Vol. 117, No. 1, 1985

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
A multilinear generating function for the Konhauser sets of biorthogonal polynomials suggested by the Laguerre polynomials

H. M. (Hari Mohan) Srivastava

Vol. 117 (1985), No. 1, 183–191
Abstract

The polynomial sets {Y nα(x;k)} and {Znα(x;k)}, discussed by Joseph D. E. Konhauser, are biorthogonal over the interval (0,) with respect to the weight function xαex, where α > 1 and k is a positive integer. The object of the present note is to develop a fairly elementary method of proving a general multilinear generating function which, upon suitable specializations, yields a number of interesting results including, for example, a multivariable hypergeometric generating function for the multip sum:

  ∑∞                      α
(m + n1 + ⋅⋅⋅+ nr)!Y m+n1+⋅⋅⋅+nr(x;k)
n1,...,nr=0
∏r  Z-βnii(yi;si)unii
⋅   { (1+ βi)sini }, (*)
i=1
involving the Konhauser biorthogonal polynomials; here, by definition,
α > − 1; βi > − 1; k,si = 1,2,3,...; ∀i ∈ {1,...,r}.

Mathematical Subject Classification
Primary: 33A30, 33A30
Milestones
Received: 22 December 1982
Published: 1 March 1985
Authors
H. M. (Hari Mohan) Srivastava