THE DIOPHANTINE EQUATION $ax + by = c$ IN $\mathbb{Q}(\sqrt{5})$ AND OTHER NUMBER FIELDS

DAVID ROSEN
Solving in rational integers the linear diophantine equation

\[ax + by = c, \quad (a, b)|c, \quad a, b, c, \in \mathbb{Z} \]

is very well known. Let \(d = (a, b) \), and put \(A = a/d, B = b/d, C = c/d \), then equation (1) becomes

\[Ax + By + C, \quad (A, B) = 1, \quad A, B, C, \in \mathbb{Z}. \]

The purpose of this note is to discuss the solutions of this equation when \(A, B, C \) are integers in \(Q(\sqrt{5}) \) and the solutions are integers in \(Q(\sqrt{5}) \).

What makes the discussion interesting is that an algorithm which mimics the continued fraction algorithm that solves the rational integer case can be implemented.

A brief summary of the continued fraction algorithm for the rational case is as follows: To solve (1'): find the regular simple continued fraction for \(A/B \); i.e.

\[
\frac{A}{B} = r_0 + \frac{1}{r_1 + \frac{1}{\ddots + \frac{1}{r_n}}}.
\]

which we write as \(A/B = (r_0; r_1, \ldots, r_n) \). Since \(A/B \) is rational, the continued fraction is finite. The \((m + 1)\)th convergent of a continued fraction is denoted by \(P_m/Q_m = (r_0; r_1 \cdots r_m) \). If \(A/B = P_n/Q_n \) then the penultimate convergent \(P_{n-1}/Q_{n-1} \) provides a solution to \(Ax + By = 1 \) because of the well-known relation.

\[P_n Q_{n-1} - Q_n P_{n-1} = (-1)^{n+1}. \]

It suffices therefore to take \(x = (-1)^{n+1} Q_{n-1}, y = (-1)^n P_{n-1} \). To solve (1) we take \(x = (-1)^{n+1} dCQ_{n-1} \) and \(y = (-1)^{n+1} dCP_{n-1} \).

It is well known that the integers in \(Q(\sqrt{5}) \) have the form \(s + t\lambda \), where \(s, t \in \mathbb{Z} \) and \(\lambda = (1 + \sqrt{5})/2 \). (See Hardy and Wright [1] or Niven and Zuckerman [3] for a complete discussion of this algebraic number field.) The elements in \(Q(\sqrt{5}) \) are of course the quotients of integers in the
field. In order to mimic the solution procedure above we would require a continued fraction development that essentially parallels the ordinary continued fraction representation of real numbers, that is the elements of $Q(\sqrt{5})$ should have a unique finite continued fraction representation and every other real number has a unique infinite continued fraction representation. Such a representation exists and the continued fractions will be referred to as λ_5-fractions [4].

These continued fractions were presented by the author in connection with studies on the Hecke groups [4], and are one example of the more general λ_q-fractions where $\lambda = 2 \cos(\pi/q)$. It was shown in [4], that every finite λ_q-fraction is an element in the algebraic number field $Q(\lambda_q)$, and Leutbecher [2] showed that only in the case $q = 5$, every element in $Q(\sqrt{5}) = Q(\lambda_5)$ has a finite λ_5-fraction. Hence a real number is an element of $Q(\sqrt{5})$ if and only if it has a finite λ_5-continued fraction representation and every real number has a unique λ_5-fraction representation. Thus we will show that the algorithm that solves the rational integer case (which is the case $q = 3$) will work in the $Q(\sqrt{5})$ case.

