Vol. 117, No. 2, 1985

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Elimination of Malitz quantifiers in stable theories

Andreas Rapp

Vol. 117 (1985), No. 2, 387–396
Abstract

The main result of this paper is (a slightly stronger form of) the following theorem: let T be a countable complete first-order theory which is stable. If, for some α 1, the Malitz quantifier Qα2 is eliminable in T then all Malitz quantifiers Qβm (β 0,m 1) are eliminable in T. This complements results of Baldwin-Kueker [1] and Rothmaler-Tuschik [3].

Mathematical Subject Classification 2000
Primary: 03C80
Secondary: 03C10, 03C45
Milestones
Received: 22 October 1982
Published: 1 April 1985
Authors
Andreas Rapp