ON THE ORDERS OF AUTOMORPHISMS OF A CLOSED Riemann Surface

Kenji Nakagawa
ON THE ORDERS OF AUTOMORPHISMS
OF A CLOSED RIEMANN SURFACE

KENJI NAKAGAWA

Let S be a closed Riemann surface of genus g (≥ 2). It is known that the maximum value of the orders of automorphisms of S is $4g + 2$. In this paper we determine the orders of automorphisms of S which are greater than or equal to $3g$, and characterize those Riemann surfaces having the corresponding automorphisms. Except for several cases, such Riemann surfaces are determined uniquely up to conformal equivalence.

Theorem 1. Let $N(S, h)$ be the order of an automorphism h of S. Then,

$$\max_{S, h} N(S, h) = 4g + 2.$$

The Riemann surface having the automorphism of maximum order $4g + 2$ is conformally equivalent to the Riemann surface defined by

$$y^2 = x(x^{2g+1} - 1).$$

The automorphism h of order $4g + 2$ is given by

$$h(x, y) = (e^{2\pi i/(2g+1)}x, e^{2\pi i/(4g+2)}y).$$

Although the existence of the Riemann surface with the automorphism of order $4g + 2$ is well known, in the above theorem the uniqueness (up to conformal equivalence) is shown.

To simplify, we write Theorem 1 in the following form:

$$\max_N N = 4g + 2, \quad S: y^2 = x(x^{2g+1} - 1),$$

$$h(x, y) = (e^{2\pi i/(2g+1)}x, e^{2\pi i/(4g+2)}y).$$

Under similar notation,

Theorem 2.

$$\max_{N < 4g+2} N = 4g, \quad S: y^2 = x(x^{2g} - 1), \quad h(x, y) = (e^{2\pi i/2gx}, e^{2\pi i/4gy}).$$

Theorem 3. If $g \equiv 0 \pmod{3}$, for $g \neq 3$,

$$\max_{N < 4g} N = 3g + 3, \quad S: y^3 = x^2(x^{g+1} - 1),$$

$$h(x, y) = (e^{2\pi i/(g+1)}x, e^{4\pi i/(3g+3)}y).$$
For $g = 3$, we have $4g = 3g + 3$. Then there exist two Riemann surfaces defined by
\[
y^2 = x(x^6 - 1) \quad \text{and} \quad y^3 = x^2(x^4 - 1)
\]
which have an automorphism of order 12. Furthermore,
\[
\max_{N < 3g + 3} N = 3g, \quad S: y^3 = x(x^g - 1), \quad h(x, y) = (e^{2\pi i/g}x, e^{2\pi i/3g}y),
\]
except for
\[
S: y^{20} = x^5(x - 1)^4 \quad (g = 6, N = 20 = 3g + 2),
\]
\[
: y^{28} = x^7(x - 1)^4 \quad (g = 9, N = 28 = 3g + 1),
\]
\[
: y^{36} = x^9(x - 1)^4 \quad (g = 12, N = 36 = 3g).
\]

Theorem 4. If $g \equiv 1 \pmod{3}$,
\[
\max_{N < 3g + 3} N = 3g + 3, \quad S: y^3 = x(x^{g+1} - 1),
\]
\[
h(x, y) = (e^{2\pi i/(g+1)}x, e^{2\pi i/(3g+3)}y).
\]

\[
\max_{N < 3g + 3} N = 3g, \quad S: y^3 = x(x^g - 1), \quad h(x, y) = (e^{2\pi i/g}x, e^{2\pi i/3g}y),
\]
except for
\[
S: y^{12} = x^3(x - 1)^2 \quad (g = 4, N = 12 = 3g),
\]
\[
: y^{30} = x^5(x - 1)^6 \quad (g = 10, N = 30 = 3g).
\]

Theorem 5. If $g \equiv 2 \pmod{3}$,
\[
\max_{N < 4g} N = 3g, \quad S: y^3 = x^2(x^g - 1), \quad h(x, y) = (e^{2\pi i/g}x, e^{4\pi i/3g}y),
\]
except for
\[
S: y^6 = x^3(x - 1)^3(x - \xi)^2 \quad (g = 2, N = 6 = 3g, \xi \in \mathbb{C}, \xi \neq 0, 1).
\]