What are the λ_q-fractions? These are continued fractions of the form

$$r_0 \lambda + \frac{\epsilon_1}{r_1 \lambda + \epsilon_2} + \frac{\epsilon_2}{r_2 \lambda + \epsilon_3} + \cdots$$

where, in general, for fixed q, $\lambda = 2 \cos(\pi/q)$, $q \in Z^+$ and $q \geq 3$, $\epsilon_i = \pm 1$, and $r_i \in Z^+$, $i \geq 1$, $r_0 \in Z$. The continued fraction is developed by a nearest integer algorithm. If ξ is a real number we seek the nearest integral multiple of λ. This means, if $\{\}$ denotes the nearest integer, then we write $\{\xi/\lambda\} = r_0$, where we specify $-1/2 < r_0 - \xi/\lambda < 1/2$; i.e. r_0 is uniquely determined by the inequality.

$$r_0 \lambda - \frac{\lambda}{2} < \xi \leq r_0 \lambda + \frac{\lambda}{2}. \tag{3}$$

Hence $\xi = r_0 \lambda + \epsilon_1/\xi_1$, where it is seen that $\xi_1 = \epsilon_1/(\xi - r_0 \lambda) > 0$, since $\epsilon_1 > 0$ if $r_0 \lambda < \xi$ and $\epsilon_1 < 0$ if $r_0 \lambda > \xi$. If $\xi = n \lambda + \lambda/2 = (n + 1) \lambda - \lambda/2$, then because of inequality (3) $r_0 = n$ and $\epsilon_1 = 1$. Then $r_0 \lambda - \lambda/2 < \xi \leq r_0 \lambda + \lambda/2$ implies $\xi_1 \geq 2/\lambda > 1 > \lambda/2$ and hence $r_1 = \{\xi_1/\lambda\} \geq 1$. Continuing in this way we find that $\xi_m > \lambda/2$ which implies that $r_m \geq 1$ ($m \geq 1$). Henceforth, λ-fraction will refer to λ_5-fraction. The λ-fraction is unique provided that the following few simple rules indicated in [4] are obeyed.
(i) If \(\lambda - 1/r\lambda \) occurs, then \(r \geq 2 \).

(ii) If

\[
\frac{\varepsilon_1}{\lambda - \frac{1}{2\lambda} - \frac{1}{\lambda + \varepsilon_2}} \quad \ldots
\]

occurs, then \(\varepsilon_1 = \varepsilon_2 = 1 \).

We point out that in \(Q(\sqrt{5}) \),

\[
\lambda - \frac{1}{2\lambda} - \frac{1}{\lambda} = \frac{2}{\lambda}.
\]

(iii) If the \(\lambda \)-fraction terminates as

\[
\frac{\varepsilon}{\lambda - \frac{1}{\lambda}} \quad \ldots
\]

then \(\varepsilon = 1 \). In \(Q(\sqrt{5}) \), \(\lambda - 1/\lambda = 1 \), which yields the equation

\[
\lambda^2 - \lambda - 1 = 0.
\]

A \(\lambda \)-fraction satisfying these criteria is called a reduced \(\lambda \)-fraction. Similar criteria will yield unique \(\lambda \)-fractions. Because of (4) the rolled up finite continued fraction produces the quotient of two polynomials in \(\lambda \) which can be reduced to the form

\[
(a + b\lambda)/(c + d\lambda), \quad a, b, c, d \in \mathbb{Z}.
\]

This in turn can be put in the form

\[
(a' + b'\lambda)/c'
\]

by multiplying numerator and denominator by the conjugate of \(c + d\lambda \), which is \((c + d) - d\lambda\). One finds that \(a' = ac + ad - bc, b' = bc - ad, c' = c^2 + cd - d^2 \)—the norm of \(c + d\lambda \).

As observed on p. 550 of [4] consecutive convergents \(P_{n-1}/Q_{n-1} \) and \(P_n/Q_n \) of a \(\lambda \)-fraction satisfy a determinant relation similar to (2):

\[
P_nQ_{n-1} - P_{n-1}Q_n = (-1)^{n-1}\varepsilon_1\varepsilon_2\cdots\varepsilon_n = 1.
\]

Finally we remark that the units in \(Q(\sqrt{5}) \) are \(\lambda^n \) which can be written in terms of consecutive Fibonnaci numbers. If \(F_n \) is the \(n \)th Fibonnaci...
number, then \(\lambda^n = F_{n-1} + F_n \lambda \). This can be proved as follows:

