FINITE GROUP ACTION AND VANISHING OF N^G_*\([F]\)$

N. J. Dev and S. S. Khare
Let G be a finite group (not necessarily abelian). The object of this paper is to describe a G-bordism theory which vanishes. We construct a family F of G slice types, such that the N_\ast-module $N^G_\ast[F]$ is zero. Kosniowski has proved a similar result earlier for a finite abelian group. The present work is a generalisation of his result by using basically the same technique. A recent result of Khare is obtained as a corollary to the vanishing of $N^G_\ast[F]$.

1. Preliminaries and statement of the main theorem. Let G be a finite group with centre $C(G)$ and G_2 be the subgroup generated by the elements of order 2 in $C(G)$. We also assume that G_2 is nontrivial. By a G-manifold M we mean throughout a closed differentiable manifold on which G acts smoothly. G_x denotes the isotropy subgroup at $x \in M$. For every $x \in M$, there exists a G_x-module \overline{V}_x which is equivariantly diffeomorphic to a G_x-invariant neighbourhood of x. \overline{V}_x has a submodule V'_x in which G_x acts trivially and a complementary submodule V_x in which no nonzero element is fixed by all of G_x. By the G-slice type of x we mean the pair $[G_x; V_x]$. By a G-slice type we mean a pair $[H; U]$ where U is a H-module in which no nonzero element is fixed by all of H (equivalently U contains no trivial H-submodule). A family F of G-slice types is a collection of G-slice types such that if $[H; U] \in F$ then for every $x \in G \times_H U$ the G-slice type $[G_x; V_x] \in F$. A G-manifold is said to be of type F if for all $x \in M$, $[G_x, V_x] \in F$. Bordism relation is defined in the usual way. Two n-dimensional closed G-manifolds M_1, M_2 of type F are said to be F-bordant if there exists an $(n + 1)$-dimensional compact differentiable G-manifold W of type (F, F) such that the disjoint union of M_1 and M_2 is G equivariantly diffeomorphic to ∂W. It is clearly an equivalence relation on the set of G-manifolds of type F and gives rise to a bordism theory $N^G_\ast[F]$. We note that $N^G_\ast[F]$ is a graded N_\ast-module, N_\ast being the unoriented bordism ring.

Kosniowski has described a family $\tilde{F}(\hat{G})$ in [4] for an abelian group G such that $N^G_\ast[\tilde{F}(\hat{G})] = 0$, \hat{G} being a subgroup of G containing G_2. As a consequence he proved that if M is a G-manifold (G abelian) in which G_2 acts without fixed points then M is a G-boundary—a result obtained earlier by Khare using a different technique [1]. The main theorem of this
paper is a generalisation of Kosniowski’s theorem in [4] for an arbitrary finite group. Once again another result of Khare [2] is obtained as a corollary of this theorem.

The subgroup G_2 consisting of the identity and elements of order two in the centre of G is isomorphic to \mathbb{Z}_2^k for some $k > 0$. Kosniowski has studied \mathbb{Z}_2^k-bordism in [3] and the techniques used here are generalized from his techniques. We choose once for all a basis g_1, g_2, \ldots, g_k of G_2 and order the elements by

$$g_1 < g_2 < \cdots < g_k < g_1 g_2 < \cdots < g_1 g_k < \cdots < g_1 g_2 \cdots g_k.$$

Now let $[G_x; V_x]$ be the G-slice type of a point x in a G-manifold M and $G(x)$ be the orbit of x. Then $G(x)$ is a closed and compact submanifold of M. Consider the normal bundle $\nu(i)$ of the canonical embedding of $G(x)$ in M. This is a G-vector bundle and its disc bundle is a closed G-invariant tubular neighborhood of $G(x)$. Further G acts as a group of bundle maps on the normal bundle and the fibre over x is G_x-invariant and contains no G_x-trivial subspace. It is precisely V_x the G_x-module present in the G-slice type $[G_x; V_x]$ of x. Let g_\ast be the map on the total space $E(\nu(i))$ induced by the action of g on the base space $G(x)$. The G-slice type of $gx \in G(x)$ is $[gG_x g_1; g_\ast V_x]$. The underlying vector space of V_x and $g_\ast V_x$ are same and the action of ghg_1, $h \in G_x$ on $v \in g_\ast V_x$ is same as the action of h on $v \in V_x$. Again if F be a family of G-slice types and $[H; V] \in F$ then from the definition of family the G-slice type $[G_x; V_x]$ of every point $x \in G \times_H V$ belongs to F. Now the G-slice type of $[e, 0] \in G \times_H V$ is $[H; V]$ and the G slice type of $[g, 0] \in G \times_H V$ is $[gHg_1; g_\ast V]$. The G-slice type $[H; V]$ will be denoted by ρ and the collection

$$\{ [gHg_1; g_\ast V] | g \in G \}$$

termed as a conjugate class of G-slice types will be denoted by $\overline{\rho}$ or $[H; V]^g$.

