** G ίΓπ for some n, so that Pk(x**) > εn for all
k > n. On the other hand, if x e X and ||x|| = 1, then given ε > 0 there
exists j with ||x — x7-|| < ε/2. If k > max{y, 2/ε}, then for n < k and
1 < / < mnk, we have

\(xjmk)\ <\\x - Xj\\ \\fmk\\ +\(xj,fnik)\ < ε/2 + \/k < ε.

Thuspk(x) < ε. This shows that X has property (A).
For the nonseparable case, observe that X has Cech complete ball, so

X = R Θ S, where R is reflexive and S has Polish ball. Thus 5** = S1 x

is weak* closed in (***, weak*), so S**\S = U™=1(S±± ΓιKn). By the
separable case, S has property (A), and it follows that X does too. D

5. A factorization theorem for property (PC). The main theorem of
this section employs a version of the Principle of Local Reflexivity. We
record it here for convenience. A proof is sketched in [32].

5.1. PROPOSITION. Let X be a Banach space, U and F finite-dimensional
subspaces of X** and X* respectively, ε > 0. Then there is a one-to-one
linear operator T: U -> X such that (1) Tx = x for all x e X Π U; (2)

x**),x*) = {x*, x**) for all x* e F, x** e ί7; αnc/(3) | |Γ| | ||Γ x | | <
1 + ε.

Note that if ΛΓ n t/ # {0}, then (1) implies | |7 | | > 1 and HΓ^H > 1,
so by (3) we have | |7 | | < 1 + ε, IIΓ"1!! < 1 + ε.

5.2. THEOREM. Let X be a Banach space, Y a closed subspace. Suppose
(1) Y has Polish ball; (2) X/Y has property (PC); and (3) Yx is a
complemented subspace of X*. Then X has (PC).
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Proof, Let i: 7 -> X be the inclusion and π: X -> ΛΓ/y the quotient
map. Let X* = 7-1 Θi% where i 7 is isomorphic to 7*. Then there is a
linear isomorphism u: 7* -> X* of 7* onto the closed subspace F of X*,
so that /*°w is the identity on 7*. The space X** is isomorphic to
(X**/Y± ±) Θ 7**, with projections π** and u*. There is an a < oo such
that

||***|| < α(||w*(jc**)|| + |k**(***)| |) for all x** e= X**.

1 * * π * *

γ * * ^ χ * * , ^ X**/Y iJL

Y1

> X/Y

π

FIGURE 2

Let A be & nonempty bounded subset of X. We will show that A
contains nonempty relatively weakly open subsets of arbitrarily small
diameter. (This will show that Zhas (PC), by 3.13.) If not, we may assume
that diam(ί/ Π A) > 1 for each weakly open set U with U Π A Φ 0. Let
M = 1 + diam(^l), B = {y <Ξ Y: \\y\\ < M). Since B is Polish, there is a
complete sequence (45fΛ) of open covers of B closed under finite unions.
Choose nQ such that 2n° > max(2α, 2,1 + 2||κ*||).

We will use the following notation for the binary tree T = U^=o{0' 1}Π>
and the Cantor set Δ = {0,l}N. If t e {0,1}", its length is n9 \t\ = n. If
k < n, the restriction *|& is the element of (0, \}k that agrees with t in the
first k terms. Similarly, if T e Δ, then τ|Λ e (0,1}* is an initial segment.
For t e {0,1}", its two successors in {0,1}"+1 are written ίθ and t\. We
write 0 for the element of {0,1}°.

For each t e Γ, we will choose vectors xr e 4̂, yt G 5, a basic
neighborhood ^ of 0 in (7, weak), and a weakly open subset Wtoί X/Y
such that 7r(xf) e WP̂. We do this recursively on T.

First, π(A) is bounded in X/Y, so there is a weakly open set W0 in
X/Ywithπ(A) Π W0 Φ 0 and diam(τr(yl) Π W0) < 2~n\ Choose JC0 e
A Π trr~1(W0), let j 0 = 0, and let F 0 be a basic neighborhood of 0 in 7
such that V0 Γ) Bis contained in an element of <%0.
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Now suppose, for some t G T, that xt9 yn Vn Wt have been con-
structed. Let n = \t\. Now Vt is a basic neighborhood of 0 in 7, so there is
a finite subset {/y}y

m

=1 of 7* such that Vt = {y: \(y9 fj)\ < 1, 1 <j < m).