We introduce the following notation; $\langle h \rangle$ denotes the cyclic group generated by h of order N. $\tilde{S} = S/\langle h \rangle$ denotes the closed Riemann surface of genus \tilde{g} obtained by identifying those points on S which are equivalent under the action of $\langle h \rangle$ on S. $\tilde{p}_1, \ldots, \tilde{p}_t \in \tilde{S}$ denote the projections of branch points of the covering map $\varphi: S \to \tilde{S}$. v_1, \ldots, v_t denote the multiplicities of φ at the branch points over $\tilde{p}_1, \ldots, \tilde{p}_t$, respectively.
A Fuchsian group is said to be a \((\gamma; m_1, \ldots, m_n)\) group if its signature is \((\gamma; m_1, \ldots, m_n)\). If \(n = 0\), it is said to be a surface group. A homomorphism from a Fuchsian group onto a finite group is said to be a surface kernel homomorphism if its kernel is a surface group.

Lemma 1. (Harvey [2].) Let \(\Gamma\) be a \((\gamma; m_1, \ldots, m_n)\) group, \(Z_N\) the cyclic group of order \(N\), and \(M = \text{lcm}(m_1, \ldots, m_n)\). Then there exists a surface kernel homomorphism from \(\Gamma\) onto \(Z_N\) if and only if the signature \((\gamma; m_1, \ldots, m_n)\) satisfies the following l.c.m. condition;

1. \(M = \text{lcm}(m_1, \ldots, m_i, \ldots, m_n)\) \((i = 1, \ldots, n)\). Here, \(m_i\) denotes the omission of \(m_i\).
2. \(M \mid N\), if \(\gamma = 0\) then \(M = N\).
3. \(n \neq 1\), if \(\gamma = 0\) then \(n \geq 3\).
4. If \(2 \mid M\), the number of \(m_i\)'s which are divisible by the maximum power of 2 which divides \(M\) is even.

Lemma 2. (Riemann-Hurwitz relation.)

\[
2g - 2 = N(2\bar{g} - 2) + N \sum_{i=1}^{t} \left(1 - \frac{1}{v_i}\right).
\]

Lemma 3. If \(\bar{t} = 0\), then \(S\) is conformally equivalent to the Riemann surface defined by

\[
y^N = f(x) \quad (f(x) \text{ is a polynomial of } x).
\]

Lemma 4. \((\bar{g}; v_1, \ldots, v_t)\) satisfies the l.c.m. condition.

Proof. Let \(D\) be the unit disk, \(K\) a Fuchsian surface group which uniformize \(S\), and \(\psi\) the natural projection from \(D\) onto \(S = D/K\). Let \(D^* = D - (\varphi \circ \psi)^{-1}\{\bar{p}_1, \ldots, \bar{p}_t\}\), \(\tilde{S}^* = \tilde{S} - \{\tilde{p}_1, \ldots, \tilde{p}_t\}\), and let \(\Gamma\) be the covering transformation group of the covering \(\varphi \circ \psi: D^* \rightarrow S^*\). Then \(\Gamma\) is a \((\bar{g}; v_1, \ldots, v_t)\) group and \(\Gamma/K = Z_N\). So from Lemma 1, we find that \((\bar{g}; v_1, \ldots, v_t)\) satisfies the l.c.m. condition.

Lemma 5. If \(N > 2g - 2\), then \(\bar{g} = 0\), \(t = 3, 4\).

