CLOPEN REALCOMPACTIFICATION OF A MAPPING

TAKESI ISIWATA
CLOCOPEN REALCOMPACTIFICATION OF A MAPPING

TAKESI ISIWATA

In this note, we give a necessary and sufficient condition on $\varphi: X \to Y$ for $\nu \varphi$ to be an open perfect mapping of νX onto νY and other related results.

Throughout this paper, by a space we mean a completely regular Hausdorff space and mappings are continuous and we assume familiarity with [1] whose notation and terminology will be used throughout. We denote by $\varphi: X \to Y$ a map of X onto Y, by βX (νX) the Stone-Čech compactification (Hewitt realcompactification) of X and by $\beta \varphi$ ($\nu \varphi = (\beta \varphi)|\nu X$) the Stone extension (realcompactification) over βX (νX) of φ.

Concerning clopenness of $\nu \varphi$ of a clopen map $\varphi: X \to Y$ the following results are known.

Theorem A (Ishii [4]). If $\varphi: X \to Y$ is an open quasi-perfect map, then $\nu \varphi$ is an open perfect map of νX onto νY.

Theorem B (Morita [8]). If $\varphi: X \to Y$ is a clopen map such that the boundary of each fiber is relatively pseudocompact, then $\nu \varphi$ is also a clopen map of νX onto νY.

In §2, concerning Theorem A we give a necessary and sufficient condition on φ for $\nu \varphi$ to be an open perfect map of νX onto νY without using the theory of hyper-spaces (Theorem 2.3 below) and a necessary and sufficient condition on φ for $\nu \varphi$ to be an open RC-preserving map of νX onto νY under some condition (Theorem 2.6 below).

We use the following notation and abbreviation: $C(X)$ is the set of real-valued continuous functions defined on X, $C(X; \varphi) = \{ f \in C(X); f$ is φ-bounded}, $\text{Bd} A$ = the boundary of A, usc = upper semicontinuous, lsc = lower semicontinuous and $\omega (\omega_1) = \text{the first infinite (uncountable)}$ ordinal, clopen = closed and open.

1. Definitions and Lemmas.

1.1. Definition. Let $\varphi: X \to Y. f \in C(X)$ is said to be φ-bounded if $\sup\{|f(x)|; x \in \varphi^{-1}(y)\} < \infty$ for every $y \in Y$. Whenever f is φ-bounded,
we put
\[
f^s(y) = \sup\{f(x); x \in \varphi^{-1}(y)\} \quad \text{and} \quad f^i(y) = \inf\{f(x); x \in \varphi^{-1}(y)\}
\]
for each \(y \in Y\).

A subset \(A\) of \(X\) is \emph{relatively pseudocompact} if \(f|A\) is bounded for each \(f \in C(X)\). \(\varphi: X \to Y\) is said to be

1. \emph{WZ} if \(\text{cl}_{\beta X} \varphi^{-1}y = (\beta \varphi)^{-1}y\) for each \(y \in Y\) [5].
2. \emph{\(W_rN\)} if \(\text{cl}_{\beta X} \varphi^{-1}R = (\beta \varphi)^{-1}(\text{cl}_{\beta Y} R)\) for every regular closed set \(R\) of \(Y\) [3].

3. \emph{*-open (\(W^*-\)open)} if \(\text{int}(\text{cl} \varphi U) \supset \varphi U\) \((\text{int}(\text{cl} \varphi U) \neq \emptyset)\) for every open set \(U \subseteq X\) [2, 7].
4. \emph{\(\beta\)-open} if \(\varphi\) is \(\beta\)-open and \(W_rN\).
5. a \emph{\(d^*\)-map} if \(\bigcap \text{cl} \varphi Z_n = \emptyset\) for any decreasing sequence \(\{Z_n\}\) of zero sets of \(X\) with empty intersection [6].
6. \emph{\(RC\)-preserving (an RC-map)} if \(\varphi \text{R}\) is regular closed\(\text{(closed)}\) for every regular closed set \(R\) of \(X\) [2].

