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Suppose P = Π/ Gt is a direct product of slender Λ-modules. If |/| is
non-measurable and A is a direct summand of P, then A = YljAj where
each Aj is isomorphic to a direct summand of a countable direct product
of Gj's. If R = Z and P is a torsion-free reduced abelian group, then, if
each Gι has rank one, A is a direct product of rank one groups.

1. Introduction. If R is a ring and M = Πf #„ with each /?„ = R as
a i?-module, then a i?-module TV is slender if: for any homomorphism /:
M -> JV, f(Rn) = 0 for almost all «. In Theorem 3.7 we will show that, if
a i?-module P equals Y\rGi with |/| non-measurable and each G, slender,
then any direct summand of P is isomorphic to lίjAj where each Aj is
isomorphic to a direct summand of a countable direct product of G/s.
This theorem in a way does for direct products what Kaplansky's theorem
does for direct sums of modules (i.e., the theorem which states that
project!ve modules are direct sums of countably generated modules [6]). In
Theorem 4.3 we prove that if V is a reduced vector group (a direct product
of rank one torsion-free abelian groups) of non-measurable cardinality,
then so is any direct summand of V. This answers Problem 74 in [4] for
the non-measurable case.

2. Preliminaries. In this paper all groups are abelian, rings are
associative with identity, modules are left unital, and homomorphisms are
written on the left. Discussions of slender modules may be found in [3, 4,
5, and 7]. For example, any torsion-free abelian group is a slender
Z-module if it does not contain Q.Z1 with / infinite, or the/>-adic integers
for a prime p. This fact along with a good treatment of vector groups is
contained in Chapter XIII of [4]. Unexplained terminology may be
located in [4].

3. Slender modules. Throughout this section we shall consider the
following situation. Let R be a ring and let i?-module P equal YlίGi =
A θ B where |/| is non-measurable and each Gi is slender. By//? α, /? we
shall mean the projections of P to Gi9 A, B respectively and we let
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Our first two lemmas are basic.

LEMMA 3.1.

(1) If i is fixed, α,(Gy) = Ofor almost all) in I.
(2) If Us fixed and a^Gj) = OforalljinJ c I, then a^UjG,) = 0.
(3) Ifa,(Gj) = Ofor all j in J and all i in I\J, then Π /G y = α(ΠrG7)

Proof. (1) follows from the definition of slender and (2) follows from
Los' argument as given in the proof of Theorem 94.4 in [4] (see also the
proof of Theorem 3 in [7] or Theorem 2.1 in [5]). The condition in (3)
implies a(ΠjGj) is contained in YljGj by (2). So βQΊjGj) c ΠjGj and (3)
is true.

LEMMA 3.2. (1) Let D be any direct summand ofP and suppose d}^D
for each] in a set J. If, for each fixed i in I, /,(</,) = 0 for almost all j in J,
then the element d = ΣfiΣjfidj)) is in D. We define d = Σjdr

(2) Let Aj be a submodule of A for each j in a set J such that, for each
i e I, fi(Aj) = 0 for almost all j in J. We define ΣjA; = {ΣyflJ #7 ̂  Aj}.
Then ΣjA is in A and ΣTA, = ΠrA- if, whenever Στa, = 0 with a, e A,,

J J J J J J J J I J I

then each aj = 0.

Proof. (1) We may suppose D = B and just show a^d) = 0 for
arbitrary /. By the previous lemma ai(y[κGk) = 0 for some K cofinite in
/. For some subset L cofinite in /, ΣL dj is in Π^ Gk. Since d = Σj\L dj +
ΣL dj and the left sum is in B, a^d) = 0. (2) By (1) ΣJAJ is in A and there
is a natural isomorphism ΓίjAj -> ΣjAy

Note. The ideas in the first two lemmas will be used repeatedly
without reference in the sequel.

