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In previous papers, we discussed the extension of uniformly continu-
ous real-valued mappings from subspaces of metric spaces and the same
question for mappings into certain Banach spaces, such as c,(/) and
I (I). Since the extension of uniformly continuous mappings into /(1)
is equivalent to the extension of equi-uniformly continuous point bounded
families of real-valued mappings, it is natural to ask about the extension
of equi-uniformly continuous families which are not necessarily
point-bounded. The present paper investigates this extension property
and several related questions concerning the extension of uniformly
continuous mappings with values in uniformly discrete spaces.

I. Definitions and notation. Assume that X and Y are uniform
spaces. Then U(X, Y) denotes the family of uniformly continuous map-
pings from X to Y. If Y is the real line R, then U( X, Y) will simply be
denoted by U( X). Assume that S is a subset of X. Then the pair (S, X)
has the Y-extension property if every member of U(S, Y) can be extended
to a member of U(X, Y). If Y is the real line, we say that S is U-embedded
in X. It is a well-known theorem of Katétov that every bounded member
of U(S) can be extended to a member of U( X).

If D is a set, [ (D) is the set of all bounded real-valued functions on
D with the supremum metric. If the pair (S, X) has the / (D)-extension
property for every set D, we say that (S, X) has the /_-extension property.
A straightforward translation shows that (S, X) has the /_-extension
property if and only if every point-bounded equi-uniformly continuous
subfamily of U(S) can be extended to a point-bounded equi-uniformly
continuous subfamily of U(X). If every equi-uniformly continuous sub-
family of U(S) can be extended to an equi-uniformly continuous sub-
family of U( X), we say that S is strongly U-embedded in X.

If D is a set, F(D, R) denotes the family of all real-valued functions
on D with the metric defined by d(f, g) = sup{|f(x) —g(x)|Al:x €
D}. In addition, we define || f — g|| = sup{|f(x) — g(x)|: x € D}, allow-
ing the possible value + oco. Using the definition of the metric space
F(D, R), one can show (i) that /(D) is a uniform subspace of F(D, R),
and (ii) that S is strongly U-embedded in X if and only if the pair (S, X)
has the F( D, R)-extension property for every set D.
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A uniform space is uniformly discrete if {{ p}: p € D} is a uniform
cover of D. A uniform partition of a uniform space is a uniform cover { U, }
consisting of disjoint sets; equivalently, the cover is a uniform partition if
there exists a uniformly continuous pseudometric d and an r > 0 such that
d(U,U,) = r for j# k. It is routine to verify that for any uniformly
discrete space D of power m, the pair (.S, X) has the D-extension property
if and only if for each uniform partition % of S of power at most m, there
exists a uniform partition ¥ of X such that ¥ |S={VNS: Ve ¥}
refines %. Finally, we note that if (S, X) has the {0, 1}-extension property
(m = 2), then (S, X) has the {0,1,...,n}-extension property for every
finite n.

II. General results. We will see in section four that there are some
rather striking differences between extension properties in metric spaces
and in more general uniform spaces. However, there are also some results
which hold in the more general setting of uniform spaces. Here we will
discuss some of these properties.

2.1. LemMA. If |D|=m = 8, then the uniformly discrete space of
power 2™ is a uniform retract of F(D, R).

Proof. Without loss of generality, we will assume that D = 4 X N,
where | 4] = m. For B C A, define f;: D — R by the rule

_(n ifx e B,
fB(x’")_{o if x & B.

Notice thatif B # Cand x € [(B — C) U (C — B)], then
|f5(x, n) = fe(x, n)] = n.
Hence
(*) B+ C implies |fz — fcll= +c0.
Let S = { fz: B C A}. Then|S| = 2 = 2™ and it follows from («) that S

is a uniformly discrete subset of F( D, R). Define r: F(D, R) — S by the
rule

r(g) - fB if ”g _fB” < t o0,
f, otherwise.
It follows from () that r is a well-defined uniform retraction.
REMARKS.

1. In the preceding proof, f, is the constant function with value zero.
Hence ||g — f,|| < + oo is equivalent to the statement that g is a bounded
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mapping, so /(D) = r~}(f,). Since [ (D) is one member of a uniform
partition, it follows that / (D) is also a uniform retract of F(D, R).

