ONE-DIMENSIONAL ALGEBRAIC FORMAL GROUPS

ROBERT COLEMAN
ONE-DIMENSIONAL ALGEBRAIC FORMAL GROUPS

ROBERT F. COLEMAN

Let K be an algebraically closed field of characteristic zero. We shall call an element of $K[[x_1, \ldots, x_n]]$ algebraic if it is algebraic over $K(x_1, \ldots, x_n)$. Thus a one-dimensional algebraic formal group is an element $F \in K[[x_1, x_2]]$ such that F is a formal group and F is algebraic.

As is well known, such formal groups arise from one-dimensional algebraic groups. Our intention is to show that this is the only way they arise. All formal groups mentioned in this note shall be one-parameter formal groups.

DEFINITION. Two algebraic formal groups $F, F' \in K[[x_1, x_2]]$ are said to be algebraically isomorphic if there exists an algebraic element $f \in xK[[x]]$ such that $f \neq 0$ and

$$f(F(x_1, x_2)) = F'(f(x_1), f(x_2)).$$

It is easy to see that there exists a unique element $f^* \in xK[[x]]$ such that $f \circ f^* = x$. It then follows that

$$f^*F'(x_1, x_2) = F(f^*(x_1), f^*(x_2))$$

and that f^* is algebraic.

Now suppose $(X, e, +)$ is a one-dimensional algebraic group over K. Let $z \in K(X)$ be a local parameter at e. Let $\rho_1, \rho_2 : X \times X \to X$ be the natural projections. Then $\{z \circ \rho_1, z \circ \rho_2\}$ is a set of local parameters at $e \times e$ in $X \times X$, and so there exists a unique power series $H(x, y) \in K[[x, y]]$ such that

$$H(z \circ \rho_1, z \circ \rho_2) = z(\rho_1[+] \rho_2)$$

as elements of the complete local ring at $e \times e$ on $X \times X$. It is easy to see that H is an algebraic formal group. We shall call such a formal group a formal algebraic group.

PROPOSITION A. Every algebraic formal group is algebraically isomorphic to a formal algebraic group.
We will prove a stronger statement than Proposition A. We call a differential \(\omega \in K[[x]] dx \) algebraic if \(\omega/dx \) is an algebraic element of \(K[[x]] \). If \(H(x, y) \) is a formal group and

\[
g(x) = \frac{d}{dy} H(x, y) \bigg|_{y=0},
\]

then \(g(0) = 1 \), and

\[
\omega = g dx
\]

is the invariant differential of \(H \). If \(H \) is an algebraic, then so is \(\omega \). We will prove

Proposition B. Let \(\omega \) be an algebraic differential. Suppose that there exist nonzero algebraic elements \(f_1, f_2 \) of \(xK[[x]] \) such that

\[
f_1^*(\omega) = af_2^*(\omega)
\]

where \(a \in \mathbb{C}^* \), \(a \) is not a root of unity. Then there exist a formal algebraic group with invariant differential \(\omega' \) and an algebraic element \(u \) of \(K[[x]] \) such that

\[
eu^*(\omega') = \omega
\]

where \(e = \text{Res}_0(\omega/x) \).

To deduce Proposition A from Proposition B, let \(F \) be an algebraic formal group, \(\omega \) its invariant differential, \(f_2(x) = x, f_1(x) = F(x, x) \). Then

\[
f_1^*(\omega) = 2\omega = 2f_2^*(\omega).
\]

It follows that there exists a formal algebraic group \(H \) with invariant differential \(\omega' \) and an algebraic element \(g \in xK[[x]] \) such that

\[
g^*(\omega') = \omega.
\]

We claim

\[
g(F(x, y)) = H(g(x), g(y)).
\]

Indeed, if \(\lambda, \lambda' \in xK[[x]] \), \(d\lambda = \omega, d\lambda' = \omega' \), then (1) implies \(\lambda' \circ g = \lambda \). On the other hand,

\[
\lambda F(x, y) = \lambda(x) + \lambda(y)
\]

\[
\lambda' H(x, y) = \lambda'(x) + \lambda'(y),
\]
so that
\[gF(x, y) = \lambda' \circ \lambda F(x, y) = \lambda' (\lambda(x) + \lambda(y)) \]
\[= H(\lambda' \circ \lambda(x) + \lambda'(\lambda(y))) = H(g(x), g(y)) \]
as required.