We note that (1) a closed map is a \(Z\)-map and a \(Z\)-map is \(WZ\) [5], (2) an open map is \(\beta\)-open and a \(\beta\)-open map is \(W^*\)-open [7], (3) a space \(Y\) is \(\text{cb}^*\) iff any \(d^*\)-map onto \(Y\) is hyper-real, i.e., \(v\varphi\) is a perfect map onto \(vY\) [6], (4) an \(RC\)-preserving map is \(RC\) and (5) an open \(WZ\)-map is \(\beta\)-open by 1.2 (1, 5) below. Thus it is easy to see that if \(\varphi\) is \(\beta\)-open, then \((\beta \varphi)|Z: Z \to (\beta \varphi)Z\) is \(\beta\)-open for each \(Z\) with \(X \subseteq Z \subseteq \beta X\). \(Y \supseteq B\) is said to be \(\varphi-d^*\) if \((\beta \varphi)^{-1}B \subseteq vX\). By 1.2(4) below, \(\varphi\) is a \(d^*\)-map iff \(Y\) is \(\varphi-d^*\).

Lemma 1.2. Let \(\varphi: X \to Y\).

1. If \(\varphi\) is \(WZ\), then \(\varphi\) is open iff \(\beta \varphi\) is open [5].
2. If \(\varphi\) is open \((WZ)\), then \(f^i\) is usc \((\text{usc})\) and \(f^s\) is lsc \((\text{lsc})\) for every \(f \in C(X; \varphi)\) (for example, see [5]).
3. If \(\varphi\) is open \(WZ\), then \(f^i\) and \(f^s \in C(Y)\) for every \(f \in C(X; \varphi)\) [5].
4. \(\varphi\) is a \(d^*\)-map iff \((\beta \varphi)^{-1}Y \subseteq vX\) [6].
5. \(\varphi\) is \(\beta\)-open iff \(\beta \varphi\) is open [7].
6. If \(\varphi\) is an \(RC\)-map, then \(\varphi\) is \(WZ\) [3].
7. \(\varphi\) is \(RC\)-preserving iff \(\varphi\) is a \(W^*\)-open \(RC\)-map [2].

2. **Main Theorems.**

Lemma 2.1. Let \(\varphi: X \to Y\). Then the following are equivalent:

1. \(\varphi\) is \(WZ\) \((\text{open})\).
2. \(f^i\) is lsc \((\text{usc})\) for every \(f \in C(X; \varphi)\)
3. \(f^s\) is usc \((\text{lsc})\) for every \(f \in C(X; \varphi)\).
Proof. (2) \(\Leftrightarrow\) (3) is evident. (1) \(\Rightarrow\) (2). From 1.2(2).

We will prove (2) \(\Rightarrow\) (1). Suppose that \(\varphi\) is not \(WZ\). Then there are \(y \in Y\) and \(p \in \beta X\) with \(p \in (\beta \varphi)^{-1}y = \text{cl}_{\beta X} \varphi^{-1}y\). Since \(p \notin \text{cl}_{\beta X} \varphi^{-1}y\), there is \(g \in C(\beta X)\) such that \(p \in \text{int}_{\beta X} Z(g)\) and \(g = 1\) on \(\text{cl}_{\beta X} \varphi^{-1}y\). Let us put \(f = g\vert X\). Then \(f \in C(X), f'(y) = 1, A = Z(f) \neq \emptyset\) and \(p \in \text{cl}_{\beta X} A\). On the other hand, \(\text{cl}_{\beta Y} \varphi A = \text{cl}_{\beta Y} (\beta \varphi) A = (\beta \varphi) \text{cl}_{\beta X} A \supseteq (\beta \varphi)p = y\). This shows \(y \in \text{cl} \varphi A\) and hence for each neighborhood \(V\) of \(y\), there is \(z \in V\) with \(f^i(z) = 0\), i.e., \(f^i\) is not lsc.

Now suppose that \(\varphi\) is not open. Then there are a point \(x\) and an open set \(U \ni x\) such that \(V - \varphi U \neq \emptyset\) for every open set \(V \ni y = \varphi(x)\). Let \(f \in C(X; \varphi)\) such that \(x \in \text{int} Z(f) \subset U\) and \(f = 1\) on \(X - U\). Obviously \(f^i(y) = 0\) and \(f^i = 1\) on \(V - \varphi U\). This shows that \(f^i\) is not usc.