Let \(F_0 = 0, F_1 = 1, F_2 = 1 \) then \(\lambda^1 = 0 + \lambda, \lambda^2 = F_1 + F_2 \lambda = \lambda + 1, \)
which is a consequence of (4). By induction then if \(\lambda^k = F_{k-1} + F_k \lambda \), then

\[
\lambda^{k+1} = F_{k-1} \lambda + F_k \lambda^2 = F_k + (F_{k-1} + F_k) \lambda = F_k + F_{k+1} \lambda,
\]
as desired. If \(n < 0 \) one determines first from (4) that \(1/\lambda = \lambda - 1 \); hence \(\lambda^{-2} = (\lambda - 1)^2 = 2 - \lambda \). By induction, one determines that \(\lambda^{-n} = -F_{n+1} + F_n \lambda \) if \(n \) is odd and \(\lambda^{-n} = F_{n+1} - F_n \lambda \) if \(n \) is even. To show that \(\lambda^n \) is a unit, we observe that the norm of \(F_k + F_{k+1} \lambda \) is \(F_k^2 + F_k F_{k+1} - F_{k+1}^2 \). But the last expression is precisely the determinant relation (2) for the consecutive convergents. \(F_k/F_{k+1}, F_{k+1}/F_{k+2} \) of the regular continued fraction \((1; 1, 1 \cdots) = \lambda \). Thus each \(\lambda^n, n > 0 \), is indeed a unit. For \(n \) negative \(= -m \), the norm \(N(1/\lambda^m) = 1/N(\lambda^m) = \pm 1 \) too, so \(\lambda^n \) is a unit for all integers \(n \). We now state and prove the main theorem.

Theorem 1. Let \(p, q, r \in \mathbb{Z}(\sqrt{5}) \), and suppose that, except for units, \(p, q, r \) are relatively prime. Then the diophantine equation \(px + qy = r \) has integer solutions in \(Q(\sqrt{5}) \). If \(x_0, y_0 \) is a particular solution, then any other solution has the form \(x = x_0 + qt, y = y_0 - pt \). If \((p, q) = d \) and \(d|r \), then

\[
\frac{p}{d} x + \frac{q}{d} y = \frac{r}{d}
\]
is solvable in \(Q(\sqrt{5}) \).

Proof. As in the rational integer case, we first solve \(px + qy = 1 \). This is done by expanding \(p/q \) in its unique \(\lambda \)-fraction. The penultimate convergent will supply the values for \(x \) and \(y \). To solve \(px + qy = r \) multiply the \(x \) and \(y \) values by \(r \).

As in the rational case we note that if a particular solution is \(x_0, y_0 \) then an infinity of solutions is obtained using the usual trick namely putting \(x = x_0 + qt, y = y_0 - pt \), which satisfies the equation for all \(t \in \mathbb{Z}(\lambda) \). Moreover if \(a \) and \(b \) is any solution \(\in \mathbb{Z}(\sqrt{5}) \), i.e., \(pa + qb = r \) then \(a = x_0 + qt, b = y_0 - pt \), for some \(t \). This is clear because from \(pa + qb = r \) and \(px_0 + qy_0 = r \) we obtain \(p(x_0 - a) + q(y_0 - b) = 0 \). Hence \(p(x - a) = -q(y_0 - b) \). Since \((p, q) = 1 \), it follows that \(p|(y_0 - b) \). Thus \(pl = y_0 - b \). But now \(p(x - a) = -qpl \), hence \(x - a = -ql \). This result has a bearing on the Hecke group \(\Gamma(\lambda) \) in determining which solutions to \(px + qy = 1 \) provide a substitution that belongs to \(\Gamma(\lambda) \).

Finally, the last statement of the theorem follows easily from the first statement since \(p/d, q/d, r/d \) are relatively prime.
There is one wrinkle in this method which does not arise in the rational case. The \(\lambda \)-fraction when rolled up and reduced to the form (5) may not be identical with the original fraction unless a suitable unit is factored out from numerator and denominator.