Let// = « φ e j f , and let Ut={x: \(x9fj)\<l9 l < y < m } , a
neighborhood of 0 in X. Now X/Y has (PC), so Wt contains a weakly
open set Wt0 = W^ such that π((Ut + *,) Π i ) Π ^ 0 is nonempty and
has diameter less than 2'(n°+n+ι\ Then ((&J + xt) n T Γ " 1 ^ ) )

 n ^ i s

nonempty, so it has diameter greater than 1. Choose xtQ9 xtl in this set
with ||x,0 - xtl\\ > 1. Note that ||flr(x,0) - w(xrt)||, \\*(χu) " w(*r)ll> ' =

0,1, are less than 2~<n<>+n + ι\ Thus

| | w * f v ^ _ ίj*( Y M\ > — IIY — Y II — l l w * * f γ — Y ΛII||w {xt0) u \xtl)\\ > a\\xto xti\\ II77 \xto xti)\\

> — _ 2-< Λ O+Λ+I) > J _ ^
α 2α *

Choose vv0 and wλ in 7 such that \\xti — xt — wt\\ < 2~(n°+n) for
i = 0,1. Let U be the span in 7** of the 6 vectors >>,, w*Or), w*(xr0),
w*(xrl), w0, wx; let F be the span in 7* of the functionals fv.. .,/m. By
local reflexivity, there is a one-to-one linear operator T: U -> 7 such that

i = 0,l; (T(y**)9f?) = (fJ9 y**) for j * * e ί/
< 2, | |^~x | | < 2. Then

= (fJ9 u*(χti - xt)) = (xti - xn /;> < l

t/r Thus Γw*(xπ - *,) G ^, / = 0,1. Let

and 1 <j <m; and

for 1 <j < m, since
yti = ΓW*(x/7 - ^ ) +

- xt

Λ = Tu*{xti -xt+ y t ) . T h e n

On the other hand,

ho-yJ =\\Tu*{xa - xί0)\\ > \\\u*{xa - *, 0 ) | | > l/4α.

Now yί0 and j n belong to Vt + yr Choose a basic open neighborhood
Vί0 = ^ of 0 in 7 so that (1) wcl(^ + Vti) c yt + Vn i = 0,1; (2) if

z/ e Λ/ + ι̂> t h en \\zQ - zx\\ > l/4α; and (3) {yti + Vti) Π B is contained
in an element of # Λ + 1 . To complete the construction, we need to verify
that j ^ G 5 for each /. If t G {0,1}W, then

/ c = l

- xt\k-ιi)
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The first norm is ||jcr — x0\\ < diam(yί). A term in the second norm is of
the form (ysi — ys) — (xsi — xs) where s e (0, l}k and / = 0,1. But if wt is
as above, then

\\(ySi - Λ ) -(*„• - *,)ll ^ lk, - Λ - wi\\ + Itai ~ χ

s - wι\\

Thus the norm of the sum is at most

Σ (\\u*

by the choice of n0. Thus \\yt\\ < diam(^4) + 1 = M, so yt ^ B. This
completes the recursive construction.

Now let

D= n u u+ vt).

Since wcl(.yr/ + Vtι) c yt + ϊ^ for all /, the set Z> is weakly closed in F. For
each n, D is covered by finitely many sets from Φπ, and therefore by a
single set from <^. If J^ is a filter of closed sets in D, then J*7 is ^-small
for all n, so C\^Φ 0 , by the completeness of the sequence (ΦΛ).
Therefore Z> is compact. For each τ G {0, 1}N, the set