Using 2.1, it is easy to see the following:

Theorem 2.2. \(\varphi: X \to Y\) is open \(WZ\) iff \(f^i\) and \(f^s \in C(Y)\) for every \(f \in C(X; \varphi)\) equivalently,

\[
C(Y) = \{ f^i; f \in C(X; \varphi) \} = \{ f^s; f \in C(X; \varphi) \}.
\]

Theorem 2.3. \(\varphi: X \to Y\) is a \(\beta\)-open \(d^*\)-map iff \(\nu \varphi\) is an open perfect map of \(\nu X\) onto \(\nu Y\).

Proof. \(\Leftarrow\) From 1.2(1, 4, 5) and \((\beta \varphi)^{-1}Y \subset (\beta \varphi)^{-1}\nu Y = \nu X\). \(\Rightarrow\) By 1.2(5), \(\beta \varphi\) is open. We will prove that \(\nu \varphi\) is a perfect map on \(\nu Y\). To do this, it suffices to show that \((\beta \varphi)p = q \in \beta Y - \nu Y\) for every \(p \in \beta X - \nu X\). Let \(p \in \beta X - \nu X\). Then there is \(f \in C(\beta X)\) with \(p \in Z(f) \subset \beta X - \nu X\). \(\beta \varphi\) being open \(WZ\) by 1.2(5), it follows from 2.2 that \(f^i \in C(\beta Y), f^i(q) = 0\) and \(f^i > 0\) on \(Y\). This shows \(q \in \beta Y - \nu Y\), so \(\nu \varphi\) is a perfect map on \(\nu Y\). Since \(\beta(\nu \varphi) = \beta \varphi\) and \(\beta \varphi\) is open, \(\nu \varphi\) is open by 1.2(1). Thus \(\nu \varphi\) is an open perfect map of \(\nu X\) onto \(\nu Y\).

2.4. **Example.** Let \(X = [0, \omega_1]^2 - \{ (\omega_1, \alpha); \omega \leq \alpha \leq \omega_1 \}, Y = [0, \omega_1]\) and \(\varphi\) the projection of \(X\) onto \(Y\). It is obvious that \(\varphi\) is not \(WZ\) and hence not closed and \(\varphi^{-1}(\omega_1)\) is not compact. On the other hand \(\beta \varphi: \beta X = \nu X = [0, \omega_1]^2 \to Y = \nu Y = \beta Y\) is open perfect (compare with the assumption of Theorem A).

2.5. **Lemma.** If \(\varphi: X \to Y\) is a \(*\)-open RC-map, then \(\varphi\) is open.

Proof. Let \(U\) be open in \(X\) and \(x \in U\). Take a regular closed set \(R\) with \(x \in \text{int} R \subset R \subset U\). Since \(\varphi\) is a \(*\)-open RC-map, we have \(y = \varphi(x) \in \text{int}(\text{cl} \varphi(\text{int} R)) \subset \varphi R \subset \varphi U\), so \(y \in \text{int} \varphi U\). Thus \(\varphi\) is open.
In the following we put
\[Y_d = \{ y \in Y; \varphi^{-1}y \text{ is open but not relatively pseudocompact} \}, \]
\[Y_e = X - Y_d. \]

Theorem 2.6. \(\varphi: X \to Y \) is a \(\beta \)-open map such that \(Y_e \) is \(\varphi \)-d* iff \(\nu \varphi \) is an open RC-preserving map of \(\nu X \) onto \(\nu Y \) such that \(\text{cl}_{\nu Y} Y_e \) is \((\varphi \nu) \)-d*.

Proof. (\(\Leftarrow \)) Since \(\nu \varphi \) is open \(WZ \) by 1.2(6), \(\beta \varphi \) is open by 1.2(1) and \(\varphi \) is a \(\beta \)-open map by 1.2(5). The fact that \(\text{cl}_{\nu Y} Y_e \) is \((\varphi \nu) \)-d* implies that \(Y_e \) is \(\varphi \)-d*.

