RANDOM PERMUTATIONS AND
BROWNIAN MOTION

J. M. DeLaurentis and B. G. Pittel

Consider the cycles of the random permutation of length \(n \). Let \(X_n(t) \) be the number of cycles with length not exceeding \(n' \), \(t \in [0,1] \). The random process \(Y_n(t) = (X_n(t) - t \ln n)/\ln^{1/2} n \) is shown to converge weakly to the standard Brownian motion \(W(t), t \in [0,1] \). It follows that, as a process, the empirical distribution function of “loglengths” of the cycles weakly converges to the Brownian Bridge process. As another application, an alternative proof is given for the Erdős-Turan Theorem: it states that the group-order of random permutation is asymptotically \(e^\mathcal{U} \), where \(\mathcal{U} \) is Gaussian with mean \(\ln^2 n/2 \) and variance \(\ln^3 n/3 \).

1. Introduction. Results. Consider \(S_n \), the symmetric group of permutations of a set \(\{1, \ldots, n\} \) endowed with the uniform distribution, \(P(\sigma) = 1/n! \) for each \(\sigma \in S_n \). Since a pioneering work by Goncharov [10], [11], a considerable attention has been paid to the asymptotic study of the order sequence of cycles lengths for the random permutation (r.p.), and of components sizes for the random mapping (Kolchin, et al. [13], [14], Shepp and Lloyd [20], Balakrishnan, et al. [1], Stephanov [21], Vershik and Shmidt [22]). Let \(X_{ns} = X_{ns}(\sigma) \) designate the random number of cycles of length \(s \) in the r.p. \(\sigma \). It is known [11] that \(X_n \), the total number of cycles, it asymptotically normal with mean and variance \(\ln n \). A similar result holds true for the total number of cycles whose lengths are divisible by a given number, [4], [20]. In this paper, we study the asymptotical behavior of the joint distribution of \(X_{n1}, \ldots, X_{nn} \).

For each \(t \in [0,1] \), consider

\[
(1.1) \quad X_n(t) = \sum_{1 \leq s \leq n'} X_{ns}, \quad Y_n(t) = \left(X_n(t) - t \ln n \right)/\ln^{1/2} n;
\]

so, \(X_n(t) \) is the total number of cycles of the r.p. with lengths not exceeding \(n' \). Clearly, each sample function of \(Y_n(\cdot) \) belongs to \(D[0,1] \) the space of functions on \([0,1]\) which are right-continuous at each \(t \in [0,1] \) and have left limits at each \(t \in (0,1] \). Introduce \(W(t), t \in [0,1] \), the standard Brownian motion defined on a complete probability space with continuous sample paths. Let \(\mathcal{H} \) be a class of functionals on \(D[0,1] \) continuous in the sup-norm metric.
THEOREM. \(Y_n(\cdot) \) converges to \(W(\cdot) \) in terms of finite dimensional distributions. Moreover, for each \(H \in \mathcal{H} \), the random variable \(H(Y_n(\cdot)) \) converges weakly to \(H(W(\cdot)) \); in short, \(Y_n \Rightarrow W \).

Notes. Since \((X_n - \ln n)/\ln^{1/2} n = Y_n(1) \), the Goncharov result is a direct corollary of the theorem.

(2) To each cycle of the r.p., let us assign its “loglength” which is the logarithm of the cycle length with base \(n \). Clearly, all the loglengths are in \([0, 1]\). Introduce the empirical distribution function (e.d.f.) \(F_n(t) \), \(t \in [0, 1] \), of the loglengths, that is, \(F_n(t) = X_n(t)/X_n \). The theorem yields, after simple manipulations, that, as a process, \(\ln^{1/2} n (F_n(t) - t) \), \(t \in [0, 1] \), converges weakly (\(\Rightarrow \)) to \(W(t) - tW(1), t \in [0, 1] \). Thus, the asymptotical behavior of the loglengths is very nearly the same as of that for a sequence of \([\ln n]\) independent random variables each uniformly distributed on \([0, 1]\), [9].

(3) Consider \(Z_n \) and \(P_n \) respectively the order and the product of the cycle lengths of the r.p. Erdős and Turán [5] proved that \(\ln P_n \) and \(\ln Z_n \) are relatively close in probability, as \(n \to \infty \). Later [6], they established, via very complicated argument, asymptotic normality of \(\ln P_n \), whence of \(\ln Z_n \). Best [4] found a simpler proof of closeness of \(\ln P_n \) and \(\ln Z_n \), but his proof that \(\ln P_n \) is nearly normal remains rather technical. We are aware of, but have not seen, two other published proofs (Kolchin [15], Pavlov [18]) of the Erdős-Turan theorem.

Let us show how this theorem follows from our result.

