Vol. 116, No. 2, 1985

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
The ordering structure on Banach spaces

Gerald Arthur Edgar and Jun Feng Zhao

Vol. 116 (1985), No. 2, 255–263
Abstract

Suppose X, Y are Banach spaces. The binary relation X Y means X = T∗∗−1[Y ], where the intersection is taken over all bounded linear operators T : X Y . We use this definition to study sums of Banach spaces and the spaces J(ω1), C[01].

Mathematical Subject Classification 2000
Primary: 46B20
Milestones
Received: 26 April 1983
Revised: 28 December 1983
Published: 1 February 1985
Authors
Gerald Arthur Edgar
Jun Feng Zhao