ON BANACH SPACES HAVING A RADON-NIKODYM DUAL

C. Debiève
ON BANACH SPACES HAVING A RADON-NIKODYM DUAL

C. DEBIEVE

The purpose of this paper is to prove a new characterisation of Banach spaces having a Radon-Nikodym dual, namely that if E is a Banach space, then E' has the Radon-Nikodym property if and only if there exists an equivalent norm on E such that for each E-valued measure m of bounded variation, there exists an E'-valued function f with norm 1 $|m|$-a.e. such that $m(A) = \int_A f \, dm$ for each A in \mathcal{A}.

1. Introduction. In [1], we have proved that if E is a Banach space, m an E-valued measure defined on a σ-algebra \mathcal{A} of subsets of a set T, with bounded variation $|m|$, and if ε is any positive number, then there exists an E'-valued strongly measurable function f defined on the set T, such that $\|f\| < 1 + \varepsilon$ and $|m|(A) = \int_A f \, dm$ for each A in \mathcal{A}.

A very natural question which arises is the following: Does there always exist an E'-valued strongly measurable function with norm 1 such that $|m|(A) = \int_A f \, dm$ for each A in \mathcal{A}? Following the example given in [1], this seems to be possible.

Finally, an answer to that question was provided by F. Delbaen who proved the following unpublished theorem: If E is a Banach space, the following are equivalent:

(a) E' has the Radon-Nikodym property
(b) For each equivalent norm on E, for each E-valued measure m of bounded variation defined on a σ-algebra \mathcal{A} of subsets of a set T, there exists a $|m|$-strongly measurable function f from T to E' such that $\|f\| = 1$ $|m|$-a.e. and $|m|(A) = \int_A f \, dm$ for each A in \mathcal{A}.

The purpose of this paper is to provide a positive answer to the following question: Is it possible to weaken assertion (b) by requiring the existence of an equivalent norm on the space having the property instead of assuming it for each equivalent norm on E.

2. Proof of the theorem. Before proving our theorem let us recall the Mazur density theorem and prove two lemmas.
THEOREM (Mazur density theorem [5] p. 171). If \(E \) is a separable Banach space, then for each equivalent norm on \(E \), the set of smooth points of the unit sphere of \(E \) is dense in the unit sphere.

Lemma 1. Let \(E \) be a Banach space such that \(E' \) is not separable, \(B \) a dense subset of \(S(E) = \{ x| x \in E, \|x\| = 1 \} \) and \(\varepsilon > 0 \). If we denote by \(\Omega \) the first uncountable ordinal and by \(S \) the set \(\{ i|i < \Omega \} \), then for each \(i \) in \(S \), there exists \(x_i \) in \(B \) and \(x'_i \) in \(S(E') \), the unit sphere of \(E' \) such that \(x'_i(x_i) = 1 \) and \(\|x'_i - x'_j\| > 1 - \varepsilon \) if \(i \neq j \).

Proof. Let \(i \) in \(S \) and suppose that the families \((x_j) \) and \((x'_j) \) are chosen for \(j < i \).

As \(E' \) is not separable, \(\bigcap_{j<i} \text{Ker} \ x'_j \neq \{0\} \).

Let \(x \in S(E) \cap \bigcap_{j<i} \text{Ker} \ x'_j \) and choose \(x_i \) in \(B \) such that \(\|x - x_i\| < \varepsilon \). Now, if we choose \(x'_i \) in \(S(E') \) such that \(x'_i(x_i) = 1 \) it is easy to see that we are done.

\[\|x'_i - x'_j\| > 1 - \varepsilon \] follows from the fact that if \(j < i \), \((x'_i - x'_j)(x_i) > 1 - \varepsilon \).

Lemma 2. For the same set \(S \) as in Lemma 1, there exists a positive scalar measure \(\mu \) on the \(\sigma \)-algebra \(\mathcal{P}(S) \) of the subsets of \(S \) such that \(\mu(S) = 1 \) and \(\mu(A) = 0 \) if \(A \) is countable.