PROPOSITION 3.3. Suppose I is a well-ordered set containing 1 and A
has submodules A3 and AJ for each] in J such that:

(1) A = A1 andAj - A} θ AJ + 1 (where AJ + 1 = 0 if j is maximal in J),
(2) Ak =-- Γ\j<k A

J ifk is a limit element in J,
(3) for each i in I ft{A) = 0 for almost all] in J,
(Λ)ΠjAJ + ι = 0.

Then A s YljAj.

Proof. By (3) ΣjAy is a submodule of A. We need to show A = ΣJAj

and that, if Σ 7 # y = 0 with cij e AJ9 then each aj = 0. By our suppositions
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it will suffice to show:

(*) A = ί £ A \ θ Am+1 for each m in/.
\ j<m i

Now (*) is true for m = 1 by (1) and we assume it is true for all m < k.ϊΐ

k — \ exists, (*) is true for k by (1). Suppose k is a limit element in /. Let

a G A. By our assumption and (1) and (2) we may inductively choose

dj e ^ for each j < k so that α - ( ^ + + ay) G ̂ + 1 . Then α -

Σ y < * α , is in Aι + ι for each ι < k and it is in Ak by (2). By (1) then

a- Σj<k ay G ̂ 4/c + 1 for some ^ G Λ* and ̂  = Σ y <* ^ y + Λ*+ 1. Suppose

Σj<k Qj + x = 0 with Qj^Apx G Λ*+ 1,and #, # 0 for a minimal ι < k. If

z = fc, α/ = - x G ̂ 4/+1. If / < fc, α ; G ̂ / + 1 by (*) for m = /. Either case

implies α/ = 0, a contradiction. So (*) is true for m = /c and by induction

for all m.

Our next two lemmas deal with a particular ordering of /.

LEMMA 3.4. The set I can be ordered as an ordinal so that:

(1) for each] in /, if aXGj) = 0 for all i <j, then oti(Πk>jGk) = 0 for

alii <j,

(2) ifj is a limit ordinal in I, then ai(Πk^J Gk) = 0 for all i < j.

Proof. Let 1 G I be arbitrary. Suppose the ordinals < m have been

identified with / a proper subset of /. Choose m from I\J so that

ak{Gm) Φ 0 for minimal k in / if possible; otherwise let m from / \ / be

arbitrary. Continue in this manner until / is totally ordered as an ordinal.

This ordering implies (1) and we now show (2). Since a^Gj) = 0 for all

i < j if j' = 1, assume it is true for all non-successor ordinals j less than

limit ordinal s. Suppose ocn(Gs) Φ 0 for some minimal n < s. Then n — j is

finite for j = 1 o r ; a limit ordinal < s. Let K = {/" > n\ a^G^ Φ 0 for

some k < n). Since 0Lk(Πi^jGi) = 0 for all k <j and since (BnGι is

slender, K is finite. But s is in K and s — n is finite by our ordering of /, a

contradiction. Therefore (2) is true for s and by induction for all limit

ordinals.

DEFINITION 3.5. Suppose / is an ordinal and / is a subset of /

containing 1. For eachy in J lety' be the successor of j in J (if j is maximal

in / l e t / = /) . For eachy' in / set 7} = {/ G I\ j < i < / } . Then {/,},

j G /, partitions /. Now let Pj = Π 7 (7,- whence P = Π y P y . Also let P y =

Π, >y G,.. Then PJ = Pj θ P y / (if j is maximal in / set PJ = 0).
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LEMMA 3.6. Suppose I is an ordinal, 1 e / c /, and, for each j e /,
at{Pj) = Ofor all i in I less thanj. Then Pj = a(Pj) Θ β(Pj) for eachj and

A = τi

Proof. Let > e / be arbitrary. By Lemma 3.1, Pj = a{Pj) Θ β(PJ)
and P->' = a(PJ) Θ ̂ ( P 7 ) . Therefore Pj = α(Py) Θ β(Py). We now let
y4y = oi{Pj) andAJ = α(P y) and apply Proposition 3.3 to show A = ΐϊjAj.
Since 1 ^ / and a(PJ) = α(Py) θ α(P 7 ) , (1) is true. Suppose & is in /
and a limit element therein. Then

Ak = a(Pk) c Π a(PJ) = C\ AJ = ai Γ\ J

c αί Π P') = α(P*) =Ak.