Proof. From the Riemann-Hurwitz relation, if \(\bar{g} \geq 2\),

\[
2g - 2 \geq N(2\bar{g} - 2) \geq 2N.
\]

This contradicts the hypothesis. If \(\bar{g} = 1\), from the l.c.m. condition, \(t \geq 2\).
Then,
\[2g - 2 = N \sum_{i=1}^{t} \left(1 - \frac{1}{v_i} \right) \geq tN/2 \geq N. \]
This also contradicts the hypothesis. So \(\tilde{g} = 0 \), and
\[2g - 2 = -2N + N \sum_{i=1}^{t} \left(1 - \frac{1}{v_i} \right) \geq \frac{(t - 4)N}{2}. \]
Thus \(t = 3, 4 \) or 5. But if \(t = 5 \),
\[2g - 2 = N \left(3 - \sum_{i=1}^{5} \frac{1}{v_i} \right), \]
and from \(N > 2g - 2 \), we find that
\[2 < \sum_{i=1}^{5} \frac{1}{v_i} < 3. \]
The signatures which satisfy these inequalities are the following:
\[(0; 2, 2, 2, 2, \ast), \ (0; 2, 2, 2, 3, 3), \ (0; 2, 2, 2, 3, 4), \ (0; 2, 2, 2, 3, 5). \]
None of these satisfies the l.c.m. condition.

Lemma 6. If \(N > 2g + 2 \), then \(t = 3 \).

Proof. From Lemma 5, \(\tilde{g} = 0 \), \(t = 3, 4 \). If \(t = 4 \), from the Riemann-Hurwitz relation, we find that
\[1 < \sum_{i=1}^{4} \frac{1}{v_i} < 2. \]
The signatures which satisfy these inequalities and the l.c.m. condition are the following (\(N \) on the right side is given by \(N = M = \text{lcm}(v_1, v_2, v_3, v_4) \), \(g \) is calculated from \(\tilde{g}, v_1, v_2, v_3, v_4, N \) by the Riemann-Hurwitz relation):
\[(0; 2, 2, m, m) \ (m \neq 2) \quad \text{if} \ 2|m, \quad g = m/2, \ N = m = 2g, \]
\[\quad \text{if} \ 2 \nmid m, \quad g = m - 1, \ N = 2m = 2g + 2, \]
\[(0; 2, 3, 3, 6) \quad g = 3, \ N = 6 = 2g, \]
\[(0; 2, 3, 4, 12) \quad g = 6, \ N = 12 = 2g, \]
\[(0; 2, 3, 5, 30) \quad g = 15, \ N = 30 = 2g, \]
\[(0; 3, 3, 3, 3) \quad g = 2, \ N = 3 = 2g - 1, \]
\[(0; 3, 3, 4, 4) \quad g = 6, \ N = 12 = 2g, \]
\[(0; 3, 3, 5, 5) \quad g = 8, \ N = 15 = 2g - 1. \]
None of these satisfies \(N > 2g + 2 \).
Proof of theorems. If we assume $N \geq 3g$ ($\geq 2g + 2$), from Lemma 3, $\tilde{g} = 0$, $t = 3$ or exceptionally (I) $\tilde{g} = 0$, $t = 4$, $(\tilde{g}; v_1, v_2, v_3, v_4) = (0; 2, 2, 3, 3)$, $g = 2$, $N = 6$. When $\tilde{g} = 0$, $t = 3$, from the Riemann-Hurwitz relation, we find that

$$\frac{1}{3} \leq \frac{1}{v_1} + \frac{1}{v_2} + \frac{1}{v_3} < 1.$$

The signatures which satisfy these inequalities and the l.c.m. condition are the following;

<table>
<thead>
<tr>
<th>Signature</th>
<th>N</th>
<th>\tilde{g}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0; 2, m, m)$ (2</td>
<td>m then 4</td>
<td>m ($m \neq 4$))</td>
</tr>
<tr>
<td>$(0; 2, m, 2m)$ (2 + m ($m \neq 3$))</td>
<td>$g = (m - 1)/2$, $N = 2m = 4g + 2$,</td>
<td></td>
</tr>
<tr>
<td>$(0; 3, m, m)$ (3</td>
<td>m ($m \neq 3$))</td>
<td>$g = m/3$, $N = m = 3g$,</td>
</tr>
<tr>
<td>$(0; 3, m, 3m)$ (3 + m)</td>
<td>$g = m - 1$, $N = 3m = 3g + 3$,</td>
<td></td>
</tr>
<tr>
<td>(II) $(0; 4, 5, 20)$</td>
<td>$g = 6$, $N = 20 = 3g + 2$,</td>
<td></td>
</tr>
<tr>
<td>$(0; 4, 6, 12)$</td>
<td>$g = 4$, $N = 12 = 3g$,</td>
<td></td>
</tr>
<tr>
<td>$(0; 4, 7, 28)$</td>
<td>$g = 9$, $N = 28 = 3g + 1$,</td>
<td></td>
</tr>
<tr>
<td>$(0; 4, 9, 36)$</td>
<td>$g = 12$, $N = 36 = 3g$,</td>
<td></td>
</tr>
<tr>
<td>$(0; 5, 6, 30)$</td>
<td>$g = 10$, $N = 30 = 3g$.</td>
<td></td>
</tr>
</tbody>
</table>