First, we prove that, for each \(\alpha > 2 \),

\[
P\left(\Delta_n \geq \ln n (\ln \ln n)^\alpha \right) \to 0, \quad n \to \infty,
\]

where \(\Delta_n = \ln P_n - \ln Z_n \). (Our proof resembles the Best argument, but is much simpler.) Introduce

\[
D_{nk} = \sum_{s=1}^{n} \theta_s(k) X_{ns}, \quad \theta_s(k) = \begin{cases} 1 & \text{if } k|s, \\ 0 & \text{otherwise.} \end{cases}
\]

Since \(E(X_{ns}) = 1/s, \ E(X_{ns}(X_{ns'} - \delta_{ss'})) = 1/ss', \ s + s' \leq n \), a simple computation leads to

\[
E(D_{nk}) = \sum_{s=1}^{n} \theta_s(k)/s = O(\ln n/k),
\]

\[
E(D_{nk}(D_{nk} - 1)) \leq \left(\sum_{s=1}^{n} \theta_s(k)/s \right)^2 = O(\ln^2 n/k^2),
\]

the estimates being uniform in \(k \leq n \).
Denote $D_{nk}^* = \min(1, D_{nk})$. Since the multiplicity of a prime factor p in P_n (resp. Z_n) is $\sum_{s \geq 1} D_{np}^s$ (resp. $\sum_{s \geq 1} D_{np}^s$), we have

$$\ln P_n = \sum_p \sum_{s \geq 1} D_{np}^s \ln p, \quad \ln Z_n = \sum_p \sum_{s \geq 1} D_{np}^s \ln p,$$

so that

$$\Delta_n \leq \sum_{k \geq 1} \left(D_{nk} - D_{nk}^* \right) \ln k = \sum_{k \geq 1} \Delta_{nk} \ln k.$$

As $\Delta_{nk} \leq D_{nk}, \Delta_{nk} \leq D_{nk}(D_{nk} - 1)/2$, we obtain (see (1.3)),

$$E(\Delta_n) \leq c \left(\ln n \sum_{k=1}^{[\ln n]} \ln k/k + \ln^2 n \sum_{k>[\ln n]} \ln k/k^2 \right) = O(\ln n(\ln \ln n)^2).$$

Since $\Delta_n \geq 0$, the last estimate implies (1.2).

Second, we prove that $\ln P_n$ is asymptotically normal with mean $2^{-1}\ln^2 n$ and variance $3^{-1}\ln^3 n$. (Then, in view of (1.2), $\ln Z_n$ has the same limiting distribution.) Introducing $t_{ns} = \ln s/\ln n, 1 \leq s \leq n$, and summing up by parts, we have (see (1.1))

$$\ln P_n = \sum_{1 \leq s \leq n} X_{ns} \ln s = \ln^2 n \left[1 - \sum_{1 \leq s \leq n-1} t_{ns}(t_{n,s+1} - t_{ns}) \right]$$

$$+ \ln^{3/2} n \left[Y_n(1) - \sum_{1 \leq s \leq n-1} Y_n(t_{ns})(t_{n,s+1} - t_{ns}) \right]$$

$$= \ln^2 n \left[2^{-1} + O(\ln^{-2} n) \right] + \ln^{3/2} n \left[Y_n(1) - \int_0^1 Y_n(t) \, dt \right].$$

So, by the theorem,

$$\frac{\ln P_n - 2^{-1}\ln^2 n}{\ln^{3/2} n} = \int_0^1 (W(1) - W(t)) \, dt \Rightarrow \int_0^1 W(t) \, dt.$$

It remains to observe that the last integral is normal with zero mean and variance 3^{-1}.

(4) For $\sigma \in S_n$, let $i \leq i_1 < \cdots < i_\nu \leq n, \nu = \nu(\sigma)$, be the locations of all the (upper forward) record values in σ. Consider the inter-record times $\Delta_j = i_{j+1} - i_j, 1 \leq j \leq \nu, \Delta_{\nu+1} = n + 1 - i_\nu$, and let $R_{ns} = R_{ns}(\sigma)$ stand for the number of Δ’s equal to $s, 1 \leq s \leq n$. Since there exists a one-to-one mapping T of S_n onto itself such that

$$\{ X_{ns}(\sigma) \}_{s=1}^n = \{ R_{ns}(T(\sigma)) \}_{s=1}^n,$$

([12], [16]), the sequences $\{ R_{ns} \}_{s=1}^n$ and $\{ X_{ns} \}_{s=1}^n$ are equidistributed. Thus, with no other proof needed, we could have formulated the analogues of the theorem, and the statement in (2), in terms of the inter-record times. The corresponding results appear to be new, though the
(inter)record times have been studied by many authors, [2], [8]. (For example, Neuts [17] proved asymptotic normality of the \(n \)th interrecord time in the (infinite) r.p. associated with a sequence of independent random variables with a common continuous distribution function.)

2. Proof of the theorem. The joint distribution of \(X_{ns} \), \(1 \leq s \leq n \), is given by Cauchy’s formula [3]:

\[
P(X_{ns} = \alpha_s, 1 \leq s \leq n) = \begin{cases} \prod_{s=1}^{n} \left(\frac{1}{s} \right)^{\alpha_s} / \alpha_s! & \text{if } \sum_{s=1}^{n} s \alpha_s = n, \\ 0 & \text{otherwise}. \end{cases}
\]

Introduce a bounded sequence \(z = \{ z_s \}_{s=1}^{\infty} \) and the sequence of generating functions (g.f.) \(f_n(z) = E(\prod_{1 \leq s \leq n} z_s^{X_{ns}}) \), \(n \geq 1 \), \(f_0(z) = 1 \). It follows from (2.1) that, for \(|t| < 1 \),

\[
\sum_{n \geq 0} t^n f_n(z) = \exp \left[\sum_{s \geq 1} z_s t^s / s \right],
\]