Proof of Proposition B. Let \(P^1 \) denote the projective line over \(K \) and regard \(x \) as the standard parameter on \(P^1 \). In doing this we will identify \(K[[x]] \) with the formal completion of the ring of functions on \(P^1 \) regular at 0, \(\mathcal{O}_{P^1,0} \).

Let \(f_0 = \omega / dx \). Then for \(i = 0, 1, 2 \) there exist complete pointed curves \((X_i, e_i) \) over \(K \) together with morphisms
\[x_i, \tilde{f}_i: Y_i \to P^1 \]
such that \(x_i \) is a local uniformizing parameter at \(e_i \) and \(x_i \circ f_i \) is the formal expansion of \(\tilde{f}_i \) in \(x_i \) at \(e_i \). In other words, \(x_i \circ f_i \) is the image of \(f_i \) in \(\mathcal{O}_{Y_i, e_i} \).

Now set \(\tilde{\omega} = f_0 \, dx_0 \in \Omega^1_{Y_0/k} \). Also note that \(f_i(e_i) = 0 \) as \(f_i(0) = 0 \), \(i = 1, 2 \). Let \((Z_i, e_i') \) denote the fiber product of \((Y_0, e_0) \) and \((Y_i, e_i) \) over \((P^1, 0) \) with respect to the morphisms \(x_0 \) and \(\tilde{f}_i, i = 1, 2 \). Thus \((Z_i, e_i') \) fits into a commutative diagram
\[
\begin{array}{ccc}
(Z_i, e_i') & \xrightarrow{y_i} & (Y_i, e) \\
\downarrow \tilde{f}_i & & \downarrow f_i \\
(Y_0, e_0) & \xrightarrow{x_0} & (P^1, 0).
\end{array}
\]
Moreover, \((x_i \circ y_i) \circ f_i \circ \omega \) is the formal expansion of \(\tilde{f}_i \circ \tilde{\omega} \) at \(e_i \) in \(x_i \circ y_i \).

Now let \((W, e) \) denote the fiber product of \((Z_1, e_1') \) and \((Z_2, e_2') \) with respect to the morphisms \(x_1 \circ y_1 \) and \(x_2 \circ y_2 \). Thus we have a commutative diagram
\[
\begin{array}{ccc}
(W, e) & \xrightarrow{z_2} & (Z_2, e_2') \\
\downarrow z_1 & & \downarrow x_2 \circ y_2 \\
(Z_1, e_1) & \xrightarrow{x_1 \circ y_1} & (P^1, 0).
\end{array}
\]
Let \((W^c, e) \) denote the connected component of \((W, e) \) passing through \(e \). Let
\[\tilde{f}_i: (W^c, e) \to (Y_0, e_0) \]
denote the restriction of \(\tilde{f}_i \circ z_i \) to \(W^c \). Then
\[(x_i \circ y_i \circ z_i) \circ f_i \circ \omega \]
is the formal expansion of $\hat{f}_1^*\omega$ at e in $x_i \circ y_i \circ z_i$. Since $x_1 \circ y_1 \circ z_1 = x_2 \circ y_2 \circ z_2$, it follows from the hypothesis that

$$\hat{f}_1^*\omega = af^*_2\omega.$$

Taking $X_1 = X_0, X_2 = W^c$ and $\omega_1 = \omega$ we see that Proposition B follows from:

Proposition C. Let X_1, X_2 be two curves. Let ω_1 be a nonzero differential on X_1 and f_1, f_2 two nonconstant morphisms from X_2 to X_1 such that

$$(2) \quad f_1^*(\omega_1) = af_2^*(\omega_1)$$

for some $a \in K^*,$ a not a root of unity. Then there exists a one-dimensional algebraic group G with invariant differential ω, and a morphism $f: X_1 \to G$ such that

$$f^*(\omega) = \omega_1.$$

Proof. For a curve C let \bar{C} denote its complete nonsingular model. Let $\omega_2 = f_2^*(\omega_1)$. Let S_i denote the set of poles of ω_i on \bar{X}_i. Clearly, $|S_1| \leq |S_2|$, $|S_i|$ denotes the order of S_i. We also claim:

$$g(X_1) < g(X_2) \quad \text{or} \quad g(X_2) \leq 1$$

where $g(X_i)$ denotes the genus of X_i. Indeed, if this is not the case, then by the Hurwitz genus formula we see that $g(X_1) = g(X_2) > 1$ and $1 = \deg(f_1) = \deg(f_2)$, but then $f_i: \bar{X}_2 \to \bar{X}_1$ is birational (f_i is the "lifting" of f_i), so that $\alpha = f_2^{-1} \circ f_1$ is an automorphism of X_2. But α is of finite order since $g(X_2) > 1$. On the other hand, the hypotheses of the lemma imply

$$\alpha^*(\omega_2) = a\omega_2.$$

Since a is not a root of unity, we obtain a contradiction, so we have our claim.