Suppose that K is a subgroup of H. We write $K \subset H$ if $H = (x) \times K$ where $x \in G_2$. Quite a number of elements of G_2 may yield H when a direct product of above type is formed. We take the minimal element x according to the total order fixed at the beginning of this article. We now have a homomorphism

$$p = p_{H,K}: H \to K.$$

which is the projection onto the second factor. This is termed as the distinguished projection. It enables us to obtain an H-module p^*U from a K-module U. The modules p^*U and U have the same underlying vector
space and H acts on $p^*(U)$ via the map p. Corresponding to a G slice type $[K; U]$ such that $K \subset H$ we have an extension function $e = e_{K,H}$ given by

$$e_{K,H}[K; U] = [H; V(K) \oplus p^*(U)]$$

where $V(K)$ is one dimensional real representation of H in which $h \in H$ acts by multiplication with 1 if $h \in K$ and multiplication with -1 if $h \notin K$. Since $gHg^{-1} = (x) \times gKg^{-1}$ when $H = (x) \times K$, we have

$$e_{K,H}[gKg^{-1}; g\ast U] = [gHg^{-1}; V(gKg^{-1}) \oplus p^*(g\ast U)]$$

Thus $e_{K,H}$ induces a map $e^g = e_{K,H}^g$ on the collection of conjugate classes of G slice types $[K; U]^g$ and

$$e_{K,H}^g[K; U]^g = [H; V(K) \oplus p^*(U)]^g.$$

Corresponding to a subgroup \hat{G} of G containing G_2 we have three families of G slice types $F(\hat{G})$,

$$F(\hat{G}) = \{ [gHg^{-1}; g\ast V] | [H, V] \text{ is a } G \text{ slice type}$$

$$\text{with } H \text{ contained in } \hat{G}, \ g \in G \}$$

and

$$F'(\hat{G}) = \{ [K; U] \in F(\hat{G}) | K \cap G_2 \neq G_2 \}$$

and

$$\hat{F}(\hat{G}) = F'(\hat{G}) \cup \{ e_{K,H}[K; U][[K; U]]' \in F'(\hat{G})$$

$$\text{and } K \subset H \text{ with } H \cap G_2 = G_2 \}.$$

That each collection is a family is clear. Now we are in a position to state the main theorem of this paper.

THEOREM 1. If G be a finite group and \hat{G} be a subgroup of G which contains G_2 then $N^G_F(\hat{F}(\hat{G})) = 0$.

COROLLARY (Khare [2]). Suppose that G is a finite group. If M is a G-manifold on which G_2 acts without fixed points then M is a G-boundary.

The corollary follows because if G_2 acts without fixed points then an isotropy subgroup H of a point in M satisfies the condition $H \cap G_2 \neq G_2$ so that M is of the type $F'(G)$ and consequently of the type $\hat{F}(G)$.

The proof of the theorem will be given in §7. In §2, §3, §4 and §5, we develop the necessary tools and results.
2. Vector bundles of type $\bar{\rho}$. Let $F' \subseteq F$ be two families of G slice types with $F = F' \cup \bar{\rho}$ where $\bar{\rho}$ is a class of conjugate G slice types. By a G-vector bundle of type $\bar{\rho}$ we mean a G-vector bundle ξ: $E(\xi) \rightarrow B(\xi)$ where the set of points of $E(\xi)$ having G slice type in $\bar{\rho}$ is precisely the zero section. We have the bundle bordism groups $N_n^G[\bar{\rho}]$ obtained by defining a bordism relation on the set of all G vector bundles of type $\bar{\rho}$ having total dimension n.

Let M^n be a G-manifold of type F and $F_\bar{\rho}$ be the set of all points in M^n with slice type in $\bar{\rho}$. Then the normal bundle over $F_\bar{\rho}$ is a G vector bundle of type $\bar{\rho}$. This assignment of the normal bundle over $F_\bar{\rho}$ in M^n leads to a N_\bullet-homomorphism

$$v_\bar{\rho}: N_n^G[F] \rightarrow N_n^G[\bar{\rho}].$$

We have the following proposition and lemmas involving the bundle bordism groups.

Proposition 2. There exists a long exact sequence

$$\cdots \rightarrow N_n^G[F'] \rightarrow N_n^G[F] \rightarrow N_n^G[\bar{\rho}] \rightarrow N_{n-1}^G[F'] \rightarrow \cdots$$

where $F' \subseteq F$ are families of G slice types such that $F - F' = \bar{\rho}$.

For proof we refer to 1.4.2 of [3].

Lemma 3. Suppose that $K \subset H$ and $\bar{\rho} = [H; V]^g$, $\bar{\rho}' = [K; U]^g$ be two classes of conjugate G slice types such that $e^g(\bar{\rho}') = \bar{\rho}$. Then there exists an N_\bullet-isomorphism

$$N_n^G[\bar{\rho}] \rightarrow N_{n-1}^G[\bar{\rho}']$$

given by $[\xi] \rightarrow [v_\bar{\rho}S(\xi)]$, where $S(\xi)$ is the sphere bundle of ξ.

The proof of this lemma is similar to that given for Lemma 4.5.8 of [3].

Lemma 4. Let $F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots$ be a sequence of families of G-slice types with

(i) $F_0 = \bar{\rho}_0 = \{[e; R^0]\}$
(ii) $F_i = F_{i-1} \cup \bar{\rho}_i$ for all $i \geq 1$
(iii) $\bigcup_{i \geq 0} F_i = F$

and

(iv) $e^g(\bar{\rho}_{2i}) = \bar{\rho}_{2i+1}$ for all $i \geq 0$. Then $N_*^G[F] = 0$.