[19], (cf. [20]). Fix the positive integers \(r, l_1, \ldots, l_r \), and introduce the \(r \)-dimensional g.f. \(g_n(y) = E(\prod_{1 \leq v \leq r} y_v^{X_{n,v}}) \), \((X_{n,l} = 0, \text{ for } l > n) \). Choosing in (2.2) \(z_s = y_v \), if \(s = l_v \) \((1 \leq v \leq r) \), and \(z_s = 1 \) otherwise, we obtain that \((g_0(y) = 1) \)

\[
\sum_{n \leq 0} t^n g_n(y) = \exp \left[\sum_{v=1}^{r} y_v t^{l_v} / l_v + \sum_{s \neq l_1, \ldots, l_r} t^s / s \right] = \exp \left[\sum_{v=1}^{r} (y_v - 1) t^{l_v} / l_v \right] / (1 - t).
\]

Hence, by Cauchy’s integral formula,

\[
g_n(y) = (2\pi i)^{-1} \int_C \exp \left[\sum_{v=1}^{r} (y_v - 1) z^{l_v} / l_v \right] \left/ (1 - z) z^{n+1} \right. dz,
\]

where \(C \) is any circle with radius less than one surrounding the origin in the complex plane. It is important that (2.4) holds for each set of positive integers \(n, r, l_1, \ldots, l_r \).

Introduce a process

\[
Y^*_n(t) = \left(\sum_{1 \leq s \leq \lfloor n t \rfloor} (X_{ns} - 1 / s) \right) / \ln^{l/2} n, \quad t \in [0, 1].
\]

Since \(\sum_{1 \leq s \leq v} 1 / s - \ln v = O(1), v \to \infty \), it suffices to prove that \(Y^*_n \Rightarrow W \). (Centering of \(X_{ns} \) by \(1 / s \) is natural since \(E(X_{ns}) = 1 / s, 1 \leq s \leq n \).)
Lemma 1. For each fixed k and $0 = t_0 < \cdots < t_k = 1$, the random vector $\{Y^*_n(t_j)\}_{j=1}^k$ converges to $\{W(t_j)\}_{j=1}^k$ in distribution.

Proof. For $1 \leq j \leq k$, let $n_j = \lfloor n^{1/j} \rfloor$ so that $n_0 = 1$, $n_k = n$. Denote

$$
X_{n_j} = \sum_{s=n_j-1+1}^{n_j} X_{ns}, \quad \tilde{X}_{n_j} = \sum_{s=n_j-1+1}^{n_j} 1/s.
$$

We have to show that $\left\{ \left(\frac{X_{n_j} - \tilde{X}_{n_j}}{\ln^{1/2} n} \right) \right\}_{j=1}^k$ converges weakly to the Gaussian vector with k independent components having parameters $(0, t_j - t_{j-1})$, $1 \leq j \leq k$.

Introduce $x_j = \exp(u_j/\ln^{1/2} n)$, $u_j > 0$ and is fixed, $1 \leq j \leq k$. Setting $r = n$, $l_z = s$ for each s, and $y_v = x_j$ for $n_j-1 + 1 \leq v \leq n_j$ in (2.4), and choosing the radius of C equal to $\rho = 1 - n^{-1}$, we have

$$
(2.6) \quad h_n(x) = E\left(\prod_{j=1}^n x_j^x_{n_j} \right) = (2\pi\rho^n)^{-1} \exp\left[\sum_{j=1}^k (x_j - 1) \sum_{s=n_j-1+1}^{n_j} \rho^s/s \right] \cdot I,
$$

where

$$
(2.7) \quad I = \int_{[-\pi, \pi]} e^{-i n \phi} b_n(\phi) \, d\phi, \quad b_n(\phi) = (1 - \rho e^{i\phi})^{-1} \exp[a_n(\phi)],
$$

$$
(2.8) \quad a_n(\phi) = \sum_{j=1}^k (x_j - 1) \sum_{s=n_j-1+1}^{n_j} (\rho^s/s)(e^{i\phi} - 1).
$$

To estimate I, we proceed as follows. Break $[-\pi, \pi]$ into $[-\phi_0, \phi_0]$, $[-\phi_0, \phi_0]$, $\phi_0 = n^{-3/4}$, let the corresponding integrals be I_1, I_2. First, we estimate I_1. In I_2, we replace $b_n(\phi)$ by $\bar{b}_n(\phi)$, which is close to $b_n(\phi)$ for $\phi \in [-\phi_0, \phi_0]$, and nicely manageable if $\phi \in (-\infty, \infty)$. The resulting integral \bar{I}_2 is a difference of two integrals I_1 and I_2, over respectively $(-\infty, \infty)$ and $(-\infty, \infty) - [-\phi_0, \phi_0]$. We estimate I_2. I_1, whose contribution in the value of I is dominant, is asymptotically evaluated by means of the inversion formula for an L_1-integrable characteristic function.

The proof follows.