So (2) is true. Let / e / b e fixed. From the map α,: P = Π/Py -> G, we see
that //(^47) = «, (P7 ) = 0 for almost all j . Hence (3) is true. Since / is
unbounded or Py = 0 for a maximal y in /, Π 4y" c Γl P-7" = 0 and (4) is
true. Therefore^ = X\jAy

THEOREM 3.7. Suppose R-module P equals ΠrGιf = A Θ B with \I\
non-measurable and each Gt slender. Then A = TϊjAj where each Aj is
isomorphic to a direct summand of a countable direct product of G^s.

Proof. Let / be ordered as in 3.4 and let / consist of 1 and all limit
ordinals in /. For eachy Ξ / define Pj and Py as in Definition 3.5 and set
Aj = «(Py) By 3.4, for eachy in /, at{Pj) = 0 for all i in / less thany. The
theorem now follows from 3.6 and the fact that each Py is a countable
product of G/s.

4. Vector groups. A vector group is an abelian group of the form
V = YljRi where each ΛJ. is torsion-free of rank one. Some twenty years
ago (see [1]) it was shown that, if Vis reduced, |/| is non-measurable, and
Ri = Rj or Hom(Hom(i?,, P,), i?y) = 0 for each i andy, then any direct
summand of V is a vector group. We now remove the restrictions on the
types of the i?/s. We thereby solve Problem 74 in [4] for the non-measura-
ble case.

If V above is reduced, it is a direct product of slender Z-modules; so
the results in §3 apply to it. Since 2μ is non-measurable for any non-mea-
surable cardinal μ, V above has non-measurable cardinality if and only if
/ has; so we equate these two properties henceforth.
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LEMMA 4.1. If V = A Θ B is a reduced vector group and \V\is non-mea-
surable, then there is a decomposition V = Π/ϋ,- where each Ri has rank one
and type ti and, if f, a are the projections to Ri9 A, respectively, and
ai = fta, then at{R ) = 0 for each i and] unless i = j or tέ > tj.

Proof. Write V = Y\ISi with each St of rank one and type tt. Let t be a
type and set Vt = Πt==tSi and V* = Π,>,S;. By Lemma 96.1 in [4] V* and
Vt θ V are fully invariant subgroups of V. So Vt = A1 Θ Bt with At in A
and Bι in B. Also Vt Θ F ' = At Θ £, θ F ' with Λ, = ̂  Π (F, Φ £') and
Bt = B Γ\ (VtΘ A'). If φ is the projection Π/S, -> ?;, then Vt = φ(At) Φ
Φ ί ^ ) and each summand is a vector group by Theorem 1 in [1] (also
exercise 10, p. 171, Vol. II of [4]). Thus, if /, = {i e / | t, = /}, then Vt has
a decomposition ΐlr Ri9 each Ri of rank one, where, for each i in /̂  and xt

in i? , there is a j>, in F r such that xt = (jcf — yt) + ̂  with one term in A
and the other in B. Now, for some set T of distinct types t, V = Π Γ Vt =
Π Γ ( Π 7 #,) = Π/i?,. By full invariance Π,^,/^ = F ? for each t. The
conclusion of the lemma follows.

Our next lemma deals with a countable set of types.

L E M M A 4.2. Let I be the natural numbers and let 7\ = {f f.}, / e /, be a

set of types {not necessarily distinct). Let Iλ = {/ ^ I\ti is maximal in Tλ}.

For each n > 1 let Tn = {f.| / £ J x U U J ^ } « « J / π = { / ε / | ^ w

maximal in Tn). Either (1) / contains an infinite chain iλ < i2 < such
that, for each n, ti > tέ whenever ix < i < in or (2) / = UJ° /„ and each In is
finite.