Consider the following example: Solve

\[(8) \quad (3 + 7\lambda)x + (5 - 2\lambda)y = 6 + 5\lambda.\]

One can verify that

\[
\frac{3 + 7\lambda}{5 - 2\lambda} = 5\lambda + \frac{1}{20\lambda - 1} = \frac{\lambda - 1}{3\lambda}.
\]

The right side, when rolled up and reduced using (4), becomes

\[
\frac{487 + 788\lambda}{97\lambda + 60}.
\]

The numerator is \((34 + 55\lambda)(3 + 7\lambda)\) and the denominator is

\[(34 + 55\lambda)(5 - 2\lambda), \quad (55\lambda + 34 = \lambda^{10}).\]

The penultimate convergent is

\[
5\lambda + \frac{1}{20\lambda - 1} = \frac{196\lambda + 100}{20\lambda + 19}.
\]

Hence \(x = (20\lambda + 19)\) and \(y = -(196\lambda + 100)\) solves \((487 + 788\lambda)x + (97\lambda + 60)y = 1\). It follows that \(x' = (20\lambda + 19)(5\lambda + 6) = 214 + 315\lambda\) and \(y' = -(196\lambda + 100)(5\lambda + 6) = -(2656\lambda + 1580)\) solves \((487 + 788\lambda)x' + (97\lambda + 60)y' = 6 + 5\lambda\). Thus to solve (8) we incorporate the common unit factor \((34 + 55\lambda)\) with \(x'\) and \(y'\). Then \((3 + 7\lambda)x'' + (5 - 2\lambda)y'' = 6 + 5\lambda\) has as solution

\[
x'' = (214 + 315\lambda)(34 + 55\lambda) = 24601 + 39805\lambda
\]
\[
y'' = -(1580 + 2656\lambda)(34 + 55\lambda) = -(199800 + 3223284\lambda).
\]

Knowing one solution thus gives all solutions; \(x = x'' + qt, \quad y = y'' - pt\) where \(t \in \mathbb{Z}(\sqrt{5})\) and we assume that \((p, q) = 1)\.

It is interesting to observe here that solving one diophantine equation automatically solves a class of equations. Recalling that the units \(\lambda^n\) can be written as integers in \(\mathbb{Z}(\sqrt{5})\) and noting that

\[
\lambda^n = (F_{n-1} + F_n\lambda) \text{ times } \lambda^{-n} \quad (= F_{n+1} - F_n\lambda \text{ or } -F_{n+1} + F_n\lambda) = 1
\]
then a solution to $px + qy = n$ provides a solution to $(F_{n-1} + F_n\lambda)px' + (F_{n-1} + F_n\lambda)qy' = n$. Clearly, the solution is $x' = (F_{n+1} - F_n\lambda)x$, $y' = (F_{n+1} - F_n\lambda)y$ or $x' = (-F_{n+1} + F_n\lambda)x$, $y' = (-F_{n+1} + F_n\lambda)y$, depending on the parity of n. As an example, the equation

$$(7 + 10\lambda)x' + (-2 + 3\lambda)y' = 6 + 5\lambda,$$

which is

$$\lambda(3 + 7\lambda)x + \lambda(5 - 2\lambda)y = 6 + 5\lambda,$$

is solved by $x' = 15204 + 24601\lambda$, $y' = -(123484 + 199800\lambda)$. This solution is obtained from (9) by dividing x'' and y'' by λ, i.e., multiplying by $\lambda - 1$.

The above procedures could be extended to other number fields if a suitable continued fraction representation were available. A continued fraction representation for the number fields $Q(2\cos(\pi/q))$ similar to the foregoing was developed in [4], but as Wolfart showed [5] the only possible q's for which all the rational elements in $Q(\lambda_q)$ have a finite λ_q-fraction are $q = 3, 5, 9$. It appears therefore that it is true only for the fields $q = 3$ and $q = 5$; while for $q = 9$ the questions is still open. For other values of q, equation (1) can be solved in $Z(\lambda_q)$ provided a/b has a finite λ_q-fraction. The formal statement is:

Theorem 2. If $\lambda_q = 2\cos(\pi/q)$, q an integer ≥ 4, then if $a, b \in Z(\lambda_q)$, then the diophantine equation $ax + by = 1$ has solutions in $Z(\lambda_q)$ if and only if $(a, b) = d$ and $d|c$, d is not a unit; and if a/b has a finite λ_q-fraction representation.