Proof. Using Proposition 2 and Lemma 3 we get

$$N_*^G[F_{2i}] = N_*^G[\bar{\rho}_{2i}]$$

and $N_*^G[F_{2i+1}] = 0$.

Taking direct limit

\[N^G_*[F] = \lim_{\to} N^G_*[F_i] = 0. \]

The rest of the paper is aimed to show that the family \(\tilde{F}(\hat{G}) \) satisfies the conditions laid down in Lemma 4. The \(G \) slice types of \(\tilde{F}(\hat{G}) \) are to be ordered suitably now in order to get the families \(F_0 \subset F_1 \subset \cdots \).

3. Ordering the conjugate classes of \(G \) slice types.

We define three distinct relations \(<\) on the collection \(\hat{A} \) of all subgroups conjugates to subgroups of \(\hat{G} \), on the collection of all \(H \)-modules, \(H \in \hat{A} \) and finally on the collection of all conjugate classes of \(G \) slice types of the family \(\tilde{F}(\hat{G}) \) and extend each of these relations into a total order on the respective collection. We note that the elements of \(G_2 \) are totally ordered by

\[g_1 < g_2 < \cdots < g_k < g_1g_2 < \cdots < g_1g_k < \cdots < g_1g_2 \cdots g_k \]

and a subgroup \(H_2 \) of \(G_2 \) has a distinguished base \(h_1 < h_2 < \cdots < h_m \)
such that \(h_1 \) (\(\neq \) identity) is the least element in \(H \) and for \(i > 1 \), \(h_i \) is the least element in \(H \) which is not present in \((h_1, h_2, \ldots, h_{i-1}) \), the subgroup generated by \(h_1, h_2, \ldots, h_{i-1} \). The subgroups of \(G_2 \) are now totally ordered first by the order of the subgroup and then lexicographically on the distinguished base:

\[(e) < (g_1) < (g_2) < \cdots < (g_1g_2 \cdots g_k) < (g_1, g_2) < \cdots. \]

Rule A. Let \(H \) and \(K \) belong to \(\hat{A} \). We define \(\leq \) by:

(i) if \(|H| \leq |K| \) Then \(H \leq K \),

(ii) if \(|H| = |K| \) and \(|K_2| \leq |H_2| \). Then \(H \leq K \) where \(K_2 = K \cap G_2 \)
and \(H_2 = H \cap G_2 \),

(iii) if \(|H| = |K|, |K_2| = |H_2| \) but \(H_2 \leq K_2 \) then \(H \leq K \) and

(iv) if \(|H| = |K|, H_2 = K_2 \) then we order them arbitrarily so as to make the relation \(\leq \) a total ordering on \(\hat{A} \).

Next a relation \(\leq \) is introduced on the collection of all nontrivial irreducible \(H \)-modules \(H \in \hat{A} \). We write \(U \leq V \) if \(U = V \) or else there exists \(K \subset H \) such that \(U = p^*i^*V \) where \(i: K \to H \) is the natural inclusion and \(p: H \to K \) is the distinguished projection. We now have the following lemma whose proof is similar to Lemma 8 of \([4]\).

Lemma 5. The relation \(\leq \) is a partial order on the collection of all nontrivial irreducible \(H \)-modules.

We now choose a total ordering on the set of all nontrivial irreducible \(H \)-modules having the same dimension compatible with the partial ordering introduced. The total ordering is now extended to all irreducible
H-modules by writing $U \leq V$ if and only if $\dim U \leq \dim V$. Since any H-module can be expressed uniquely as the sum of irreducible H-modules, we can extend this total ordering on all H-modules by lexicography. The following rule expresses the whole rule coincisely.

Rule B. Let U and V be two H-modules.

(i) If $\dim U \leq \dim V$ then $U \leq V$

(ii) If $\dim U = \dim V$ and V follows U lexicographically then $U \leq V$.

Finally Rule C given as below defines the order \leq on the collection of all classes of conjugate G slice types of the family $\tilde{F}(\hat{G})$.

Rule C. Let $\tilde{\rho} = [H; U]^g$, $\tilde{\rho}' = [K; V]^g$ be two classes of conjugate G slice types of $\tilde{F}(\hat{G})$

(i) If $\dim U \leq \dim V$ then $\tilde{\rho} \leq \tilde{\rho}'$.

(ii) If $\dim U = \dim V$ and $H \leq K$ then $\tilde{\rho} \leq \tilde{\rho}'$.

(iii) If $\dim U = \dim V$, $H = K$ and $U \leq V$ then $\tilde{\rho} \leq \tilde{\rho}'$.

We now proceed to prove some algebraic results relating to the extension map e.

4. Algebraic lemmas and extension map. The following lemmas are generalisations of propositions of \mathbb{Z}_2^k bordism given in 4.5 of [3]

Lemma 6. Let $(e) \subset K \subset H \subset G$ and

$$g_1 < g_2 < \cdots < g_k,$$

$$h_1 < h_2 < \cdots < h_m,$$

and

$$k_1 < k_2 < \cdots < k_{m-1}$$

be the distinguished bases of G_2, H_2 and K_2 respectively and r be the greatest integer for which $k_i = h_i$ for all $i < r$. Then K is not contained in a predecessor of H if and only if $h_i = g_i$ for all $i < r$. (By a predecessor of H we mean a subgroup $H' \prec H$ such that $H'_2 < H_2$.)