A = n (Λ,. + n,j

is a nonempty subset of Zλ Moreover, if r ¥= σ, zx G Z)T, Z2 e i)σ, then
llzi "" Z2ll > l/4α. Thus 7 is nonseparable, contradicting the fact that Bγ

is Polish. D

5.3. COROLLARY. If X has Cech complete ball, and X**/X has property
(PC), then X** has property (PC).

Proof. If Jf has Polish ball, then this follows from 5.2, since X± is
always complemented in X***. The general case follows from Theorem B:
since X has Cech complete ball, X = R ® S where R is reflexive and S has
Polish ball. But S**/S = X**/Xhas (PC), so 5** has (PC). The reflexive
space R has (PC), so X = R Θ S has (PC). D

As an illustration, consider the dual JT* of the James Tree space JT.
In Example 3.6, we showed that the predual B of JT has Polish ball. But
JT*/5 is a nonseparable Hubert space [38], so it has (PC). Therefore JT*
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has (PC). It is useful to note that JT* is a nonseparable dual of a
separable space, so it fails the RNP [50].

We do not know if hypothesis (3) is necessary for 5.2, nor if (1) can be
weakened to "Y has Cech complete ball", or even to "Y has (PC)".

Bourgain [3] has considered a convex version of (PC). We will say that
a Banach space X has property (*) iff for each weakly closed bounded
convex subset A of X, the identity map (A, weak) -> (A, norm) has at
least one point of continuity. We do not know if this is equivalent to (PC).
An argument similar to 3.11 shows that a Banach space has (*) if and only
if every separable subspace has (*). An argument similar to [9] can be
given to show that X has (*) if and only if (Bx, weak) is huskable for
every equivalent norm on X. If X is separable, this is equivalent to saying
that Bx is a Baire space for every equivalent norm on X. We omit the
proofs.

The paper [55] investigated the conditions under which (Bx, weak)
satisfies the countable chain condition (every pairwise disjoint collection
of nonempty open sets is countable). Theorem 18 of that paper is easily
modified to show the following.

5.4. PROPOSITION. Let X be a Banach space with (PC). Then (Bx,
weak) satisfies the countable chain condition if and only if X is separable.

Rosenthal [48] proved that for an Eberlein compact, the three condi-
tions (1) separable, (2) metrizable, (3) countable chain condition, are
equivalent. Here is a related noncompact theorem.

5.5. PROPOSITION. Let X be a Banach space with Cech complete ball, A
a weakly closed bounded subset. Then the following conditions on (A, weak)
are equivalent: (1) separable, (2) metrizable, (3) countable chain condition.

Proof. (1) => (3) is true for all topological spaces. For (3) =» (1),
modify Theorem 18 of [55].

(1) => (2). Let Y be the closed linear span of A. Then Y has Polish
ball, so A is metrizable.

(2) => (1). Let d be a metric for (A, weak). If A is not separable, then
there is an uncountable set {a{. i e /} and ε > 0 such that d(an a^ > ε
for / Φ j . Now X = R Θ S, where R is reflexive and S is separable. Let
at = rιr + st for / e /, where η e i?, st e S. Since S is separable, there is a
net (siχ) that converges in norm (perhaps siχ is constant). Since R is
reflexive, by taking a subnet we see that (at) has a weak cluster point in A,
a contradiction. D
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Here is another application of Cech completeness. A topological
space T is said to have a Gδ diagonal iff {(/, /): / e T) is a G8 set in
T X T. A paracompact Cech complete topological space with Gδ diagonal
is metrizable [1, p. 37].

5.6. PROPOSITION. Let A be a subset of (X, weak). Then the following
are equivalent:

(1) A is Polish;
(2) A is Lindelόf and Cech complete, and there is a countable subset of

X* that separates points of A.

Proof. (1) => (2). If Y is the closed span of A, then Y* is weak*
separable.

(2) => (1). The final condition gives A a Gδ diagonal. Thus A is
metrizable and Cech complete, so it is Polish. D

5.7. EXAMPLE. Since (1°°)* is weak* separable, every Lindelof Cech
complete subset of (/°°, weak) is Polish. This is a generalization of the fact
that every weakly compact subset of l°° is separable. Under the Con-
tinuum Hypothesis, there is a closed linear subspace Y of /°° such that
every subset is Lindelof in the weak topology, but Y is not separable [46,
Remark 2].