2. Lemma 2.1 does not hold if D is a finite set since in this case,
F(D, R) is a connected space.

2.2. THEOREM. The following statements are equivalent for a subset S of
the uniform space X.
(i) S is strongly U-embedded in X.
(i) S X D is U-embedded in X X D for every uniformly discrete space
D.
(ii1) The pair (S, X) has the |l -extension property and the D-extension
property for every uniformly discrete space D.

Proof. The equivalence of (i) and (ii) is a consequence of the following
fact. If Y is a uniform space and D is uniformly discrete, then the
mapping f: Y X D — R is uniformly continuous if and only if the family
of mappings { f(—, k)}: Y = R is equi-uniformly continuous.

(i) — (ui1): Since S is U-embedded in X, (S, X) has the /_(D)-exten-
sion property for every finite set D, for in this case, /(D) is uniformly
equivalent to RP. If D is infinite, then by Remark 1 above, /(D) is a
uniform retract of F(D, R). Therefore, since (S, X) has the F(D, R)-ex-
tension property, it also has the /_(D)-extension property. In the same
vein, by 2.1, D is a uniform retract of F(D, R), so (S, X) has the
D-extension property.

(iii) — (i): Assume that { f;: kK € K} is an equi-uniformly continuous
subfamily of U(S). There exists a uniform cover % of S such that for
every Uin %, {x, y} € U implies |f,(x) — fi(y)] <1 for every k € K.
Define the following equivalence relation ~ on S:

x ~y ifandonlyif x & St"(y,%) forsomen=1,2,...

Then #= { E: E is an equivalence class} is a uniform partition of S (since
U<F).

For each equivalence class E, fix an element p in E and for each k in
K, define a mapping g,: S — R in the following manner:

8 (x) = filx) —fi(pg) ifx€E.

We claim that {g,} is an equi-uniformly continuous point-bounded
family. Since_£is a uniform partition and { f, } is equi-uniformly continu-
ous, {g,} is equi-uniformly continuous. To show that {g,} is point-
bounded, suppose that x is a member of the equivalence class E. Since
x ~ pg, there exist finitely many members U,, U,,...,U, of % such that
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x€ U, pr€ U, and U, NU,,,#* @ for 1 <m <n—1. Then it is
straightforward to verify that for every k,

ng(x)l <|g(x) — g(pg)| +lg(pe)l<n+0=n.

By (ii1), { g,} extends to an equi-uniformly continuous family { G,}
C U(X) and the partition Zextends to a uniform partition & of X. Define
h,: X—> R by h(x)=f(pg) if x€ PP, where PN S = E, and
h(x)=01if PNS= . Then {h,} is an equi-uniformly continuous
family and the equi-uniformly continuous family { G, + 4, } is an exten-
sion of { £, }.

A uniform space is uniformly connected if there is no uniform partition
with more than one member; equivalently, the space X is uniformly
connected if every uniformly continuous mapping from X into a uni-
formly discrete space is constant. In particular, if X has a cc .aected
topology, X is uniformly connected.

2.3. COROLLARY. A uniformly connected subset S of X is strongly
U-embedded if and only if the pair (S, X) has the | -extension property.

III. Results for metric spaces. In this section, we will strengthen
Theorem 2.2 for metric spaces by weakening the D-extension property in
condition (iii). In addition, we will characterize the strongly U-embedded
subsets of normed linear spaces.

Assume that (X, d) is a metric space. Given r > 0, the points x and y
are r-linked (in X) with n-links if there is a finite sequence of points
X = Xg, X1,-..,X, =, such that d(x,, x,,,) <r for k=0,1,...,n — 1.
If there exists such a sequence, we simply say that x and y are r-linked and
write x ~ y. In this case, we define

n,(x, y) = min{n: x and y are r-linked with n-links}.

r
For each r > 0, ~ is an equivalence relation and the resulting collection

of equivalence classes is denoted #(r). Since every sphere of radius r is
contained in some equivalence class, it follows that #(r) is a uniform
partition of X.

3.1. LEMMA. Assume that S is a subset of the metric space (X, d) and P
is a uniform partition of S. If there exists an r > 0 such that no two distinct
elements of P contain points which are r-linked in X, then P extends to a
uniform partition of X.
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Proof. The assumptions guarantee that #(r)|S < £, so the conclusion
follows at once.

3.2. THEOREM. Assume that S is a subset of the metric space (X, d).
Then S has the {0, 1}-extension property if and only if S has the D-extension
property for every uniformly discrete space D.