Proof. We have $(e) \subset K \subset H \subset G$. If $K \subset H'$, a predecessor of H then by definition $K_2 \subset H'_2$, a predecessor of H_2. Further if $K_2 \subset H'_2$, a predecessor of H_2, then $H' = (x) \times K_2$ (x being chosen minimally) and $K \subset (x) \times K$, a predecessor of H.

Thus K is not contained in a predecessor of H if and only if K_2 is not contained in a predecessor of H_2. The latter statement implies and is implied by $h_i = g_i$ for all $i < r$ and this follows from 4.5.12 of [3].
Lemma 7. Let $K \subset H$, $K' \subset H$ with K and K' not contained in a predecessor of H. If
\[H = (x) \times K = (x') \times K' \]
where x and x' are chosen minimally, $x \in K'$, $x' \in K$ and K precedes K' then $K \cap K'$ is not contained in a predecessor of K.

Proof. We have
\[H_2 = (x) \times K_2 = (x') \times K'_2. \]
and K_2 precedes K'_2. By the Proposition 4.5.13 of [3], $K_2 \cap K'_2$ is not contained in a predecessor of K_2 and this in turn implies that $K \cap K'$ is not contained in a predecessor of K.

In order to proceed further we need the following constructions and lemmas.

$S(H)$ = collection of all conjugate classes of G slice types with isotropy subgroup H. For any $K \subset H$ we have the extension function
\[e^g = e^g_{K,H} : S(K) \to S(H) \]
and consequently a function
\[E^g : \bigcup_{K \subset H} S(K) \to S(H). \]
where by $P(H)$ one means a predecessor of H. Let
\[\bar{S}(K) = S(K) - \text{image } \left(\bigcup_{L \subset P(H)} E^g : S(L) \to S(K) \right). \]
The function
\[\bar{E}^g : \bigcup_{K \subset H} \bar{S}(K) \to S(H) \]
is the restriction of E^g.

Lemma 8. Image $\bar{E}^g = \text{image } E^g$.

Proof. Clearly $\text{image } \bar{E}^g \subseteq \text{image } E^g$.

Let $\bar{\rho} \in \text{im } E^g$ i.e. $\bar{\rho} = e^g(\bar{\rho}')$ for some $\bar{\rho}' \in S(K)$ where $K \subset H$ and $K \not\subset P(H)$.
If $p' \not\in \tilde{S}(K)$ then $p' = e^s(\tilde{p}')$ for some $\tilde{p}' \in S(L)$ where $L \subset H$ and $L \not\subset P\langle H\rangle$. By Lemma 6 we have the following distinguished bases of H_2, K_2 and L_2

$L_2: g_1 < g_2 < \cdots < g_{s-1} < l_s < \cdots$

$K_2: g_1 < g_2 < \cdots < g_{s-1} < g_s < \cdots < g_{r-1} < k_r < \cdots$

$H_2: g_1 < g_2 < \cdots < g_{r-1} < g_r < h_{r+1} < \cdots$.

We note that $l_s \neq g_s$ and $k_r \neq g_r$. So

$H = (g_r) \times K$ and $K = (g_s) \times L$.

Writing $\tilde{p}'' = [L; U]^g$ we get

$$\tilde{p}' = e^s(\tilde{p}'') = [K; V(L) \oplus q^*U]^g,$$

and

$$\tilde{p} = e^s(\tilde{p}') = [H; V(K) \oplus p^*(V(L) \oplus q^*U)]^g$$

$$= [H; V(K) \oplus V((g_r) \times L) \oplus p^*q^*U]^g$$

$q: K \to L$ and $p: H \to K$ are the distinguished projections.

Taking $K' = (g_r) \times L$ we note that $K' \subset H$ and K precedes K'. Moreover $K' \not\subset P\langle H\rangle$. Extending \tilde{p}'' through K' we get

$$\tilde{p}'' = e^s_{K',H}(\tilde{p}'') = [K'; V(L) \oplus q'^*U]^g \in S(K')$$

and

$$e^s_{K',H}(\tilde{p}'') = [H; V(K') \oplus V((g_s) \times L) \oplus p'^*q'^*U]^g$$

where $p': H \to K'$ and $q': K' \to L$ are the distinguished projections.

Since $qp = q'p'$, we have

$$e^s_{K',H}(\tilde{p}'') = [H; V(K') \oplus V(K) \oplus p^*q^*U]^g = \tilde{p}.$$

If $\tilde{p}'' \in \tilde{S}(K')$ then $\tilde{p} \in \text{image } \tilde{E}^g$. If not then by arguing as before we get a conjugate class of G slice type $\tilde{p}^{(n)} \in S(K''')$ such that $\tilde{p} = e^s(\tilde{p}^{(n)})$ where $K''' \subset H$ and $K < K' < K'' \not\subset P\langle H\rangle$.