We also claim that there exists a curve X_0 with a differential ω_0 and two morphisms $g_1, g_2: X_1 \to X_0$ such that $g_2^*(\omega_0) = \omega_1$ and $g_1^*(\omega_0) = a\omega_2^*(\omega_0)$. Thus (X_0, ω_0) satisfies the same hypotheses as (X_1, ω_1), so once we establish this claim, we will be able to use induction to suppose that $|S_1| = |S_2|$ and $g(X_2) \leq 1$.

For the results on generalized Jacobians used below, see [S].

Proof of Claim. Without loss of generality X_i is nonsingular, ω_i has no poles on X_i, and $f_i X_2 = X_1$, for $i = 1, 2$.

Let $i = 1$ or 2 in the following: Let M_i denote the polar divisor of ω_i. Let J_i denote the generalized Jacobian of X_i corresponding to M_i. There exists a unique invariant differential v_i on J_i and an embedding of X_i in J_i (as $\omega_i \neq 0$) well defined up to translation such that ω_i is the pullback of v_i to X_i. Henceforth we will view X_i as a subvariety of J_i. From the functoriality of generalized Jacobians there exists a canonical affine transformation

$$f_i': J_2 \to J_1$$

whose restriction to X_2 is f_i. Let T_i denote translation on J_2 by $[-] f_i'(0)$ where $[-]$ denotes inversion on J_1. Set $f_i'' = T_i \circ f_i'$. Then f_i'' is a homomorphism from J_2 to J_1. It follows that

$$(f_i'')^* v_1 = a (f_2'')^* v_1 = av_2.$$

There also exists a homomorphism $h: J_1 \to J_2$ such that

$$f_2'' \circ h = [d]$$

where d denotes the degree of f_2 and $[d]$ denotes multiplication by d on J_1. Let

$$e = (f_1'' \circ h \circ f_2'' - [d] \circ f_1'') : J_2 \to J_1.$$

Then e is a homomorphism and

$$e^* v_1 = (f_2'')^* h^* (f_i'')^* v_1 - g_1^* [d] v_1 = a (f_2'')^* h^* v_2 - d g_1^* v_1 = a (f_2'')^* h^* v_2 - d a v_2 = a (f_2'')^* [d] v_1 - d a v_2 = 0.$$

Let A denote the quotient of J_1 by $e(J_2)$ and $\rho: J_1 \to A$ the quotient morphism. Since $e^* v_1 = 0$, it follows that there exists an invariant differential v_0 on A such that $\rho^* v_0 = v_1$. Let

$$X_0 = (\rho \circ [d] \circ T_1)(X_1) \subseteq A.$$

As $\rho \circ e = 0$ we have $\rho \circ [d] \circ f_i'' = \rho \circ f_i'' \circ h \circ f_2''$. Hence as $f_i'(X_2) = f_2'(X_2) = X_v$,

$$X_0 = (\rho \circ [d] \circ T_1 \circ f_i')(X_2) = (\rho \circ f_i'' \circ h \circ f_2')(X_2) = (\rho \circ f_i'' \circ h \circ T_2)(X_1).$$

Now let $g_1, g_2: X_1 \to X_0$ denote the restrictions of

$$\rho \circ f_i'' \circ h \circ T_2 \quad \text{and} \quad \rho \circ [d] \circ T_1.$$
respectively to X_1. Also let ω_0 denote the restriction of v_0/d to X_0. Since $(\rho \circ f'' \circ h)^* v_0 = (f'' \circ h)^* v_1 = \text{ad} v_1 = a(\rho \circ [d])^* v_0$ it follows that
\[g_1^* \omega_0 = a g_2^* \omega_0 = a \omega_1 \]
and so we have our claim. Thus by induction we may suppose
\[g(X_1) = g(X_2) \leq 1 \quad \text{and} \quad |S_2| = |S_1|. \]
We also have $f_i^{-1}(S_1) = S_2$, so that f_i induces a bijection from S_2 onto S_1.