Asplund

(1) B
(2) BD
(3) c0

(4) /(«),<*< ω,
(5) J(Uι)
(6) JH
(7) JT
(8) JT*
(9) I1

(10) ^[0,1]
(11) JL(c0)
(12) JL(lι)
(13) JL(JT)
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N

N

N

Y
N
N
N

N

N
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N
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N
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N
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N

N
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Y
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Y
Y
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N
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N
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Y

Y

6. Examples. Table 1 displays the properties of several Banach
spaces. We include here some brief explanations.

(1) X = B, the predual of the James Tree (Example 3.6, [30], [38]). It
has property (A), but BX**\BX is not a countable union of weak*
compact convex sets. It has Polish ball but is not isomorphic to a dual
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space, nor complemented in its second dual. It has property (PC), but not
RNP. The dual space J3* = JT does not have Cech complete ball.

(2) X = BD, a space constructed by Bourgain and Delbaen called Ύ
in [5], [4]. It is a separable J?0 0 space, has Polish ball, and has the
Dunford-Pettis and Radon-Nikodym properties. The dual X* is isomor-
phic to I1. The space X has no infinite-dimensional reflexive quotients.

(3) X = cQ (Example 3.3) is separably distinguished, but does not have
Cech complete ball. For the usual norm, (Bx, weak) is first category in
itself. For Day's norm, (Bx, weak) is a Baire space.

(4) X = /(α), the long James space [17]. If a is a countable ordinal,
then X** is separable, so Jfhas regularly embedded Cech complete ball.

(5) X = /(ω1). This nonseparable space has property (PCA), so every
separable subspace has Cech complete ball, and X is somewhat reflexive.
But J(ωλ) is not WCG, so its ball is not Cech complete.

(6) X = JH, and James Hagler space [25]. This space X is hereditarily
c0, and X* is a Schur space. Hence no infinite-dimensional subspace of X
or X* has Cech complete ball. The separable subspace F of JH* [6] has
(PC) but fails the RNP.

(7) X = JT, the James Tree space (Example 3.6, [30], [38]). Now X is
separable, X**/Xis reflexive, Xis somewhat reflexive, but Bxis not Cech
complete.

(8) X = JT*, the dual of the James Tree space (Example 3.6, [38],
[38]). This space is an Asplund space and has (PC), but not the RNP.
Thus every closed bounded subset of (JT*, weak) is huskable, but this is
not true for (JT*, weak*). There is a subspace B c X with Polish ball such
that X/B is reflexive, but X does not have Cech complete ball.

(9) X = l\ This space X has the RNP, but X** fails (PC), since it
contains Lx[0,1]. For any equivalent norm (Bx, weak) is almost Cech
complete, but no nonempty Gδ set of (X**, weak*) is entirely contained in
X.

(10) X = Lx[0,1]. For the usual norm, (Bx, weak) is of first category
in itself: If (rn) is the sequence of Rademacher functions, then Bx is the
union of the closed nowhere dense sets

ff{t)rH(t) dt < 1/4 for all π > &

For subspaces of L1, the properties (PC) and RNP are equivalent. Every
subspace of X with separable dual has Polish ball (in fact, reflexive), but X
does not have Polish ball.
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(11) X = JL(c0), a James-Lindenstrauss space (Example 4.8). If S is
separable, the James-Lindenstrauss space JL(S) can be constructed so as
to have property (A). The spaces JL(S) are separable duals, so they have
the RNP. For X = JL(c0), the bidual X** is separable, but X**/X does
not have Cech complete ball. Also, Bx* is Cech complete, but X* admits
c0 as a quotient.

(12) X= JL(lι). This space X has Cech complete ball, but X*
contains a complemented copy of /\ and X**/X fails the Pettis Integral
Property. Also, X is a dual space that has Cech complete ball with a
quotient that is not somewhat reflexive. The annihilator Xx is weak*
separable, but Bx± is not weak* sequentially compact.

(13) X = JL(JT). Now Bx is Cech complete, X* *P l\ but neither X**
nor X**/X is measure-compact. Also, X is a Godefroy space, but Bx* is
not Cech complete.
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