(1) Show that

$$
(2.9) \quad I_1 = O\left(n^{-1/4}\right).
$$

Integrating once by parts, we have

$$
\left| \int_{[\phi_0, \pi]} e^{-i n \phi} b_n(\phi) \, d\phi \right| \leq n^{-1} \left[|b_n(\pi)| + |b_n(\phi_0)| + \int_{[\phi_0, \pi]} |b_n'(\phi)| \, d\phi \right].
$$
Here, (see (2.7), (2.8)),

\[|b_n(\pi)| = O(\exp(\Re a_n(\pi))) = O(1), \]

since

\[\Re(a_n(\phi)) \leq \sum_{j=1}^{k} (x_j - 1) \sum_{s=n_{j-1}+1}^{n_j} (\rho^s/s)(\cos s\phi - 1) \leq 0, \]

\[(x_j \geq 1, j = 1, \ldots, k). \]

Also,

\[(2.10) \quad |b_n(\phi_0)| \leq |1 - \rho e^{i\phi_0}|^{-1} = \left[(1 - \rho)^2 + 2\rho(1 - \cos \phi_0) \right]^{-1/2} \]

\[= O\left[(1 - \cos \phi_0)^{-1/2} \right] = O(\phi_0^{-1}). \]

Further, since

\[b_n(\phi) = \rho i (1 - \rho e^{i\phi})^{-2} \exp[a_n(\phi)] + i (1 - \rho e^{i\phi})^{-1} \]

\[\times \exp[a_n(\phi)] \sum_{j=1}^{k} (x_j - 1) \sum_{s=n_{j-1}+1}^{n_j} (\rho e^{i\phi})^s, \]

estimate

\[|b_n'(\phi)| \leq |1 - \rho e^{i\phi}|^{-2} + |1 - \rho e^{i\phi}|^{-2} \sum_{j=1}^{k} (x_j - 1) |1 - (\rho e^{i\phi})^{n_j-n_{j-1}}| \]

\[= O\left(|1 - \rho e^{i\phi}|^{-2} \right) = O\left((1 - \cos \phi)^{-1} \right) = O(\phi^{-2}), \]

for \(\phi \in [\phi_0, \pi] \). Therefore

\[\int_{[\phi_0, \pi]} |b_n'(\phi)| d\phi = O(\phi_0^{-1}), \]

and, together with (2.10), it yields

\[\left| \int_{[\phi_0, \pi]} e^{-in\phi} b_n(\phi) d\phi \right| = O\left((n\phi_0)^{-1} \right) = O(n^{-1/4}). \]

The case of \([-\pi, -\phi_0]\) is similar.

(2) To estimate \(I_2 \), compare it with

\[(2.11) \quad \tilde{I}_2 = \int_{[-\phi_0, \phi_0]} e^{-in\phi} \tilde{b}_n(\phi) d\phi, \]

\[\tilde{b}_n(\phi) = [1 - \rho(1 + i\phi)]^{-1}(1 - i\phi)^{-1} \exp[a_n(\phi)]. \]
Since $p = 1 - n^{-1}$ and $|e^{i\phi} - (1 + i\phi)| \leq 2^{-1}\phi^2$,
\[
\left| (1 - \rho e^{i\phi})^{-1} - [1 - \rho (1 + i\phi)]^{-1}(1 - i\phi)^{-1} \right|
\leq 2^{-1}n^2\rho^2 + |1 - \rho (1 + i\phi)|^{-1}|1 - (1 - i\phi)^{-1}|
\leq 2^{-1}n^2\rho^2 + n|\phi|.
\]
Subsequently ($\phi_0 = n^{-3/4}$),
\[
(2.12) \quad |I_2 - \tilde{I}_2| \leq \int_{[-\phi_0, \phi_0]} |\tilde{b}_n(\phi) - \tilde{b}_n(\phi)| d\phi
\leq 2^{-1}n^2\int_{[-\phi_0, \phi_0]} \phi^2 d\phi + n\int_{[-\phi_0, \phi_0]} |\phi| d\phi
= O\left(n^2\phi_0^3 + n\phi_0^2\right) = O(n^{-1/4}).
\]
Thus, it suffices to estimate \tilde{I}_2. Notice first that $\tilde{b}_n(\cdot) \in L_1(-\infty, \infty)$; (one reason why the factor $(1 - i\phi)^{-1}$ is included in $\tilde{b}_n(\phi)$ is to have this happen). If so,
\[
(2.13) \quad \tilde{I}_2 = \int_{(-\infty, \infty)} e^{-iu\tilde{b}_n(u/n)} du - n^{-1}\int_{|u| \geq n\phi_0} e^{-iu\tilde{b}_n(u/n)} du = J_1 - J_2.
\]
(2a) Evaluate J_1. By (2.8), (2.11), we have
\[
(2.14) \quad n^{-1}\tilde{b}_n(u/n) = (1 - i\alpha_1u)^{-1}(1 - i\alpha_2u)^{-1}\exp[a_n(u/n)]
= (1 - i\alpha_1u)^{-1}(1 - i\alpha_2u)^{-1}\prod_{j=1}^{k} \prod_{s=n_j-1+1}^{n_j} \exp[\Lambda_{js}(e^{isu/n} - 1)]
\]
where
\[
(2.15) \quad \alpha_1 = \rho = 1 - n^{-1}, \quad \alpha_2 = n^{-1},
(2.16) \quad \Lambda_{js} = (x_j - 1)\rho^s/s.
\]
Notice that
\[
(1 - iu)^{-1} = E[\exp(iuV)], \quad \exp[\Lambda(e^{iu} - 1)] = E[\exp(iu\mathcal{P}(\Lambda))],
\]
where $V \geq 0$ is exponentially distributed with parameter 1, and $\mathcal{P}(\Lambda)$ is Poisson distributed with parameter Λ. Hence, a crucial observation:
\[
(2.17) \quad n^{-1}\tilde{b}_n(u/n) = E[\exp(iuM_n)],
\]
(2.18) \[M_n = \alpha_1 V_1 + \alpha_2 V_2 + \sum_{j=1}^{k} \sum_{s=n_j-1+1}^{n_j} (s/n) \mathcal{P}(\Lambda_{js}), \]