Proof. Assume that S has the {0, 1}-extension property and suppose
that 2 is a uniform partition of S which does not extend to a uniform
partition of X. We first establish the following result:

(x) IfZ is a finite subset of 2, then the uniform partition & —
of § — (U.?Z' ) does not extend to a uniform partition of X.

Since S has the {0, 1}-extension property, every finite uniform parti-
tion of S extends to a uniform partition of X. If # — % extends to a
uniform partition # of X and . is a uniform partition of X which extends
the finite uniform partition #U (£ — %)} of S, then P A F extends
&, which is a contradiction. Therefore, (*) is established.

We will now use 3.1 and (*) to inductively define two sequences of
members of #. By 3.1, first choose distinct members P(1) and Q(1) of #
such that there exist points x; in P(1) and y, in Q(1) with x, h Y1
Inductively, by 3.1 and (*), choose distinct members P(r) and Q(n) of
P—({P(k):k<n}u {Q({c): k < n}) such that there exist points x,, in
P(n) and y, in Q(n) with x,, ~"y,,.

Let A =U{P(n): n= ..} and B=S ~ A. Then {4, B} is a
uniform partition of S, so it extends to a uniform partition { 4, B} of X.
Choose an integer n such that d(4, B) > 1/n. Then no point in 4 can be
1/n-linked to any point in B, which contradicts the fact that x, s V-
Therefore, every uniform partition of S extends to a uniform partition of
X, so (S, X) has the D-extension property for every uniform discrete
space D.

REMARK. In §4 we will see that the analogue of 3.2 is not valid for
general uniform spaces.

3.3. THEOREM. The following statements are equivalent for a subset S of
the metric space X.

(i) S is strongly U-embedded in X.

(ii) The pair (S, X) has the I -extension property and the {0,1}-exten-
sion property.
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Here is another proof of Theorem 3.2. Assume that ( X, d) is a metric
space and d|, denotes the uniformity on X generated by the d-uniform
partitions. It is routine to show that d, has the countable basis { g(1/n):
n=1,2,...}, so dy|S also has a countable basis and is therefore proxim-
ally fine (that is, the largest uniformity in its proximity class). If S has the
{0, 1}-extension property, the uniformity # on S generated by the d-uni-
form partitions has the same proximity class as d,|S. Therefore, u C d,|S,
which says that (S, X) has the D-extension property for every uniformly
discrete space D.

We will now turn our attention to normed linear spaces. Theorem 2 in
[LR], establishes that a subset S of the normed linear space (B, || |)) is
U-embedded if and only if every uniformly continuous mapping f: S — R
is Lipschitz for large distances: for every r > 0, there exists a constant K,
such that ||x — y|| > r implies |f(x) — f(»¥)| < K,||x — y|l. In addition,
Theorem 3.1 in [LR], establishes that S is U-embedded in B if and only if
the pair (S, B) has the /_-extension property. Using this result with 3.3,
we can establish the following result.

3.4. THEOREM. A subet S of the normed linear space B is strongly
U-embedded if and only if S is U-embedded and uniformly connected.

Proof. Based on the result cited above and 3.3, we need only show
that strongly U-embedded sets are uniformly connected. However, if
{C, D} is a two element uniform partition of S, then by either 2.2 or 3.3,
{C, D} can be extended to a uniform partition of B, which is a contradic-
tion, since B is connected. Therefore, S is uniformly connected.

3.5. THEOREM. A subset S of the normed linear space B is strongly
U-embedded if and only if S X Bis U-embedded in B X B.

Proof. Assume that S is strongly U-embedded in X. We will show that
every uniformly continuous mapping f: S X B — R is Lipschitz for large
distances. Then it will follow from the result cited before 3.4 that S X Bis
U-embedded in B X B. For each s in S, define g: B — R by g,(x) =
f(s, x) and for each x in B, define 4 : S — R by & (s) = f(s, x). Since f
is uniformly continuous, each family {g,} and {4, } is equi-uniformly
continuous, so by assumption, { #,} can be extended to an equi-uniformly
continuous subfamily {4 } of U(B). Then by the remark after Lemma 2
m [LR],, there exists two families of Lipschitz mappings {/,} and {m_}
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on B, and constants K and L, such that
@) [ (x) —1(y)| < K]||lx — y||foreverysin S, x and y in B,
Im,(p) — m(q)] < L||p — gl for every x, p and g in B;
@) |/, — gl < 1 foreverysin S,
llm, — h, || <1 forevery x in B.
Assume that 4 = (s, x) and C = (¢, y) are two elements of S X B
and let P = (s, y). Then