Proof. Let \(i \) in \(S \) and define \(\mu_i \) as the evaluation measure at the point \(i \). As the set of measures on the \(\sigma \)-algebra of the subsets of \(S \) is the dual of the space of continuous bounded functions on \(S \) for a locally convex topology, the family of measures has a cluster point which is a measure satisfying our requirement.

We are now ready for the proof of the following

Theorem. For any Banach space \(E \), the following are equivalent:

1. \(E' \) has the Radon-Nikodym property.
2. For each equivalent norm on \(E \), for each \(E \)-valued measure \(m \) of bounded variation defined on a \(\sigma \)-algebra \(\mathcal{A} \) of subsets of a set \(T \), there exists a function \(f \) from \(T \) into \(E' \) \(|m| \)-strongly measurable such that \(\|f(t)\| = 1 \) \(|m| \)-a.e. and \(m(A) = \int_A f \ dm \) for each \(A \) in \(\mathcal{A} \).
3. There exists an equivalent norm on \(E \) such that for each \(E \)-valued measure \(m \) of bounded variation defined on a \(\sigma \)-algebra \(\mathcal{A} \) of subsets of a set \(T \), there exists a function \(f \) from \(T \) into \(E' \) \(|m| \)-strongly measurable such that \(\|f(t)\| = 1 \) \(|m| \)-a.e. and \(m(A) = \int_A f \ dm \) for each \(A \) in \(\mathcal{A} \).
Proof. (1) ⇒ (2) It follows from the theorem we proved in [1] that for each integer \(n \), there exists a function \(f_n \) from \(T \) into \(E' \) such that \(f_n \) is \(|m|-\)strongly measurable, \(1 \leq \|f_n(t)\| < 1 + 1/n \) and \(|m|(A) = \int_A f_n dm \) for each \(A \) in \(\mathcal{A} \).

Let \(G \) be the Banach subspace of \(E' \) generated by \(\bigcup_{n=1}^{\infty} f_n(T) \).

As \(G \) is separable and \(E' \) has Radon-Nikodym property, there exists a Banach space \(F \) such that \(F' \) is separable and \(G \subseteq F' \) ([3]). Let \(f \) be a pointwise \(\sigma(F', F) \)-cluster point of the sequence \((f_n) \). \(f \) is \(G \)-valued, thus \(E' \)-valued.

It is clear that \(\|f\| \leq 1 \) and that \(f \) is \(\sigma(F', F) \)-measurable. As \(|m|(A) = \int_A f dm \) for each \(A \) in \(\mathcal{A} \), if we prove that \(f \) is strongly measurable, the norm of \(f \) will be greater than 1 and our assertion will be proved.

Let \(m_0 \) from \(\mathcal{A} \) into \(F' \) defined by \(m_0(A)(y) = \int_A \langle f, y \rangle d|m| \).

It is clear that \(m_0 \) is a measure with finite variation and that \(|m_0| = |m| \).

As \(F \) has the Radon-Nikodym property, there exists a measurable function \(g \) from \(T \) into \(F' \) such that \(m_0(A) = \int_A g d|m| \) for each \(A \) in \(\mathcal{A} \).

It follows that if \(y \in F \), \(m_0(A)(y) = \int_A \langle g, y \rangle d|m| \) which shows that \(\langle g, y \rangle = \langle f, y \rangle, |m|-\text{a.e.} \) for each \(y \) in \(F \).

As \(F \) is separable, it follows that \(f = g \ |m|-\text{a.e.} \) and that \(f \) is strongly measurable which proves the first assertion.

As (2) ⇒ (3) is obvious, it remains to show that

(3) ⇒ (1) It is easy to prove that if property (3) is satisfied for \(E \) it is also satisfied for each Banach subspace of \(E \). Now we have to prove that each separable subspace of \(E \) has a separable dual, we only have to prove that if a separable Banach space satisfies (3), it has a separable dual.

Let us suppose that there exists a separable Banach space \(E \) satisfying property (3) and such that \(E' \) is not separable. Let \(B \) be the set of smooth points of the unit sphere \(S(E) \) of \(E \) which is dense in \(S(E) \) by Mazur density theorem, \(\varepsilon = 1/4 \) and apply Lemma 1.