Proof. Suppose (2) is not true. Then, for some least k, In is finite for
n < k and either Ik is infinite or Tk contains a chain of types not bounded
above by an element in Tk. Let i1 be an element in / such that i < iλ for all
i in In, n < k. Now i1 satisfies the requirement in (1) and we assume
iv.. .,im satisfy it. By our choice of k and iλ there is ay > im such that
/,- > tj whenever ix < i < im. Let im+ι be the least suchy. Then tt > tt

for iλ < i < im+1. Induction completes the proof.

THEOREM 4.3. // F = A θ B is a reduced vector group and \V\ is
non-measurable, then A and B are vector groups.

Proof. A proof for A will suffice. Write F = Π/2?, as in Lemma 4.1
and let /,., a, at be as defined there. Let / be ordered as in 3.4 for P = F
and G, = Rέ. Thus for each j in /, if at(Rj) = 0 for all i <j, then



384 JOHN D. O'NEILL

ai(Ylk>JRk) = 0 for all i < j and, by the proof of Theorem 3.7, we may
assume / is the natural numbers. We now let /„ and Tn be as defined in 4.2
and treat the cases given there.

Case 1. There is an infinite sequence iλ < i2 < in / such that, for
each n, ti > tt for iλ < i < in. Since φ Rt is slender, for some m,
<xi(Tlk>ι Rk) = 0 for all i < iv By our choice of in

9s and by 4.1 we must
have, for each n > m, ai{Rι) = 0 for all / < /„. Therefore, from the way /
was ordered, for each n > m, 0Li(Π.k^.i Rk) = 0 for all i < in. Let J =
(1, im im+l9...} and define Pj and Pj (with G, = i?z) as in 3.5. By 3.6 then
A = Ylja(Pj) and each a(Pj) is a direct summand of PJm Since each Pj is a
finite rank vector group, so is each «(^,) Therefore Fis a vector group.

Case 2. / = Uj° In and each /w is finite. We may assume / is infinite.
For each n set Kn = IλΌ U In and let Vn = ®κ Rι and V" =
Π/\/r -R/. FM is fully invariant in K and equals An Θ 5^ with An in v4 and
Bn in" 5. Also A = An@ A" where ,4" = ̂  Π (£„ θ F"). We now find
subgroups Cj and C7 in A forj e / = (1,2,...) such that:

(a) ̂ ί = C1 and Cj = Cy θ C"+ 1,
(b) Cx θ θ Cj = ̂ 4m for some ray,
(c) C 7 + 2 c Vj.
Let C1 = ̂ 4, Cλ = ̂ 4l9 and C 2 = A1. The conditions are satisfied for

j = 1 by these C's and we assume they are satisfied fory < k by the C's
up to Ck and C*+ 1. Now A=Amkθ Ck+1 and F = Vk θ F Λ . Since Amk

and F^ are slender, from a consideration of projections: V -^ A -* Amk

and F -> A -> F^ we see that, for some large w, α(F") is in Ck + 1 and F Λ .
For this n then A = An θ A" where ̂ 4rt D yίmA and

A" = A n(Bn θ Fr t) c a{Vn) c C^ + 1 Π F^.

Let Ck + 1 =AnΠ Ck+\ Ck + 2 = An, and mk + ι = n. Now C^+ 1 = Q + 1

θ C*+ 2, Amk θ C^+1 = Amk+i, and C^+ 2 c Vk

y as desired. Induction
completes the sequences. Next we apply Proposition 3.3 to the subgroups
Cj and CJ with j e /. Conditions (1) and (2) are clearly satisfied. Since
Cj C C J , (3) follows from (c) as does (4). So A = UjCr Since each C, is a
finite rank vector group, A is a vector group.

REMARK. This theorem cannot be improved. That is: a countably
infinite direct product of rank two torsion-free groups can equal the direct
sum of two indecomposable subgroups. An example of such a group can
be constructed by modifying an infinite direct "sum" example of Corner
(as found in [2] or Theorem 91.1 in [4]). This is explained more fully in [8].
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