17(4) = F(C)| <If(4) - F(P)| +1f(P) = f(C)|

=f(s, x) = f(s, )| +1f(s, y) = £(2, »)]
=|g,(x) = g,(»)| +|h,(s) = h,(2)|
<lg.(x) = L,(x)] +]I(x) — ,(»)]
+,(y) = g, ()| +|r,(s) = m,(s)]
+m,(s) —m,(¢)] +|m,(t) — h,(2)|
< Kl|x —yll + Ll|s — ¢| + 4 (by (i) and (ii))
< 2K+ L)|(s, x) = (2, ¥)axs + 4
<2AK+L)A-Cl+@/a-c| (ifl4-cCl>r)
= 2K+ 2L+ 4/r)j4 — C|.

Hence f is Lipschitz for large distances, so we have established that S X B
is U-embedded in B X B.

Now assume that S X B is U-embedded in B X B. We will show that
S is a uniformly connected U-embedded subset of B; then by 3.5, S will
be strongly U-embedded in B. To show that S is U-embedded in B, let f
be a member of U(S) and define f: S X B = R by f(s, x) = f(s). f is
uniformly continuous, so by assumption it extends to a member F of
U(B X B). Then the mapping F: B — R defined by F(x) = F(x,0) is a
uniformly continuous extension of f. Finally, if S is not uniformly
connected, there exists a non-trivial uniform partition {C, D} of S.
Define the mapping f: S X B - R by f(s, x) = 0 if s € C and f(s, x) =
lix]| if s € D. Since {C, D} is a uniform partition, f is uniformly continu-
ous, so by assumption it extends to a uniformly continuous mapping f:
B X B — R. Fix points ¢ in C and d in D. Choose r > 0 such that
lls — ¢]| < r implies | f(s, x) — f(¢, x)| < 1 for all x in B. Since ¢ and d are
r-linked in B, it follows that ||x|| = |f(c, x) — f(d, x)| < n,(c, d) for
every x in B, which is a contradiction. Therefore, S is uniformly connected
and the proof is complete.



156 RONNIE LEVY AND MICHAEL D. RICE

3.6. THEOREM. The following statements are equivalent for a subset S of
the normed linear space (B, || |)-
(i) S X S is U-embedded in B X B.
(i) S X S is U-embedded in S X B.
(iii) Either S is strongly U-embedded in B or every member of U(S) is
bounded.

Proof. Clearly, (i) — (ii).

(i1) — (iii): A proof similar to the one given in 3.5 shows that S is
U-embedded in B. Therefore, to establish (iii), by 3.4 it suffices to show
that if there exists an unbounded uniformly continuous mapping h:
S — R, then § is uniformly connected. Assume that { C, D} is a non-triv-
ial uniform partition of S and define the mapping f: S X S — R by the
rule

xay) = (O 2 €

ify € D.
f is uniformly continuous, so by (ii), it extends to a uniformly continuous
mapping f: S X B — R. Choose points X1, Xo,... In S such that |A(x,)]
>k for k=1,2,... and for each n=1,2,... define g,: B — R by
g,(y) = f(x,, y). Fix points ¢ in C and d in D. Since f is uniformly
continuous, the family { g,} is equi-uniformly continuous, so by [LR],, for
any r > 0, there exists a constant K, such that ||x — y|| > r implies
|g,(x) — g,(»)| < K,||x —y|| for n=1,2,... Therefore, there exists a
constant K such that |g,(c) — g,(d)| < Kljc — d|| for every n. Since
de D,g,(d)=f(x,,d) = 0; hence

n <lh(x,)| =1/ (5, ©)] <lga()] < Klle = d]| for every n,

which is a contradiction. Therefore, S is uniformly connected, so (iii) is
established.

(iii) — (i): If S is strongly U-embedded in B, the proof given in 3.5
shows that S X S is U-embedded in B X B. If every member of U(S) is
bounded, the same property holds for S X S. (Assume that f: § X S - R
is a uniformly continuous mapping. For each s in S, define g.: S — R by
g,(t) = f(s, t). Since f is uniformly continuous, the family { g } is equi-
uniformly continuous, and since for every ¢, the mapping f(—,1t) is
bounded, the family { g} is also point-bounded. Therefore, the mapping
h: S — R defined by

h(1) = sup{|g,(¢)]:s € S}
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is uniformly continuous and hence bounded, so fis also bounded.) Since
every member of U(S X §) is bounded, it follows from the Katétov
extension theorem that S X S is U-embedded in B X B, so the proof of (i)
is complete.

