Let (Ωi,Σi,μi) be σ-finite
measure spaces, i = 1,2, and let E be a Hilbert space. If the Bochner spaces
Lp(Ω1,Σ1,μ1,E) and Lp(Ω2,Σ2,μ2,E) are nearly isometric, for either p = 1 or
p = ∞, then L1(Ω1,Σ1,μ1,E) is isometric to L1(Ω2,Σ2,μ2,E) and hence
L∞(Ω1,Σ1,μ1,E) is isometric to L∞(Ω2,Σ2,μ2,E).