(\(\Rightarrow \)) (1) We will first prove that if \(p \in \beta X - \nu X \) and \((\beta \varphi) p = q \in \nu Y \), then there is a clopen subset \(D \) of \(Y \) such that \(q \in \text{cl}_{\nu Y} D, D \subset Y_d \) and \(\text{cl}_{\nu Y} D \cap \text{cl}_{\nu Y} Y_e = \emptyset \). There is \(f \in C(\beta X) \) with \(p \in Z(f) \subset \beta X - \nu X \). By 1.2(5), \(\beta \varphi \) is open. Thus \(f' \in C(\beta Y) \). Since \(Y_e \) is \(\varphi \)-d*, \(f' > 0 \) on \(Y_e \) and hence \(Z(f') \cap Y_e = \emptyset \). Since \(f'(q) = 0, q \in \nu Y \) and \(Z(f') \) is closed. \(D = Z(f') \cap Y_d = Z(f') \cap Y \) is a non-empty clopen discrete subset of \(Y \) contained in \(Y_d \). \(\text{cl}_{\nu Y} D = Z(f') \cap \nu Y \) implies \(q \in \text{cl}_{\nu Y} D \) and \(\text{cl}_{\nu Y} D \cap \text{cl}_{\nu Y} Y_e = \emptyset \).

(2) Let us put \(\mathcal{D} = \{ D \subset Y_d; D \text{ is a clopen subset of } Y \} \) and \(\text{cl}_{\nu Y} \mathcal{D} = \bigcup \{ \text{cl}_{\nu Y} D; D \in \mathcal{D} \} \). Then it is easy to see the following
\[\nu Y = \text{cl}_{\nu Y} \mathcal{D} \cup \text{cl}_{\nu Y} Y_e, \quad \text{cl}_{\nu Y} \mathcal{D} \cap \text{cl}_{\nu Y} Y_e = \emptyset \]
and
\[(\beta \varphi)^{-1} \text{cl}_{\nu Y} Y_e \subset \nu X. \]

(3) \(\nu \varphi \) is onto \(\nu Y \). Let \(q \in \text{cl}_{\nu Y} D, D \in \mathcal{D} \). For each \(y \in D \), let us pick a point \(p(y) \) from \(\varphi^{-1}y \) and put \(A = \{ p(y); y \in D \} \). Then \(A \) is a discrete closed C-embedded subset of \(X \). Thus \(\nu A = \text{cl}_{\nu X} A \) is homeomorphic to \(\text{cl}_{\nu Y} D \) under the map \(\nu \varphi \). Thus we have \(\nu \varphi(\nu X) = \nu Y \).

(4) \(\nu \varphi \) is an RC-map. Let \(F \) be regular closed in \(\nu X \) and \(E = (\nu \varphi) F \). Suppose that there is \(q \in \text{cl}_{\nu Y} E - E \). By (2) and the clopeness of \(\varphi^{-1}y, y \in Y_d, \) we have \(q \notin Y_d \cup \text{cl}_{\nu Y} E_e \). Thus there is \(D \in \mathcal{D} \) with \(q \in \text{cl}_{\nu Y} D \) and \(\text{cl}_{\nu Y} D \cap \text{cl}_{\nu Y} Y_e = \emptyset \) by (2). Since \(\beta \varphi \) is open by 1.2(5), \(\nu \varphi \) is also \(* \)-open and we have that \(E \supset (\nu \varphi) \text{int}_{\nu X} F \) is dense in \(\text{cl}_{\nu Y} E \) because \(F \) is regular closed. Let \(M = E \cap D \cap Y_d \). Then \(q \in \text{cl}_{\nu Y} M \). Let us pick a point \(p(y) \) from \(\varphi^{-1}(y) \cap F, y \in M \). \(A = \{ p(y); y \in M \} \) is a discrete closed C-embedded subset of \(X \) and hence \(\nu A = \text{cl}_{\nu X} A \subset F \) and \(\nu A \) is homeomorphic to \(\nu M = \text{cl}_{\nu Y} M \), so \(q \in E \) a contradiction.

(5) \(\nu \varphi \) is open RC-preserving. Since \(\nu \varphi \) is an RC-map, \(\nu \varphi \) is WZ by 1.2(6). Thus the openness of \(\beta \varphi \) implies that \(\nu \varphi \) is open by 1.2(1) and RC-preserving by 1.2(7).
As a direct consequence of the above theorem, we have the following corollary which is a generalization of the result obtained in [5] if X is realcompact and $\varphi: X \to Y$ is an open WZ map with $\text{Bd } \varphi^{-1}y = \text{compact}$ for each $y \in Y$, then Y is also realcompact.