where \(V_1, V_2, \{\mathcal{P}(\Lambda_{js})\}_{j,s} \) are all independent. Since \(n^{-1} \tilde{B}_n(u/n) \in L_1(-\infty, \infty) \), \(M_n \) has a (bounded) continuous density \(f_{M_n} \) (of course, it is seen directly from (2.18)). Moreover, by the inversion formula [7], for each \(x \)

\[f_{M_n}(x) = (2\pi)^{-1} \int_{(-\infty, \infty)} e^{-iuM_n} \exp(iuM_n) \, du, \]

so

\[J_1 = n^{-1} \int_{(-\infty, \infty)} e^{-iu} \tilde{b}_n(u/n) \, du = 2\pi f_{M_n}(1). \]

The density of \(\alpha_1 V_1 \) is \(\alpha_1 \exp(-\alpha_1 x), x \geq 0 \); denote \(F_n \) the distribution function of

\[\tilde{M}_n = \alpha_2 V_2 + \sum_{j=1}^{k} \sum_{s=n_j-1+1}^{n_j} (s/n) \mathcal{P}(\Lambda_{js}). \]

Then

(2.19) \[f_{M_n}(1) = \int_{(-\infty, 1]} \alpha_1 \exp(-\alpha_1(1 - x)) \, dF_n(x). \]

Now (see (2.18)),

\[E(\tilde{M}_n) = \alpha_2 + \sum_{j=1}^{k} \sum_{s=n_j-1+1}^{n_j} (s/n) \Lambda_{js} \]

\[\leq n^{-1} + \left[\max_{1 \leq j \leq k} (x_j - 1) \right] n^{-1} \sum_{s \geq 1} \rho^s \]

\[= O(n^{-1} + \max_{1 \leq j \leq k} (x_j - 1)) = O(\ln^{-1/2} n). \]

Therefore, for each \(\epsilon > 0 \),

(2.20) \[\lim_{n \to \infty} [F_n(\epsilon) - F_n(-\epsilon)] = 1. \]

Since \(\alpha_1 \to 1 \) as \(n \to \infty \), we get from (2.19), (2.20) that

\[\lim_{n \to \infty} f_{M_n}(1) = \lim_{n \to \infty} \alpha_1 \exp(-\alpha_1) = e^{-1}. \]

Thus, \(J_1 \to 2\pi e^{-1} \). More precisely, since \(\alpha_1 = 1 - n^{-1} \) and \(E(\tilde{M}_n) = O(\ln^{-1/2} n) \),

(2.21) \[J_1 = 2\pi e^{-1} + O(\ln^{-\delta} n), \quad \forall \delta \in (0, 1/2). \]
(2b). Estimate J_2. Integrating by parts, we have ($B_n(u) = n^{-1} \tilde{b}_n(u/n)$)

\[
\left| \int_{u \geq n\phi_0} e^{-iu}B_n(u) \, du \right| \leq |B_n(n\phi_0)| + \int_{u \geq n\phi_0} |B'_n(u)| \, du.
\]

Here (see (2.8), (2.14)),

(2.22) \quad |B_n(n\phi_0)| = O\left(|1 - i\alpha_1 n\phi_0|^{-1} \right) = O\left((n\phi_0)^{-1} \right) = O(n^{-1/4}),

\[
|B'_n(u)| = O\left(u^{-2} + n^{-1}u^{-1} |1 - i\alpha_2 u|^{-1} + n^{-1}|a'_n(u/n)|nu^{-2} \right)
= O\left(u^{-2} + |a'_n(u/n)|u^{-2} \right),
\]

and

(2.23) \quad |a'_n(u/n)| = \left| \sum_{j=1}^{k} (x_j - 1) \sum_{s=n_j-1}^{n_j} (\rho e^{iu/n})^s \right| \\
\leq 2k \max_{1 \leq j \leq k} (x_j - 1) |1 - \rho e^{iu/n}|^{-1},

(2.24) \quad |1 - \rho e^{iu/n}|^{-1} \leq \left[n^{-2} + 1 - \cos(u/n) \right]^{-1/2}
= \begin{cases} O(nu^{-1}), & \text{if } u/n \leq \pi, \\ O(n), & \text{always}. \end{cases}

Putting together (2.22)–(2.24), we obtain

\[
\int_{u \geq n\phi_0} |B'_n(u)| \, du = O\left(\int_{u > n\phi_0} u^{-2} \, du \right)
+ O\left(\max_{1 \leq j \leq k} (x_j - 1) \left(n \int_{[n\phi_0, n\pi]} u^{-3} \, du \\
+ n \int_{u \geq n\pi} u^{-2} \, du \right) \right)
= O\left((n\phi_0)^{-1} + \max_{1 \leq j \leq k} (x_j - 1) \right) = O(\ln^{-1/2} n).
\]

Therefore (the case $u \leq -n\phi_0$ is similar),

(2.25) \quad J_2 = O(\ln^{-1/2} n).