Case 1. $g(X_i) = 1$. Then \tilde{X}_i has a unique group structure with origin at some point P_i. It follows that f_2 and $T_R \circ f_1$ are affine transformations from X_2 to X_1. Now since $f_i|_{S_2}$ $S_2 \to S_1$ is a bijection and $f_i^{-1}(S_1) = S_2$, it follows that either
\[S_2 = S_1 = \emptyset \]
or degree $f_i = 1$, $i = 1, 2$, because f_i is étale. In the second case, f_2^{-1} exists and $\alpha = f_2^{-1} \circ f_1$ is an automorphism of X_1 such that $\alpha S_2 = S_2$. But if $S_2 \neq \emptyset$, α is of finite order. This contradicts
\[\alpha^* \omega_2 = a \omega_2. \]
Thus $S_1 = S_2 = \emptyset$, and ω_1 is an invariant differential on X_1 as required.

Case 2. $g(X_i) = 0$. Then $|S_i| \geq 1$. Let
\[A = \begin{cases} \{ \infty \} & \text{if } |S_i| = 1, \\ \{ \infty, 0 \} & \text{if } |S_i| = 2, \\ \{ \infty, 0, 1 \} & \text{if } |S_i| \geq 3. \end{cases} \]
After composing with linear fractional transformations, we may suppose $A \subseteq S_2$ and $A \subseteq S_1$.

If $|S| = 1$, then $\omega_1 = b \, dx$ for some $b \in K^*$, and so is an invariant differential on G_a. Now suppose $|S_2| \geq 1$. Let h_i be a linear fractional transformation such that
\[h_i \circ f_i(p) = p, \quad p \in A. \]
Because $(h_i \circ f_i)^{-1}(p) = \{ p \}$, $p \in A$, it follows that $h_i \circ f_i$ takes the value p with multiplicity n_i, where n_i is the degree of f_i. As $\{ 0, \infty \} \subseteq A$ we must have
\[h_i \circ f_i = c_i x^{n_i}, \]
where $c_i \in K^*$. If $|S_2| > 2$, then $1 \in A$. It follows that $c_i = 1$, and since $(h_i \circ f_i)^{-1}(1) = 1$, that $n_i = 1$. That is, $f_i = h_i^{-1}$. But then $\alpha = h_2^{-1} \circ h$, takes
S_2 onto itself, and $a^*\omega_2 = a\omega_2$. As the group of linear fractional transformations preserving S_2 is finite this contradicts the hypothesis that a is not a root of unity. Thus $S_2 = S_1 = \{0, \infty\}$,

$$f_i = r_i x^{m_i} \quad \text{and} \quad \omega_1 = s \, dx + t \frac{dx}{x}$$

for some $r_i, t \in K^*, m_i \in \mathbb{Z}, m_i \neq 0$ and $s \in K$. So,

$$f_i^*(\omega_1) = sr_i m_i x^{m_i - 1} \, dx + tm_i \frac{dx}{x}.$$

Since $a \neq 1$, the hypothesis $f_1^*(\omega) = af_2^*(\omega_1)$ implies $s = 0$. Thus ω_1 is an invariant differential on G_m as required.

References

Received December 5, 1983.

University of California
Berkeley, CA 94720
Michael James Cambern, Near isometries of Bochner L^1 and L^∞ spaces 1
Kun Soo Chang, Gerald William Johnson and David Lee Skoug, The Feynman integral of quadratic potentials depending on two time variables ... 11
Robert Coleman, One-dimensional algebraic formal groups 35
Alberto Collino, The Abel-Jacobi isomorphism for the cubic fivefold 43
N. J. Dev and S. S. Khare, Finite group action and vanishing of $\mathcal{H}^F[F]$ 57
Harold George Diamond and Jeffrey D. Vaaler, Estimates for partial sums of continued fraction partial quotients .. 73
Kenneth R. Goodearl, Patch-continuity of normalized ranks of modules over one-sided Noetherian rings .. 83
Dean Robert Hickerson and Sherman K. Stein, Abelian groups and packing by semicrosses .. 95
Karsten Johnsen and Harmut Laue, Fitting structures 111
Darren Long, Discs in compression bodies ... 129
Joseph B. Miles, On the growth of meromorphic functions with radially distributed zeros and poles ... 147
Walter Volodymyr Petryshyn, Solvability of various boundary value problems for the equation $x'' = f(t, x, x', x'') - y$ 169
Elżbieta Pol, The Baire-category method in some compact extension problems ... 197
Masami Sakai, A new class of isocompact spaces and related results 211
Thomas Richard Shemanske, Representations of ternary quadratic forms and the class number of imaginary quadratic fields 223
Tsuyoshi Uehara, On class numbers of cyclic quartic fields 251