Continuing this way we exhaust all the finite number of possibilities and find some $\tilde{p}^{(2n+1)} \in \tilde{S}(K^{(n)})$ such that $K^{(n)} \subset H$, $K^{(n)} \not\subset P\langle H\rangle$ and $\tilde{p} = e^s(\tilde{p}^{(2n+1)})$ i.e. $\tilde{p} \in \text{image } \tilde{E}^g$.

Lemma 9. The function

$$\tilde{E}^g: \bigcup_{K \subset H} S(K) \to S(H)$$

$$K \notin \tilde{p}(H)$$

is injective.
Proof. Suppose that
\[\bar{p} = [K; U]^g, \bar{p}' = [K'; U']^g \]
where \(K \) and \(K' \subset H \), \(K \) and \(K' \not\subset P(H) \), \(K \) precedes \(K' \) and
\[e^g(\bar{p}) = e^g(\bar{p}') = [H; V]^g. \]
From Lemma 6 we get
\[H = (g_r) \times K = (g_s) \times K' \]
where \(g_r \) and \(g_s \) are the minimal possible choices and \(s < r \). We have
\[[H; V(K) \oplus p^*U]^g = [H; V]^g = [H; V(K') \oplus p'^*U']^g \]
where \(p: H \to K, p': H \to K' \) are the distinguished projections. Writing
\[U = \sum_i n_i U_i \] and \(U' = \sum_j n'_j U'_j \) where \(U_i \) and \(U'_j \) are nontrivial irreducible \(K \) and \(K' \) modules respectively we get
\[V(K) \oplus \sum_i n_i p^*U_i = V(K') \oplus \sum_j n'_j p'^*U'_j. \]
Since \(K \neq K' \), \(V(K) = p'^*U'_t \) for some \(t \) and \(n'_t = 1 \). The underlying vector space of these modules is \(\mathbb{R} \).

We write \(g_s = g^s \circ k, \alpha_1 \in \{0, 1\} \) and \(k \in K \) and consider its action on \(x \in V(K) = p'^*U'_t \). We get \(g_s x = x \) i.e. \((-1)^{\alpha_1}x = x \) i.e. \(\alpha_1 = 0 \). So \(g_s \in K \). Similarly \(g_r \in K' \). By Lemma 7, \(L = K \cap K' \not\subset P(K) \) and \(K = (g_s) \times L \) (\(L \) is the intersection of two normal subgroups of \(H \)). We have also the restriction function
\[r^g = r_{H,K}^g: S(H) \to S(K) \]
such that \(r^g[H; V]^g = [K; I^*V]^g \) where \(I^*V \) is the nontrivial part of \(i^*V \), \(i: K \to H \) being the natural inclusion. Note that
\[r_{H,K}^g e_{k,H}^g[K; U]^g = r_{H,K}^g[H; V(K) \oplus p^*U]^g \]
\[= [K; I^*(V(K) \oplus p^*U)]^g \]
\[= [K; I^*p^*U]^g = [K; i^*p^*U]^g = [K; U]^g \]
i.e. \(r_{H,K}^g e_{k,H}^g = \text{identity} \).

Therefore
\[\bar{p} = [K, U]^g = r_{H,K}^g e_{k,H}^g[K; U]^g = r_{H,K}^g e_{k',H}^g[K'; U']^g \]
\[= r_{H,K}^g[H; V(K') \oplus p'^*U']^g \]
\[= [K; V(K' \cap K) \oplus I^*p'^*U']^g \]
\[= [K; V(L) \oplus NTq^*j'^*U']^g \]
where \(i : K \hookrightarrow H, i' : K' \hookrightarrow H, j : L \hookrightarrow K, j' : L \hookrightarrow K' \) are the natural inclusions and \(p : H \rightarrow K, p' : H \rightarrow K', q : K \rightarrow L, q' : K' \rightarrow L \) are the distinguished projections. We have \(p'i = j'q \) and \(NT \) stands for the nontrivial part. Also

\[
r_{k,l}^*((\bar{\rho}) = [L; NTj^*q^*j'^*U^*]^8 = [L; NTj'^*U^*]^8
\]

(since \(qj = \text{id} \)). So

\[
e_{L,K}^*r_{k,l}^*((\bar{\rho}) = [K; V(L) \oplus NTq^*j'^*U^*]^8 = \bar{\rho}.
\]

Thus \(\bar{\rho} = e(\bar{\rho}'' \) for \(\bar{\rho}'' = r_{k,l}^*((\bar{\rho}) \in S(L) \) and \(L \subset K, L \not\subset P(K) \) i.e.

\[
\bar{\rho} \in \text{im} \left\{ E^8 : \bigcup_{L \subset K \atop L \not\subset P(K)} S(L) \rightarrow S(K) \right\}
\]

i.e. \(\bar{\rho} \not\in \bar{S}(K) \) — a contradiction.

With this we come to an end of this section.