IV. Uniformly discrete subsets. In this section we will consider the
special situation when S is a uniformly discrete subset of X. In particular,
we will present several examples which show that 3.2 and 3.3 cannot be
established for arbitrary uniform spaces.

4.1. PROPOSITION. Assume that S is a uniformly discrete subset of the
uniform space X. Then S is strongly U-embedded in X if and only if S is a
uniform retract of X.

Proof. If S is strongly U-embedded in X, then by 2.2, S has the
D-extension property for every uniformly discrete D. Hence the identity
mapping i: § — S can be extended to a uniformly continuous mapping r:
X — S, so S is a uniform retract of X. Conversely, if r: X = S is a
uniform retraction and # = { f, } € U(S) is an equi-uniformly continuous
family, then { f, or} is an equi-uniformly continuous family which ex-
tends #.

4.2. PROPOSITION. Assume that S is a uniformly discrete subset of the
metric space X.

(i) The pair (S, X) has the {0, 1}-extension property if and only if S is
a uniform retract of X.

(i1) S is U-embedded in X if and only if some cofinite subset of S is a
uniform retract of X.

Proof. (i) follows from 3.2 and 4.1.

(i1): Assume that no cofinite subset of S is a uniform retract of X.
Using 3.1, with & the collection of singleton sets of S, there exist distinct

1 .
points x; and y; in S such that x; ~ y,. Since $ — {x;, y;} is not a
uniform retract of X, by 3.1 there exist distinct points x, and y, in
172 . . . L. .
S — {x,, y,} such that x, ~ y,. Inductively, there exist distinct points x,

1/n
and y, in S — {x,, y,: k <n} such that x, Z V,- We will use the
sequences { x, } and { y,} to show that S is not U-embedded in X. Define
the mapping f: S — R by

f(x,) = [nl/k(xk, yk)]2 fork =1,2,...
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and f(x)=0 for x €S — {x,}. Since S is uniformly discrete, f is
uniformly continuous, but it cannot be extended to a uniformly continu-

1/k
ous mapping on X since X, Z y, for k=1,2,... Therefore, S is not

U-embedded in X.

Conversely, suppose that F is a finite subset of S such that S — Fis a
uniform retract of X. Then S — F is U-embedded in X and every real-val-
ued function on S whose restriction to S — F is bounded, is itself
bounded. It follows from Theorem 4.3 in [LR], that S is U-embedded in
X.

4.3. COROLLARY. If a metric space contains an infinite uniformly
discrete U-embedded subset, then it admits an infinite uniform partition.

REMARKS. 1. 4.2(ii) and 4.3 are not valid for arbitrary uniform spaces.
For example, if X is the real line with the fine uniformity and S is the set
of natural numbers, then S is C-embedded, and hence U-embedded in X,
but the conclusions of 4.2(ii) and 4.3 fail since X is connected.

2. Example 4.4 below shows that 4.2(i) is not valid for arbitrary
uniform spaces.

3. The proof of Lemma 1.5 in [CI] establishes that if every uniformly
discrete subset of a metric space is U-embedded, then every subspace is
U-embedded. (Uniform spaces with this property are called real-extension
or RE spaces.) Thus, by 4.2, a metric space X is an RE space if and only if
every uniformly discrete subspace of X contains a cofinite subset which is
a uniform retract of X.

4. The proof of necessity in 4.2(ii) actually shows that the phrase “S is
U-embedded in X” can be replaced by the phrase “(S, X) has the
[ .-extension property” (or the B-extension property for any normed linear
space B) and the result will still be valid. In particular, uniformly discrete
U-embedded subsets of metric spaces have the /_-extension property. The
authors do not know whether every U-embedded subset of a metric space
(or even a uniform space) has the /_-extension property.

We will now present some examples which show that 3.2 and 4.2(i)
are not valid in arbitrary uniform spaces. If m is a cardinal number, D(m)
will denote the uniformly discrete space of power m.

4.4. EXAMPLE. Assume m > 8. There exists a uniform space X which
contains a uniformly discrete subset S of power m such that

(a) For each cardinal n < m, (S, X) has the D(n)-extension property.

(b) (S, X) has the /_-extension property.
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(c) X admits no uniform partition of power m, so (S, X) does not
have the D(m)-extension property.