(3) Combining (2.9), (2.12), (2.13), (2.21) and (2.25), we can conclude:

\[
I = J_1 + [I_1 + (I_2 - \tilde{I}_2) - J_2] = 2\pi e^{-1} + O(\ln^{-\delta} n), \quad \delta \in (0, 1/2).
\]
Hence, by (2.6) and $\rho^n = e^{-1}(1 + O(n^{-1}))$,

$$h_n(x) = E \left(\prod_{j=1}^{k} \mathcal{X}_{nj}^{x} \right)$$

$$= \exp\left[\sum_{j=1}^{k} (x_j - 1) \sum_{s=n_j+1}^{n_j^*} \rho^s/s \right] (1 + O(\ln^{-\delta} n)).$$

What remains is to evaluate the first factor on the right. Since

$$x_j - 1 = \exp\left(u_j/\ln^{1/2} n \right) - 1 = u_j/\ln^{1/2} n + u_j^2/2 \ln n + O(\ln^{-3/2} n),$$

we have

$$\sum_{s=n_j+1}^{n_j^*} (\rho^s/s - 1/s) \leq 1,$$

$$\sum_{s=n_j+1}^{n_j^*} 1/s - (\ln n_j - \ln n_{j-1}) \leq 1,$$

$$|(\ln n_j - \ln n_{j-1}) - (t_j - t_{j-1}) \ln n| \leq 1,$$

we have

$$E \left(\exp\left[\left(\sum_{j=1}^{k} u_j \mathcal{X}_{nj} \right)/\ln^{1/2} n \right] \right)$$

$$= \exp\left[\left(\sum_{j=1}^{k} u_j \sum_{s=n_j+1}^{n_j^*} 1/s \right)/\ln^{1/2} n \right]$$

$$\times \exp\left[2^{-1} \sum_{j=1}^{k} u_j^2(t_j - t_{j-1}) \right] (1 + O(\ln^{-\delta} n)).$$

So, by definition of \mathcal{X}_{nj},

$$\lim_{n \to \infty} E \left(\exp\left[\left(\sum_{j=1}^{k} u_j (\mathcal{X}_{nj} - \bar{\mathcal{X}}_{nj})/\ln^{1/2} n \right) \right] \right)$$

$$= \prod_{j=1}^{k} \exp\left[2^{-1} u_j^2(t_j - t_{j-1}) \right].$$

It follows from this relation that \{(\mathcal{X}_{nj} - \bar{\mathcal{X}}_{nj})/\ln^{1/2} n\}_{j=1}^{k} converges in distribution to \{W(t_j) - W(t_{j-1})\}_{j=1}^{k}. Lemma 1 is proven.

To complete the proof of the Theorem, it suffices to show [9] that the processes $Y^*_n(\cdot)$ are equicontinuous, or more precisely, that for each $\varepsilon > 0$,

$$\lim_{c \downarrow 0} \limsup_{n \to \infty} P\left(\sup_{|t'' - t'| \leq c} |Y^*_n(t'') - Y^*_n(t')| \geq \varepsilon \right) = 0.$$
A method we shall use to prove it is inspired by a proof of equicontinuity of the e.d.f. processes $\xi_n(\cdot)$ on $[0,1]$ for a sequence of n independent random variables uniformly distributed on $[0,1]$ (see Introduction), which is given in [9].

By definition of $Y_n^*(\cdot)$ (see (2.5), (2.6)), $Y_n^*(t) + (\sum_{i=1}^{[s]} 1/s)/\ln^{1/2} n$ is a nondecreasing function of t. Hence, for $0 \leq t_1 \leq t_2 \leq t_3 \leq t_4 \leq 1$,

$$\Delta_n(t_1, t_4) \leq Y_n^*(t_3) - Y_n^*(t_2) \leq Y_n^*(t_4) - Y_n^*(t_1) + \Delta_n(t_1, t_4),$$

$$\Delta_n(t_1, t_4) = \left(\sum_{s=[n^{t/2}]}^{n} 1/s\right)/\ln^{1/2} n,$$

where (see (2.27), (2.28)),

$$\Delta_n(t_1, t_4) \leq (t_4 - t_1)\ln^{1/2} n + 2\ln^{-1/2} n.$$

The proof quoted above is based only on (2.29) (with $\xi_n(\cdot)$ instead of $Y_n^*(\cdot)$, of course), where

$$\Delta_n(t_1, t_4) \leq (t_4 - t_1)\ln^{1/2} n,$$

and an inequality

$$E[(\xi_n(t + h) - \xi_n(t))^4] \leq ch^2, \text{ for } h \geq n^{-1}.$$

No changes would have been necessary, had the inequality (2.31) contained on its right-hand side an extra term $o(1)$, which is present in (2.30). Thus, in our case it would be sufficient, (compare (2.30) with (2.31), (2.32)), to prove an inequality analogous to (2.32) with restriction on h of the form: $h \geq \ln^{-1} n$. Fortunately, it is exactly the case here.