5. **Decomposition of the collection of conjugate classes of \(G \) slice types of a family.** If we now define the dimension of a conjugate class of \(G \)-slice types as dimension of the module present therein then it is clear that there are only a finite number of conjugate classes of \(G \) slice types of a given dimension. The classes of the family \(\bar{F}(\hat{G}) \) are totally ordered by the Rule \(C \) and we index them by nonnegative integers as

\[
\bar{\rho}_0 < \bar{\rho}_1 < \bar{\rho}_2 < ...
\]

where \(\bar{\rho}_0 = \{([e], R^0)\} \) and \(\bar{\rho}_0 \) is clearly a family of \(G \) slice types. Corresponding to the family \(F_j \) we form the collection \(\bar{F}_j = \{\bar{\rho}_0, \bar{\rho}_1, \ldots, \bar{\rho}_j\} \) and define inductively three subcollections \(A_j, B_j \) and \(C_j \) of \(\bar{F}_j \) such that \(\bar{F}_j = A_j \cup B_j \cup C_j \). For \(j = 0 \), \(\bar{F}_j = \{\bar{\rho}_0\} \) and we set

\[
A_j = \{\bar{\rho}_0\}, \quad B_j = \emptyset, \quad C_j = \emptyset
\]

Let \(A_{j-1}, B_{j-1}, C_{j-1} \) be defined for some \(j \geq 1 \). We have

\[
\bar{F}_{j-1} = A_{j-1} \cup B_{j-1} \cup C_{j-1}
\]

and

\[
\bar{F}_j = \bar{F}_{j-1} \cup \{\bar{\rho}_j\}.
\]

There are two possibilities:

(i) either \(\bar{\rho}_j = e^8(\bar{\rho}) \) for some \(\bar{\rho} \in A_{j-1} \) or

(ii) \(\bar{\rho}_j \neq e^8(\bar{\rho}) \) for any \(\bar{\rho} \in A_{j-1} \).

In case of (i) We define

\[
A_j = A_{j-1} - \{\bar{\rho}\}, \quad B_j = B_{j-1} \cup \{\bar{\rho}_j\}, \quad C_j = C_{j-1} \cup \{\bar{\rho}\}
\]
and in case of (ii)
\[A_j = A_{j-1} \cup \{ \tilde{\rho}_j \}, \quad B_j = B_{j-1}, \quad C_j = C_{j-1}. \]

We now establish an analogue of Lemma 9 of [4].

Lemma 10. There is at most one conjugate class of G slice types \(\tilde{\rho} \in A_{j-1} \) such that \(e^g(\tilde{\rho}) = \tilde{\rho}_j \).

Proof. The proof of this lemma is given by induction. Clearly the lemma holds for \(j = 1 \). Let it be true for all \(i < j \).

Let \(\tilde{\rho}_j = e^g(\tilde{\rho}_m) \) and take \(\tilde{\rho}_j \in S(H) \) and \(\tilde{\rho}_m \in S(K) \) with \(K \subset H \).

We claim that \(K \not\subset P(H) \). If \(K \subset P(H) \) then we choose \(J \) to be the least of all predecessors of \(H \). We get \(K \subset J \) and

\[\tilde{\rho}_i = e^g_{K,J}(\tilde{\rho}_m) < \tilde{\rho}_j = e^g_{K,H}(\tilde{\rho}_m). \]

By the induction hypothesis there exists at most one such \(\tilde{\rho}_m \) such that \(\tilde{\rho}_i = e^g_{K,J}(\tilde{\rho}_m) \). Consequently neither \(\tilde{\rho}_m \) nor \(\tilde{\rho}_i \) belongs to \(A_{j-1} \). So

\[K \not\subset P(H) \quad \text{and} \quad \rho_m \in \bigcup_{K \subset P(H)} S(K). \]

By Lemma 8, this implies

\[\tilde{\rho}_j \in \text{image } E^g = \text{image } \bar{E}^g. \]

If now

\[\rho_m \in \text{image } \left(E^g : \bigcup_{L \subset K} S(L) \to S(K) \right) \]

then \(\tilde{\rho}_m = e^g(\tilde{\rho}') \) for \(\tilde{\rho}' \in S(L), \ L \subset K \) and \(L \not\subset P(K) \). From the construction of the families \(A_j \) it follows that \(\tilde{\rho}_m \notin A_{j-1} \). So

\[\tilde{\rho}_m \in S(K) = S(K) - \text{image } \left(E^g : \bigcup_{L \subset K} S(L) \to S(K) \right). \]

By Lemma 9, \(\bar{E}^g \) is injective and this establishes our lemma.

The next theorem further characterises the families \(A_j \).

Lemma 11. If \(N \) is sufficiently large compared to \(n \) then \(A_N \) consists of conjugate classes of G slice types of dimension greater than \(n \).

Proof. Let \(F_i \) be the family which contains all conjugate G slice types of dimension \(\leq n \) and

\[A_i = \{ \tilde{\rho}_{i_1}, \tilde{\rho}_{i_2}, \ldots, \tilde{\rho}_{i_k} \} \]
with \(\bar{\rho}_t = \{K_t; U_t\}^g, 1 \leq t \leq k \). Then \(K_t \cap G_2 \neq G_2 \) because \(K_t \cap G_2 = G_2 \Rightarrow \bar{\rho}_t = e^g(\bar{\rho}') \) for some \(\bar{\rho}' \). We take
\[
\rho_j = e^g(\rho_i)
\]

If \(N \geq \max\{j_1, \ldots, j_k\} \) then clearly \(A_N \) does not contain any conjugate class of \(G \) slice types of dimension \(\leq n \).