Construction. Let X = D(m) X [0,1] with the usual product topology.

For each partition # of D(m) such that |#| < m and each r > 0, define

A(2,r)y={Px(l0,r)n[0,1]): P e 2}.

Let u be the uniformity on X generated by covers of the form A(#, r) U %,
where |?| < m and % is an open cover of D(m) X (0,1]. (Using the fact
that every open cover of D(m) X (0,1] has an open star-refinement, one
can verify that this family of covers generates a uniformity.) The subset
S = D(m) X {1} is uniformly discrete since (A(Z£,1) U %)|S consists of
singleton sets, where # = { D(m)} and = {{x} X(0,1]: x € D(m)}.
In addition, if £ is a partition of S of power < m, then A(%,2) is a
uniform partition of X which extends . Hence (a) is satisfied.

To establish (b), assume that f: § — B is any mapping with values in
the Banach space B. Define a mapping F: X — B in the following
manner: F(x,1) = f(x,1) for x € D(m), F(x,r)=0if 0 <r <1/2, and
F linear on the segment between (x,1/2) and (x,1). Clearly, F is
uniformly continuous and extends f, so (b) is satisfied.

Finally, to establish (c), suppose that #is a uniform partition of X
which is refined by the uniform cover A(#, r) U %, where # = { P,} has
power < m and % is an open cover of D(m) X (0, 1]. Assume that

P, x([0,r)n[0,1]) c S,,
for some S, in &. If r > 1, then the family { S,} covers X, so |¥| < m. If
0 < r <1, then every point (x, s), where r < s < 1, belongs to some U in
%, which in turn, is connected by a finite chain of sets in % to a set of the
form P, x [0, r). Since %is a partition, (x, r) belongs to S,, so once again,
{S,} covers X and || < m.

If m = R, the preceding example shows that both 3.2 and 4.2(i) fail
for arbitrary uniform spaces. A more dramatic example is given in the
next construction.

4.5. ExaMPLE. There exists a locally compact abelian group X with the
usual group uniformity and an infinite uniformly discrete subset S of X
such that

(a) (S, X) has the {0, 1}-extension property.

(b) X admits no infinite uniform partition.

Construction. Let Z denote the additive group of integers and let
,=Z/2Z. Let P denote the power set of Z and define the group
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X = Z? X R with the usual product uniformity. Since ZZ is compact and
R is connected, X admits no infinite uniform partitions, so (b) is satisfied.
To define the subset S, for each 4 C Z, let p,: X — Z, denote the
projection mapping corresponding to the coordinate A: p,(f, x) = f(A).
For n € Z, define an element g, in Z5 by the rule g,(4) =1 if n € 4,
8, (A)=0if n& A Let S={(g,,n): n € Z}. S is uniformly discrete
since the mapping Z — S defined by n > (g,, n) is an onto uniform
equivalence. To establish (a), for each subset 7" of S, we must find a
uniform partition {C, D} of X such that (¥): TC€ Cand S — T C D. Set
T ={n: (g,, n) € T) and define C = p7'(1) and D = p7'(0). Clearly,
{C, D} is a uniform partition of X, so we only have to verify (). If
(g,,n)€ T, thenn € T, sopi(g,, n) = gn(Yv") = 1 implies that (g,, n) €
C; hence T C C. Similarly, if (g,,n) € S — T, then n & T, so p7(8,, 1)
= g,(T) = 0 implies that (g,, n) € D; hence S — T C D, so the proof is
complete.

REMARKS. 1. Assertions (a) and (b) in the preceding example are still
valid if X is given the fine uniformity instead of the group uniformity;
hence 3.2 and 4.2(i) are not valid for the fine uniformity on special
topological spaces. (See remark 3 below.)

2. We do not know an example of a group X which contains an
infinite discrete subgroup S such that properties (a) and (b) hold. In the
preceding construction, one can show that if S is replaced by the subgroup
G of X generated by S, then there exist finite uniform partitions of G
which do not extend to uniform partitions of X. This follows from the fact
that (0, n) belongs to G if (and only if, although this is not relevant) » is
even.

3. Finally, we remark that Example 4.5 has some interesting proper-
ties as a topological space. X is a locally compact, o-compact, separable,
homogeneous, Hausdorff space which contains a closed (and hence C-em-
bedded) countable discrete subset such that every finite-valued function
extends to a continuous finite-valued function on the superspace, but no
N-valued function with infinite image extends to a continuous function
with values in N.
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