So if we exclude the exceptional cases (I) and (II), the signatures $(\tilde{g}; v_1, v_2, v_3)$ are listed as following;

If $N = 4g + 2$, $(0; 2, 2g + 1, 4g + 2)$.
If $N = 4g$, $(0; 2, 4g, 4g)$.
If $N = 3g + 3$, $(0; 3, g + 1, 3g + 3)$.
(In this case, $3 + m$ and $g = m - 1$ imply $g \equiv 0, 1$ (mod 3).)
If $N = 3g$, $(0; 3, 3g, 3g)$.

Now S branches over three points of the Riemann sphere \overline{C}, and the branching orders are given as above, so if we assume that the projections of branch points are 0, 1 and ∞, from Lemma 3, S is conformally equivalent to the Riemann surface defined by

$$y^N = x^a(x - 1)^b,$$

where a, b are given by the following conditions;

$$1 \leq a, b < N, \quad N/(N, a) = v_1, \quad N/(N, b) = v_2, \quad N/(N, a + b) = v_3.$$

(N, a) denotes the g.c.m. of N and a.

Then if $N = 4g + 2$, S is defined by

$$y^{4g + 2} = x^{2g + 1}(x - 1)^{2k} \quad ((2g + 1, k) = 1, 1 \leq k < 2g + 1).$$
This surface is conformally equivalent to the Riemann surface defined by
\[Y^2 = X(X^{2g+1} - 1) \]
under the birational transformation

\[
\begin{align*}
 y &= \frac{Y}{X^{g+1+k}}, \\
 x &= -\frac{1}{X^{2g+1}} + 1,
\end{align*}
\]

where \((a, b, c), (p, q, r)\) are the solutions of the indeterminate equations
\[
\begin{align*}
 2a + (2g + 1)c &= 1, \\
 b + kc &= 0, \\
 p + r &= 0, \\
 (2g + 1)q + 2kr &= 1.
\end{align*}
\]

If \(N = 4g\), \(S\) is defined by
\[(2) \quad y^{4g} = x^{2g}(x - 1)^k \quad ((4g, k) = (4g, 2g - k) = 1, 1 \leq k < 4g).\]

This surface is conformally equivalent to the Riemann surface defined by
\[Y^2 = X(X^{2g} - 1), \]
under the birational transformation

\[
\begin{align*}
 y &= e^{\pi i/(2g+1)}X^{(k-1)/2}Y, \\
 x &= -X^{2g} + 1,
\end{align*}
\]

where \((a, b, c), (p, q, r)\) are the solutions of the indeterminate equations
\[
\begin{align*}
 2a + c &= 1, \\
 4gb + kc &= 1, \\
 2gq + kr &= 1.
\end{align*}
\]

If \(N = 3g + 3\), \(S\) is defined by
\[(3) \quad y^{3g+3} = x^{j(3g+1)}(x - 1)^3k \quad ((g + 1, k) = (3g + 3, (3 - j)(g + 1) - 3k) = 1, \\
\quad j = 1, 2, 1 \leq k < g + 1).\]