The next theorem reveals the necessity of ordering the conjugate classes of \(G \) slice types.

Theorem 12. If \([H; U]\) is a \(G \) slice type and \(\bar{\rho} \in A_j \) is a conjugate class of \(G \) slice types of an orbit of a point of \(G \times_H U \), then either \(\bar{\rho} = [H; U]^g \) or \([H; U]^g \notin \bar{F}_j \).

Proof. Let \(\bar{\rho} \neq [H; U]^g \). Then \(\bar{\rho} \) is not the conjugate class of \(G \) slice types of the orbit of \([e,0] \in G \times_H U \). So \(\bar{\rho} \) is a conjugate class of \(G \) slice types of the orbit of a point \([e,u] \in G \times_H U, 0 \neq u \in U \). The isotropy subgroup of \([e,u] \) is a proper subgroup \(K \) of \(H \). We can write \(\bar{\rho} = [K; I^*U]^g \) where \(I^*U \) is the nontrivial part of \(i^*U, i: K \hookrightarrow H \) being the natural inclusion. Clearly \(\dim I^*U \leq \dim i^*U = \dim U \). We now discuss the two possible cases separately.

Case I. \(K \subset_2 H \) i.e. \(H = (x) \times K \).

We have
\[
e_{K,H}(\bar{\rho}) = [H; V(K) \oplus p^*I^*U]^g
\]
where \(p: H \to K \) is the distinguished projection.

Since \(K \) fixes \(u \in U \), \(K \) has trivial action on the one dimensional subspace \(L(u) \) spanned by \(u \). Also \(H \) has nontrivial action on \(L(u) \). So \((x) \) acts on \(L(u) \) nontrivially and we get \(V(K) = L(u) \subset U \). If
\[
dim(V(K) \oplus p^*I^*U) < \dim U
\]
then
\[\bar{\rho} < \bar{\rho}_k = e_{K,H}^g(\bar{\rho}) \leq [H; U]^g = \bar{\rho}_i.\]

If
\[
dim(V(K) \oplus p^*I^*U) = \dim U
\]
then \(\dim I^*U \) is just one less than \(\dim U \) and by writing \(U = V(K) \oplus U' \) we get \(I^*U = i^*U' \). So \(p^*I^*U = p^*i^*U' \leq U' \) by the ordering of irreducible \(H \)-modules and its extension by lexicography i.e. \(V(K) \oplus p^*I^*U \leq V(K) \oplus U' = U \). Again we have
\[\bar{\rho} < \bar{\rho}_k = e_{K,H}^g(\bar{\rho}) \leq [H; U]^g = \rho_i.\]
Case II. Let $K \not\subset 2H$ i.e. $K < H$ but $H \neq (x) \times K$ for any $x \in G_2$.
If $K_2 = G_2$ then the class $\bar{\rho}$ is the e^g-image of some conjugate class of G slice types occurring earlier according to the order so constructed. But this means $\bar{\rho} \not\in A_j$—a contradiction. So $K_2 \subseteq G_2$ and there exists an element $x \in G_2$ such that $(x) \times K$ can be formed. Since K is a proper subgroup of H, $|(x) \times K| \leq |H|$. If $|(x) \times K| < |H|$ then by (i) of Rule A

$$\bar{\rho} < \bar{\rho}_k < \bar{\rho}_l.$$

If $|(x) \times K| = |H|$ then $|H: K| = \text{index of } K \text{ in } H = 2$. Since $K \not\subset 2H$, $x \not\in H$. Also there does not exist $y \in G_2$ such that $y \in H$ but $y \notin K$.

Hence $K_2 = H_2$ and $|(x) \times K_2| > |H_2|$. By (ii) of Rule A, $(x) \times K < H$ and

$$\bar{\rho} < \bar{\rho}_k < \bar{\rho}_l.$$

Now

$$\bar{\rho}_i = [H; U]^g \in \bar{F}_j \Rightarrow \bar{\rho}_i < \bar{\rho}_j$$

$$\Rightarrow \bar{\rho} < e^g(\bar{\rho}) = \bar{\rho}_k < \bar{\rho}_l < \bar{\rho}_j$$

$$\Rightarrow \bar{\rho} \in A_{k-1} \text{ and } \bar{\rho} \notin A_k \quad \text{(Lemma 10)}$$

$$\Rightarrow \bar{\rho} \notin A_j$$—a contradiction.

A consequence of this theorem is:

Corollary 13. The union of all conjugate classes of G slice types of B_j and C_j is a family.

Proof. Let $[H; U]^g \in B_j \cup C_j \subseteq F_j$ and $\bar{\rho}$ is a conjugate class of G-slice types of an orbit of a point of $G \times_H U$. Clearly $\bar{\rho} \subset F_j$. If $\bar{\rho} \notin B_j \cup C_j$ then $\bar{\rho} \notin A_j$ and this contradicts Theorem 12.

6. **Proof of the main theorem.** We denote the elements of C_j by $\vec{\sigma}_0$, $\vec{\sigma}_2, \ldots, \vec{\sigma}_{2k}$ where $k = |C_j|$ and $\vec{\sigma}_{2t} \leq \vec{\sigma}_{2m}$ if and only if $t \leq m$. We have $B_j = \{ e^g(\vec{\sigma}_i) \mid 0 \leq i \leq k \}$ and write $e^g(\vec{\sigma}_i) = \vec{\sigma}_{2i+1}$.