Lemma 2. There is

$$E[(Y_n^*(t + h) - Y_n^*(t))^4] \leq 174h^2, \text{ if } h \geq \ln^{-1} n.$$

Proof. Fix $1 \leq v_1 \leq v_2$. Introduce $\sum_{s=v_1}^{v_2} X_{ns}$, the total number of cycles with lengths from v_1 to v_2. Denote it just C_n, for simplicity of subsequent expressions. We shall prove

$$E[(C_n - E(C_n))^4] \leq 15E^2(C_n) + 13E(C_n),$$

where

$$E(C_n) = \sum_{\{s \leq n; v_1 \leq s \leq v_2\}} 1/s.$$
But let us show first how (2.34), (2.35) lead to (2.33). We have:

\[Y^*_n(t + h) - Y^*_n(t) = \left(\sum_{s=[n']}^{[n'+h]} (X_{ns} - 1/s) \right) / \ln^{1/2} n \]

\[= (C_n - E(C_n)) / \ln^{1/2} n, \]

with \(\nu_1 = [n'] + 1, \nu_2 = [n'+h] \). Then, (see (2.27), (2.28)),

\[E(C_n) = \sum_{s=[n']}^{[n'+h]} 1/s \leq h \ln n + 2 = \ln n (h + 2 \ln^{-1} n) \leq 3h \ln n, \]

if \(h \geq \ln^{-1} n \). Since (2.34), (2.36), we conclude that

\[E\left[\left(Y^*_n(t + h) - Y^*_n(t) \right)^4 \right] \leq \left(135h^2 \ln^2 n + 39h \ln n \right) / \ln^2 n \]

\[= 135h^2 + 39h \ln^{-1} n \leq 174h^2. \]

In order to prove (2.34), notice first that by (2.3),

\[\sum_{n \geq 0} t^n E(y^{C_n}) = \exp \left[\sum_{s=\nu_1}^{\nu_2} (y - 1)t^s/s \right] / (1 - t). \]

Taking the \(j \)th order derivative of both sides of this relation at \(y = 1 \), we obtain

\[\sum_{n \geq 0} t^n m_n^{(j)} = \left(\sum_{s=\nu_1}^{\nu_2} t^s/s \right)^j / (1 - t), \]

where

\[m_n^{(j)} = E\left[C_n(C_n - 1) \cdots (C_n - j + 1) \right] \]

is the \(j \)th order factorial moment of \(C_n \). Equating coefficients by the same powers of \(t \) on both sides of (2.37) yields

\[m_n^{(j)} = \sum_{s_1 + \cdots + s_j \leq n} \prod_{\mu=1}^{j} 1/s_{\mu}; \]

(here and everywhere below, the restrictions \(\nu_1 \leq s_{\mu} \leq \nu_2 \) \((1 \leq \mu \leq j)\), are silently assumed; the same goes for \(s_{\mu} \leq n \) \((1 \leq \mu \leq j)\), though in this case these restrictions are redundant). In case \(j = 1 \), (2.38) gives (2.35). A direct corollary of (2.38) is

\[m_n^{(j)} \leq \left(m_n^{(1)} \right)^j = E^j(C_n), \]
or, more generally,

\[(2.40) \quad m_n^{(j_2)} \leq m_n^{(j_1)}(m_n^{(1)})^{j_2-j_1}, \quad j_2 \geq j_1 \geq 1.\]

Now, a simple argument shows that

\[
E\left[\left(C_n - E(C_n)\right)^4\right] = E_1 + E_2 + E_3 + E_4,
\]

\[(2.41) \quad E_1 = m_n^{(1)}, \quad E_2 = 7m_n^{(2)} - 4(m_n^{(1)})^2,
\]

\[(2.42) \quad E_3 = 6m_n^{(3)} - 12m_n^{(2)}m_n^{(1)} + 6(m_n^{(1)})^3,
\]

\[(2.43) \quad E_4 = m_n^{(4)} - 4m_n^{(3)}m_n^{(1)} + 6m_n^{(2)}(m_n^{(1)})^2 - 3(m_n^{(1)})^4.
\]

Estimate \(E_2, E_3, E_4\). By (2.39), (2.41),

\[(2.44) \quad E_2 \leq 3(m_n^{(1)})^2.
\]

Then, by (2.40), (2.42),

\[
E_3 = 6(m_n^{(3)} - m_n^{(2)}m_n^{(1)}) + 6m_n^{(1)}\left[(m_n^{(1)})^2 - m_n^{(2)}\right]
\leq 6m_n^{(1)}\left[(m_n^{(1)})^2 - m_n^{(2)}\right];
\]

here (see (2.38)),

\[
\left(m_n^{(1)}\right)^2 - m_n^{(2)} = \sum \frac{1}{s_1s_2} - \sum \frac{1}{s_1s_2} \leq n
\]

\[
= \sum \frac{1}{s_1s_2} = \sum \left(s_1 + s_2\right)^{-1}\left(\frac{1}{s_1} + \frac{1}{s_2}\right)
\]

\[
\leq \left(\frac{2}{n}\right) \sum \frac{1}{s_1} \leq \left(\frac{2}{n}\right) \sum \left(\frac{1}{s}\right) s \leq 2,
\]

so

\[(2.45) \quad E_3 \leq 12m_n^{(1)}.
\]

