Vol. 118, No. 2, 1985

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Problems and results on additive properties of general sequences. I

Paul Erdős and András Sárközy

Vol. 118 (1985), No. 2, 347–357
Abstract

Let a1 < a2 < be an infinite sequence of positive integers and denote by R(n) the number of solutions of n = ai + aj. The authors prove that if F(n) is a monotonic increasing arithmetic function with F(n) +and F(n) = o(n(log n)2) then |R(n) F(n)| = o((F(n))12) cannot hold.

Mathematical Subject Classification 2000
Primary: 11B34
Secondary: 11B13
Milestones
Received: 12 September 1984
Published: 1 June 1985
Authors
Paul Erdős
András Sárközy