When \(g \equiv 0 \pmod{3}\), \(3\) is conformally equivalent to the Riemann surface defined by
\[Y^3 = X^2(X^{g+1} - 1), \]
under the birational transformation

\[
\begin{align*}
&y = e^{k\pi i/(g+1)} \frac{Y^j}{X^{k+j(g/3+1)}}, \\
x = -\frac{1}{X^{g+1}} + 1,
\end{align*}
\]

\[
\begin{align*}
Y &= e^{(g+3)\pi i/(3g+3)} \frac{x^a(x-1)^b y^{(g+1)c}}{(x^p(x-1)^q y^{3r})^{g/3+1}}, \\
X &= e^{\pi i/(g+1)} \frac{1}{x^p(x-1)^q y^{3r}},
\end{align*}
\]

where \((a, b, c), (p, q, r)\) are the solutions of the indeterminate equations

\[
\begin{align*}
3a + j(g + 1)c &= 1, & p + jr &= 0, \\
b + kc &= 0, & (g + 1)q + 3kr &= 1.
\end{align*}
\]

When \(g \equiv 1 \pmod{3}\), (3) is conformally equivalent to the Riemann surface defined by

\[
Y^3 = X(X^{g+1} - 1),
\]

under the birational transformation

\[
\begin{align*}
&y = e^{k\pi i/(g+1)} \frac{Y^j}{X^{k+j(g/2)/3}}, \\
x = -\frac{1}{X^{g+1}} + 1,
\end{align*}
\]

\[
\begin{align*}
Y &= e^{(g+2)\pi i/(3g+3)} \frac{x^a(x-1)^b y^{(g+1)c}}{(x^p(x-1)^q y^{3r})^{(g+2)/3}}, \\
X &= e^{\pi i/(g+1)} \frac{1}{x^p(x-1)^q y^{3r}},
\end{align*}
\]

where \((a, b, c), (p, q, r)\) are the solutions of the indeterminate equations

\[
\begin{align*}
3a + j(g + 1)c &= 1, & p + jr &= 0, \\
b + kc &= 0, & gp + kr &= 1.
\end{align*}
\]

If \(N = 3g\), \(S\) is defined by

\[
y^{3g} = x^j g(x - 1)^k
\]

\[
((3g, k) = (3g, (3 - j)g - k) = 1, j = 1, 2, 1 \leq k < g).
\]
Then we notice that \(k \equiv j \pmod{3} \) or \(k \equiv 2j \pmod{3} \). In the case \(k \equiv j \pmod{3} \), (4) is conformally equivalent to the Riemann surface defined by

\[
Y^3 = X(X^g - 1),
\]

under the birational transformation

\[
\begin{align*}
\begin{cases}
 y = e^{((k+j)\pi i/3g)}X^{(k-j)/3}Y, \\
x = -X^g + 1,
\end{cases}
\quad
\begin{cases}
 Y = e^{((g+1)\pi i/3g)}x^a(x - 1)^b y^c, \\
 X = e^{\pi i/g}x^p(x - 1)^q y^{3r},
\end{cases}
\end{align*}
\]

where \((a, b, c), (p, q, r)\) are the solutions of the indeterminate equations

\[
\begin{align*}
\begin{cases}
 3a + jc = 1, \\
 3gb + kc = 1,
\end{cases}
\quad
\begin{cases}
 p + jr = 0, \\
 gq + kr = 1.
\end{cases}
\end{align*}
\]

In the case \(k \equiv 2j \pmod{3} \), (4) is conformally equivalent to the Riemann surface defined by

\[
Y^3 = X^2(X^g - 1),
\]

under the birational transformation

\[
\begin{align*}
\begin{cases}
 y = e^{((k+jg)\pi i/3g)}X^{(k-2j)/3}Y, \\
x = -X^g + 1,
\end{cases}
\quad
\begin{cases}
 Y = e^{\pi i/3}x^a(x - 1)^b y^c, \\
 X = e^{\pi i/3}x^p(x - 1)^q y^{3r},
\end{cases}
\end{align*}
\]

where \((a, b, c), (p, q, r)\) are the solutions of the indeterminate equations

\[
\begin{align*}
\begin{cases}
 3a + jc = 1, \\
 3gb + kc = 2,
\end{cases}
\quad
\begin{cases}
 p + jr = 0, \\
 gq + kr = 1.
\end{cases}
\end{align*}
\]

Finally, if \(g \equiv 0 \pmod{3} \), two Riemann surfaces

\[
y^3 = x(x^g - 1) \quad \text{and} \quad Y^3 = X^2(X^g - 1)
\]

are conformally equivalent under the birational transformation

\[
\begin{align*}
\begin{cases}
 y = -X^{g/3+1}Y, \\
x = X^{-1},
\end{cases}
\quad
\begin{cases}
 Y = -x^{g/3+1}y, \\
 X = x^{-1}.
\end{cases}
\end{align*}
\]

For a surface in (4), if \(g \equiv 1 \pmod{3} \), we obtain \(k \equiv j \pmod{3} \), while if \(g \equiv 2 \pmod{3} \), \(k \equiv 2j \pmod{3} \).