Consider finally \(E_4\). Write (see (2.40), (2.43))

\[(2.46) \quad E_4 = \left(m_n^{(4)} - m_n^{(3)}m_n^{(1)}\right) + 3(m_n^{(1)})^2\left[m_n^{(2)} - (m_n^{(1)})^2\right]
\]

\[
+ 3m_n^{(1)}\left(m_n^{(2)}m_n^{(1)} - m_n^{(3)}\right)
\leq 3m_n^{(1)}\left(m_n^{(2)}m_n^{(1)} - m_n^{(3)}\right) = 3m_n^{(1)}\sum.
\]
Here (see (2.38))

\[
(2.47) \quad \sum = \sum_{s_1 + s_2 \leq n} \frac{1}{s_1 s_2 s_3} - \sum_{s_1 + s_2 + s_3 \leq n} \frac{1}{s_1 s_2 s_3} = \sum_{s_1 + s_2 \leq n} \frac{(s_1 + s_2 + s_3)^{-1}}{s_1 s_2 s_3} - \sum_{s_1 + s_2 + s_3 > n} \frac{1}{s_1 s_2 s_3} - \frac{1}{s_1 s_2} + \frac{1}{s_1 s_3} + \frac{1}{s_2 s_3} \]

\[
\leq n^{-1} \sum_{s_1 + s_2 \leq n} \frac{1}{s_1 s_2} + 2n^{-1} \sum_{s_1 + s_2 + s_3 > n} \frac{1}{s_1 s_3} + \frac{1}{s_2 s_3} - \frac{1}{s_1} \leq \sum' + \sum''.
\]

Since in \(\Sigma'\), for each \((s_1, s_2)\), \(s_3\) can assume at most \(s_1 + s_2\) values,

\[
(2.48) \quad \sum' \leq n^{-1} \sum_{s_1 + s_2 \leq n} \frac{s_1 + s_2}{s_1 s_2} = 2n^{-1} \sum_{s_1 + s_2 \leq n} \frac{1}{s_1} \leq 2n^{-1} \sum \frac{n}{s} = 2m_n^{(1)};
\]

similarly,

\[
(2.49) \quad \sum'' \leq 2n^{-1} \sum \frac{s_3}{s_1 s_3} = 2n^{-1} \sum \frac{n}{s} = 2m_n^{(1)}.
\]

Hence, (see (2.46)–(2.49)),

\[
(2.50) \quad E_4 \leq 12\left(m_n^{(1)}\right)^2.
\]

Collecting together (2.44), (2.45), and (2.50), we arrive at (2.34) (remember, \(E(C_n) = m_n^{(1)}\)).

The theorem is proven.

Acknowledgment. The authors wish to thank a referee for stimulating discussions of the paper and suggestions regarding the presentation of the results.

References

Received June 29, 1983, work of the first author is partially supported by Sandia National Laboratories, supported by the U.S. Department of Energy under contract DE-AC04-76DP00789.

SANDIA NATIONAL LABORATORY
ALBUQUERQUE, NM 87185

AND

THE OHIO STATE UNIVERSITY
COLUMBUS, OH 43210
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mustafa Agah Akcoglu and Meira Falkowitz</td>
<td>A general local ergodic theorem in L_1</td>
<td>257</td>
</tr>
<tr>
<td>W. Wistar (William) Comfort and Lewis Chandlee Robertson</td>
<td>Cardinality constraints for pseudocompact and for totally dense subgroups of compact topological groups</td>
<td>265</td>
</tr>
<tr>
<td>John Morse Delaurentis and Boris G. Pittel</td>
<td>Random permutations and Brownian motion</td>
<td>287</td>
</tr>
<tr>
<td>José Esteban Galé</td>
<td>Gel’fand theory in algebras of differentiable functions on Banach spaces</td>
<td>303</td>
</tr>
<tr>
<td>Harry Gingold</td>
<td>On the location of zeroes of oscillatory solutions of $y^{(n)} = c(x)y$</td>
<td>317</td>
</tr>
<tr>
<td>Kei Ji Izuchi</td>
<td>Zero sets of interpolating Blaschke products</td>
<td>337</td>
</tr>
<tr>
<td>Mahesh Nerurkar</td>
<td>Ergodic continuous skew product actions of amenable groups</td>
<td>343</td>
</tr>
<tr>
<td>R. Owens</td>
<td>A maximal function characterization of a class of Hardy spaces</td>
<td>365</td>
</tr>
<tr>
<td>Judith Anne Packer</td>
<td>Point spectrum of ergodic abelian group actions and the corresponding group-measure factors</td>
<td>381</td>
</tr>
<tr>
<td>Judith Anne Packer</td>
<td>On the embedding of subalgebras corresponding to quotien actions in group-measure factors</td>
<td>407</td>
</tr>
<tr>
<td>Iain Raeburn and Joseph L. Taylor</td>
<td>The bigger Brauer group and étale cohomology</td>
<td>445</td>
</tr>
<tr>
<td>David Rosen</td>
<td>The Diophantine equation $ax + by = c$ in $\mathbb{Q}(\sqrt{5})$ and other number fields</td>
<td>465</td>
</tr>
<tr>
<td>Mau-Hsiang Shih and Kok Keong Tan</td>
<td>Noncompact sets with convex sections</td>
<td>473</td>
</tr>
<tr>
<td>Lee Barlow Whitt</td>
<td>Codimension two isometric immersions between Euclidean spaces</td>
<td>481</td>
</tr>
<tr>
<td>Rodney Ian Yager</td>
<td>Iwasawa theory for the anticyclotomic extension</td>
<td>489</td>
</tr>
</tbody>
</table>