Relations between the
maximum modulus M(R) and the maximum term μ(R) of an entire function are
investigated. There are no upper bounds for M(R) in terms of functions of R and
μ(R) which are valid for all R. There are such bounds as functions of R, 𝜖, μ(R) and
μ(R + 𝜖) for all 𝜖 > 0.