For $q = 4$, $\lambda_4 = \sqrt{2}$, and for $q = 6$, $\lambda_6 = \sqrt{3}$. The finite λ_4- and λ_6-fractions when rolled up have the form $a\sqrt{r}/b$ or $a/b\sqrt{r}$, $r = 2, 3$. Thus not all elements of $Q(\sqrt{r})$ are realizable as finite λ_4 or λ_6 continued fractions. However, consider

$$7x + 3\sqrt{2}y = 4 + 9\sqrt{2}.$$}

We find the λ_4 continued fraction for $7/3\sqrt{2}$ which turns out to be $7/3\sqrt{2} = \sqrt{2} + 1/3\sqrt{2}$. Clearly

$$\frac{p_2}{q_2} = \frac{7}{3\sqrt{2}}, \quad \frac{p_1}{q_1} = \frac{\sqrt{2}}{1},$$

and $7 \cdot 1 - \sqrt{2} \cdot 3\sqrt{2} = 1$ so $x = 1$ and $y = -\sqrt{2}$ solves $7x + 3\sqrt{2}y = 1$.

Hence $x' = 4 + 9\sqrt{2}$, $y' = -\sqrt{2}(4 + 9\sqrt{2}) = -(18 + 4\sqrt{2})$ solves the original equation and of course there are an infinite of solutions of the
form \(x'' = 4 + 9\sqrt{2} + (18 + 4\sqrt{2})t, \quad y'' = -(18 + 4\sqrt{2}) + (4 + 9\sqrt{2})t, \)
\(t \in \mathbb{Z}(\lambda_4). \)

This same procedure will work for any of the algebraic fields \((2\cos(\pi/q)).\) Examples can be easily found by first taking a finite \(\lambda_q\)-fraction and using the numerator and denominator for the coefficients. For example in \(\lambda_7,\) compute

\[
2\lambda + \frac{1}{\lambda - 1} = 2\lambda + \frac{3\lambda}{3\lambda^2 - 1} = \frac{6\lambda^3 + \lambda}{3\lambda^2 - 1}.
\]

In \(\lambda_7,\)

\[
\lambda - \frac{1}{\lambda - 1} = 1
\]

so the rational elements will be of the form

\[
\frac{a\lambda^2 + b\lambda + c}{d\lambda^2 + e\lambda + f}
\]

The equation \((6\lambda^3 + \lambda)x + (3\lambda^2 - 1)y = 1\) is solved by \(x = 2\lambda, \ y = -(2\lambda^2 + 1),\) since

\[
(6\lambda^3 + \lambda)2\lambda + (3\lambda^2 - 1) - (2\lambda^2 + 1) = 6\lambda^4 + \lambda^2 - (6\lambda^4 + \lambda^2 - 1) = 1.
\]

We remark that there are other ways of solving the linear diophantine equation in \(Q(\sqrt{5})\), but the algorithm presented above bears such a striking similarity to the usual algorithm for the rational case that it gives \(Q(\sqrt{5})\) a special status. The author knows of no other algebraic field in which a continued fraction can be similarly developed.

It seems that Pell's equation \((x^2 - dy^2 = 1)\) should also be solvable in \(Q(\sqrt{5})\) but there are still some difficulties in showing that \(\sqrt{d}\) is a periodic \(\lambda_5\)-function. However, if \(\sqrt{d}\) is periodic then Pell's equations can be solved as in the rational case

References

Received August 4, 1983 and in revised form July 16, 1984.