COROLLARY 2.7. If X is realcompact and $\varphi: X \to Y$ is a β-open map such that Y_e is φ-d^*, then Y is also realcompact.

THEOREM 2.8. Let $\varphi: X \to Y$ and $Z = (\beta \varphi)^{-1}Y_d \cup vX$. Then the following are equivalent:

1. Z is a realcompact and φ is a β-open map such that Y_e is φ-d^*.
2. $\varphi' = (\beta \varphi)|Z$ is an open perfect map of Z onto vY.
3. $v \varphi$ is a clopen map of vX onto vY such that $\text{Bd}(v \varphi)^{-1}q$ is compact for every $q \in vY$.
4. $v \varphi$ is a clopen map of vX onto vY such that $(vY)_e$ is $(v \varphi)$-d^*.

Proof. (1) \Rightarrow (2) If $Z = \beta X$, then $\varphi' = \beta \varphi$ and φ' is an open perfect map onto vY. Let $p \in \beta X - Z$ and $q = (\beta \varphi)p$. Then $Z = vZ, \beta Z = \beta X$ and there is $f \in C(\beta X)$ such that $p \in Z(f) \subset \beta X - Z$ and $0 \leq f \leq 1$. Since $\beta \varphi$ is open WZ and Y_e is φ-d^*, it is easy to see that $f^i(q) = 0$ and $f^i > 0$ on Y. Thus $q \in \beta Y - vY$, so φ' is a perfect map onto vY. The openness of φ' follows from 1.2(1, 5).

(2) \Rightarrow (3) We shall show that $v \varphi$ is closed. Let F be closed in vX and $q \in \text{cl}_{vY}(v \varphi)F - (v \varphi)F$. Since φ' is perfect and every point of Y_d is isolated, we have $q \notin Y_d$, so $(\beta \varphi)^{-1}q = (v \varphi)^{-1}q$ is disjoint from cl_ZF, and hence $q \notin v \varphi'(\text{cl}_ZF)$, a contradiction. Thus $v \varphi$ is closed. The verifications of other parts are easy. (3) \Rightarrow (4) Evident.

(4) \Rightarrow (1) Since $v \varphi$ is clopen, $\beta(v \varphi) = \beta \varphi$ is open by 1.2(1) and hence φ is β-open by 1.2(5). Since $vY = (vY)_e \cup Y_d$, the $(v \varphi)$-d^*-ness of $(vY)_e = vY - Y_d$ implies the φ-d^*-ness of Y_e.

Since $Y_d = (vY)_d$ and $(vY)_e$ is $(v \varphi)$-d^*, we have $Z = (\beta \varphi)^{-1}vY$, and hence $\varphi': Z \to vY$ is an open perfect map which shows that Z is realcompact.

REFERENCES

Received August 18, 1983 and in revised form October 28, 1983.

TOKYO GAKUGEI UNIVERSITY
(184) 4-1-1 NUKUIKITA-MACHI
KOGANEI-SHI, TOKYO, JAPAN
Maurice Chacron, Nonisotropic unitary spaces and modules with Cauchy-Schwarz inequalities ... 1
Myriam Dechamps-Gondim, Françoise Piquard and H. Queffélec, On the minorant properties in $C_p(H)$.. 89
Klaus Floret and V. B. Moscatelli, On bases in strict inductive and projective limits of locally convex spaces ... 103
Norman Joseph Goldstein, Degenerate secant varieties and a problem on matrices ... 115
Harold Morris Hastings and Stefan Waner, G-bordism with singularities and G-homology ... 125
Takesi Isiwata, Clopen realcompactification of a mapping 153
Hisao Kato, Concerning hyperspaces of certain Peano continua and strong regularity of Whitney maps ... 159
Elyahu Katz and Sidney Allen Morris, Free products of topological groups with amalgamation .. 169
Kyewon Koh Park, Nice dense subsets for ergodic flows and Bernoulli flows .. 181
Francis Pastijn and Peter George Trotter, Lattices of completely regular semigroup varieties .. 191
Rae Michael Andrew Shortt, Reticulated sets and the isomorphism of analytic powers ... 215
David A. Stegenga and Kenneth R. Stephenson, Generic covering properties for spaces of analytic functions .. 227
M. V. Subba Rao and R. Sitaramachandra Rao, On some infinite series of L. J. Mordell and their analogues 245