In the exceptional case (I), the surfaces are conformally equivalent to the Riemann surface defined by

\[
y^6 = x^3(x - 1)^3(x - \xi)^2 \quad (\xi \in \mathbb{C}, \xi \neq 0, 1).
\]

In the case (II), the surfaces which have the same signature are conformally equivalent to each other. Thus we have the following forms
of S:

\[
\begin{align*}
y^{20} &= x^5(x - 1)^4, \\
y^{28} &= x^7(x - 1)^4, \\
y^{12} &= x^3(x - 1)^2, \\
y^{36} &= x^9(x - 1)^4, \\
y^{30} &= x^6(x - 1)^5,
\end{align*}
\]

(0; 4, 5, 20), (0; 4, 7, 28), (0; 4, 6, 12), (0; 4, 9, 36), (0; 5, 6, 30).

REFERENCES

Received April 28, 1983.

TOKYO INSTITUTE OF TECHNOLOGY
OH-OHAYAMA, MEGURO-KU, TOKYO, 152 JAPAN
The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph must be capable of being used separately as a synopsis of the entire paper. In particular it should contain no bibliographic references. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California 90024.

There are page-charges associated with articles appearing in the Pacific Journal of Mathematics. These charges are expected to be paid by the author's University, Government Agency or Company. If the author or authors do not have access to such Institutional support these charges are waived. Single authors will receive 50 free reprints; joint authors will receive a total of 100 free reprints. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $190.00 a year (5 Vols., 10 issues). Special rate: $66.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics at P.O. Box 969, Carmel Valley, CA 93924 (ISSN 0030-8730) publishes 5 volumes per year. Application to mail at Second-class postage rates is pending at Carmel Valley, California, and additional mailing offices. Postmaster: Send address changes to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Copyright © 1984 by Pacific Journal of Mathematics
Ersan Akyildiz, **Gysin homomorphism and Schubert calculus** 257
Marilyn Breen, **Clear visibility and unions of two starshaped sets in the plane** ... 267
Robert F. Brown, **Retraction methods in Nielsen fixed point theory** 277
Herbert Busemann and Bhalchandra B. Phadke, **A general version of Beltrami’s theorem in the large** ... 299
Gerald Arthur Edgar and Robert Francis Wheeler, **Topological properties of Banach spaces** ... 317
Yaakov Friedman and Bernard Russo, **Conditional expectation without order** ... 351
Robert Allen Goggins, **Cobordism of manifolds with strong almost tangent structures** ... 361
Mike Hoffman, **Noncoincidence index of manifolds** 373
William H. Julian, **ε-continuity and monotone operations** 385
Gerasimos E. Ladas, Y. G. Sficas and I. P. Stavroulakis, **Nonoscillatory functional-differential equations** .. 391
Arnold William Miller and Karel Libor Prikry, **When the continuum has cofinality ω_1** ... 399
Jean-Leah Mohrherr, **Density of a final segment of the truth-table degrees** ... 409
Carl Norman Mutchler, **The flat Cauchy problem for radially hyperbolic operators from a characteristic manifold of high codimension** 421
Kenji Nakagawa, **On the orders of automorphisms of a closed Riemann surface** ... 435
W. Ricker, **Representation of vector-valued functions by Laplace transforms** ... 445
Jorge Donato Samur, **On semigroups of convolution operators in Hilbert space** ... 463
Joseph Gail Stampfli, **One-dimensional perturbations of operators** 481
Andrew George Earnest and John Sollion Hsia, **Correction to: “Spinor norms of local integral rotations. II”** ... 493