Swarthmore College
Swarthmore, PA 19081
PACIFIC JOURNAL OF MATHEMATICS
EDITORS
V. S. VARADARAJAN (Managing Editor)
University of California
Los Angeles, CA 90024
CHARLES R. DEPRIMA
California Institute of Technology
Pasadena, CA 91125
R. FINN
Stanford University
Stanford, CA 94305
C. C. MOORE
University of California
Berkeley, CA 94720
HERMANN FLASCHKA
University of Arizona
Tucson, AZ 85721
RAMESH A. GANGOLLI
University of California
Berkeley, CA 94720
H. SAMELSON
Stanford University
Stanford, CA 94305
R. ARENS
University of Arizona
Tucson, AZ 85721
B. H. NEUMANN
Stanford University
Stanford, CA 94305
ROBION KIRBY
University of California
Berkeley, CA 94720
H. SAMUELSON
Stanford University
Stanford, CA 94305
R. FINN
Stanford University
Stanford, CA 94305
E. F. BECKENBACH
University of California
Berkeley, CA 94720
F. WOLF
University of California
Berkeley, CA 94720
K. YOSHIDA
University of California, San Diego
La Jolla, CA 92093
ASSOCIATE EDITORS
R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA
(1906–1982)
SUPPORTING INSTITUTIONS
UNIVERSITY OF ARIZONA
UNIVERSITY OF CALIFORNIA
UNIVERSITY OF BRITISH COLUMBIA
UNIVERSITY OF CALIFORNIA
UNIVERSITY OF SOUTHERN CALIFORNIA
UNIVERSITY OF HAWAII
UNIVERSITY OF MONTANA
STANFORD UNIVERSITY
UNIVERSITY OF NEVADA, RENO
UNIVERSITY OF OREGON
NEW MEXICO STATE UNIVERSITY
UNIVERSITY OF OREGON
OREGON STATE UNIVERSITY
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF OREGON
STANFORD UNIVERSITY
UNIVERSITY OF OREGON
UNIVERSITY OF OREGON
THE PACIFIC JOURNAL OF MATHEMATICS
PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Copyright © 1985 by Pacific Journal of Mathematics

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph must be capable of being used separately as a synopsis of the entire paper. In particular it should contain no bibliographic references. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California 90024.

There are page-charges associated with articles appearing in the Pacific Journal of Mathematics. These charges are expected to be paid by the author's University, Government Agency or Company. If the author or authors do not have access to such Institutional support these charges are waived. Single authors will receive 50 free reprints; joint authors will receive a total of 100 free reprints. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $190.00 a year (5 Vols., 10 issues). Special rate: $66.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics at P.O. Box 969, Carmel Valley, CA 93924 (ISSN 0030-8730) publishes 5 volumes per year. Application to mail at Second-class postage rates is pending at Carmel Valley, California, and additional mailing offices. Postmaster: Send address changes to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Copyright © 1985 by Pacific Journal of Mathematics
Mustafa Agah Akcoglu and Meira Falkowitz (Soshniak), A general local ergodic theorem in L_1 .. 257
W. Wistar (William) Comfort and Lewis Chandlee Robertson, Cardinality constraints for pseudocompact and for totally dense subgroups of compact topological groups 265
John Morse Delaurentis and Boris G. Pittel, Random permutations and Brownian motion .. 287
José Esteban Galé, Gel’fand theory in algebras of differentiable functions on Banach spaces .. 303
Harry Gingold, On the location of zeroes of oscillatory solutions of $y^{(n)} = c(x)y$... 317
Kei Ji Izuchi, Zero sets of interpolating Blaschke products 337
Mahesh Nerurkar, Ergodic continuous skew product actions of amenable groups ... 343
R. Owens, A maximal function characterization of a class of Hardy spaces ... 365
Judith Anne Packer, Point spectrum of ergodic abelian group actions and the corresponding group-measure factors 381
Judith Anne Packer, On the embedding of subalgebras corresponding to quotient actions in group-measure factors 407
Iain Raeburn and Joseph L. Taylor, The bigger Brauer group and étale cohomology ... 445
David Rosen, The Diophantine equation $ax + by = c$ in $Q(\sqrt{5})$ and other number fields ... 465
Mau-Hsiang Shih and Kok Keong Tan, Noncompact sets with convex sections ... 473
Lee Barlow Whitt, Codimension two isometric immersions between Euclidean spaces ... 481
Rodney Ian Yager, Iwasawa theory for the anticyclotomic extension 489