We define the function \(f \) from \(S \) to \(E \) by \(f(i) = x_i \). If \(\mathcal{A} \) is defined as the set of inverse images by \(f \) of the open subsets of \(S(E) \), the function \(f \) is strongly measurable. Let us choose on \(\mathcal{A} \) a positive scalar measure \(\mu \) such that \(\mu(S) = 1 \) and \(\mu(A) = 0 \) if \(A \) is countable. Such a \(\mu \) exists by Lemma 2. Now we define \(m \) from \(\mathcal{A} \) to \(E \) by \(m(A) = \int_A f d\mu \).

\(m \) is clearly a measure of bounded variation and \(|m| = \mu \). So there exists a function \(g \) from \(S \) into \(E' \) which is \(\mu \)-strongly measurable, \(\|g\| = 1 \) \(\mu \)-a.e. and \(\mu(A) = \int_A g dm \) for each \(A \) in \(\mathcal{A} \).

It follows that \(\mu(A) = \int_A \langle f, g \rangle d\mu \) for each \(A \) in \(\mathcal{A} \) and that \(\langle f, g \rangle = 1 \) \(\mu \)-a.e.

Proof. (1) ⇒ (2) It follows from the theorem we proved in [1] that for each integer \(n \), there exists a function \(f_n \) from \(T \) into \(E' \) such that \(f_n \) is \(|m|-\)strongly measurable, \(1 \leq \|f_n(t)\| < 1 + 1/n \) and \(|m|(A) = \int_A f_n dm \) for each \(A \) in \(\mathcal{A} \).
So there exists a μ-negligible subset N of S such that $g(i)(f(i)) = 1$ if $i \notin N$ and $g(S \setminus N)$ is separable. If $i \notin N$, $g(i)(f(i)) = g(i)(x_i) = 1$.

As x_i is a smooth point and $\|g(i)\| = 1$, $g(i) = x_i$.

It follows that $\|g(i) - g(j)\| \geq 1 - \epsilon = 3/4$ for $i \neq j$ in $S \setminus N$ which shows that $g(S \setminus N)$ is discrete.

As it is separable, it has to be countable. So $S \setminus N$ has to be countable which is impossible.

Acknowledgment. The author would like to express his deep gratitude to Professor D. H. Tucker for many helpful conversations during the preparation of this paper while the author was in the mathematical department of the University of Utah, Salt Lake City, U.S.A.

REFERENCES

Received March 10, 1984.
Philip Marshall Anselone and Mike Treuden, Regular operator approximation theory .. 257
Giuseppe Baccella, Semiprime \(\aleph\)-QF3 rings .. 269
Earl Robert Berkson and Thomas Alastair Gillespie, The generalized M. Riesz theorem and transference ... 279
Joachim Boidol, A Galois-correspondence for general locally compact groups .. 289
Joseph Eugene D’Atri, Josef Dorfmeister and Yan Da Zhao, The isotropy representation for homogeneous Siegel domains ... 295
C. Debiève, On Banach spaces having a Radon-Nikodým dual 327
Michael Aaron Freedman, Existence of strong solutions to singular nonlinear evolution equations .. 331
Francisco Jose Freniche, Grothendieck locally convex spaces of continuous vector valued functions .. 345
Hans-Peter Künzi and Peter Fletcher, Extension properties induced by complete quasi-uniformities .. 357
Takaši Kusano, Charles Andrew Swanson and Hiroyuki Usami, Pairs of positive solutions of quasilinear elliptic equations in exterior domains 385
Angel Rafael Larotonda and Ignacio Zalduendo, Spectral sets as Banach manifolds .. 401
J. Martínez-Maurica and C. Pérez García, A new approach to the Kreǐn-Milman theorem .. 417
Christian Pommerenke, On the boundary continuity of conformal maps 423
M. V. Subba Rao, Some Rogers-Ramanujan type partition theorems 431
Stephen Edwin Wilson, Bicontactual regular maps .. 437
Jaap C. S. P. van der Woude, Characterizations of (H)PI extensions 453
Kichoon Yang, Deformation of submanifolds of real projective space 469
Subhashis Nag, Errata: “On the holomorphy of maps from a complex to a real manifold” .. 493