By Corollary 13, $\bar{F}_k = \bigcup_{i=0}^k \bar{\sigma}_i$ is a family when k is odd. When k is even \bar{F}_k is again a family because the G slice types of $\vec{\sigma}_k$ are 'maximal' in \bar{F}_k. By Lemma 11 we see that $\bar{F}(\hat{G})$ satisfies all the conditions of Lemma 4 and so

$$N^G_\bullet [\bar{F}(\hat{G})] = 0.$$

An alternative proof of Theorem 1 can be given by generalising Theorem 4.5.11 of [3].
THEOREM 14. There is an isomorphism
\[\bigoplus v_i : N_n^G[F_j] \to \bigoplus \left\{ N_n^G[\bar{\rho}_i] \right\}, \]

Proof. We prove the result by induction. Clearly the result is true for \(j = 0 \). Now suppose it is true for \(j - 1 \) i.e.
\[\bigoplus v_i : N_n^G[F_{j-1}] \to \bigoplus \left\{ N_n^G[\bar{\rho}_i] \right\}. \]

From the long exact sequence of Proposition 2 we have the composite
\[v_i \partial_j : N_n^G[\bar{\rho}_j] \to N_n^G[\bar{\rho}_{j-1}]. \]

If \(v_i \partial_j \neq 0 \) then \(\bar{\rho}_j \) is a conjugate class of \(G \) slice types of \(G \times_H V \) where \([H, V] = \{0\}\) and by Theorem 12 \(\rho_j \notin A_j \).

Now for the class \(\bar{\rho}_j \) there exists almost one conjugate class of \(G \) slice types \(\bar{\rho}_i \) such that \(e^\mathcal{S}(\bar{\rho}_i) = \rho_j \). If there does not exist any such \(\bar{\rho}_i \in A_{j-1} \) then for any \(\bar{\rho}_i \in A_{j-1} \) both \(\rho_j \) and \(\bar{\rho}_i \) belong to \(A_j \) and \(v_i \partial_j = 0 \) for every \(\bar{\rho}_i \in A_{j-1} \). Thus \(\left(\bigoplus_{\bar{\rho}_i \in A_{j-1}} v_i \right) \partial_j = 0 \) and consequently \(\partial_j = 0 \). We have a short exact sequence
\[0 \to N_n^G[F_{j-1}] \to N_n^G[F_j] \xrightarrow{\rho_j} N_n^G[\bar{\rho}_j] \to 0. \]

If again for \(\bar{\rho}_j \) we have \(\bar{\rho}_i \in A_{j-1} \) s.t. \(\rho_j = e^\mathcal{S}(\bar{\rho}_i) \) then neither \(\rho_j \) nor \(\bar{\rho}_i \) belong to \(A_j \) and by Lemma 3
\[v_i \partial_j : N_n^G[\bar{\rho}_j] \to N_n^G[\bar{\rho}_{j-1}] \]
is an isomorphism and we have again a short exact sequence
\[0 \to N_n^G[\bar{\rho}_j] \to N_n^G[F_{j-1}] \to N_n^G[F_j] \to 0. \]

Both the short exact sequences split as the modules involved are vector spaces over \(\mathbb{Z}_2 \). So
\[N_n^G[F_j] \cong \bigoplus_{\bar{\rho}_i \in A_j} N_n^G[\bar{\rho}_i]. \]

COROLLARY 15. \(N_n^G(\hat{F}(\hat{G})) = 0. \)

Proof. Corresponding to the positive integer \(n \) we take all conjugate classes of \(G \) slice types of dimension \(\leq n + 1 \). If \(F_N \) be the union of all these classes then
\[N_n^G[\hat{F}(\hat{G})] = N_n^G[F_N] = \bigoplus_{\rho \in A_n} N_n^G[\bar{\rho}_i]. \]

If now \(N \) is made sufficiently large compared to \(n \) then by Lemma 11 \(A_N \) consists of all conjugate classes of \(G \) slice types of dimension \(> n \) and hence the isomorphism \(\bigoplus v_i \) is zero.
COROLLARY 16.

\[N^G_\bullet[F'(\hat{G})] = N^G_{\bullet+1}[\tilde{F}'(\hat{G}), F'(\hat{G})]. \]

This follows from the main theorem and the long exact sequence for the pair \(F'(\hat{G}) \subset \tilde{F}(\hat{G}) \) of families of \(G \)-slice types.

REFERENCES

Received July 9, 1984.

LADY KEANE'S COLLEGE
SHILLONG, INDIA

AND

NORTH EASTERN HILL UNIVERSITY
BIJNI CAMPUS, BHAGYAKUL ROAD
LAITUMKHRAH, SHILLONG, 793003
MEGHALAYA, INDIA
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael James Cambern</td>
<td>Near isometries of Bochner L^1 and L^∞ spaces</td>
</tr>
<tr>
<td>Kun Soo Chang, Gerald William Johnson and David Lee Skou</td>
<td>The Feynman integral of quadratic potentials depending on two time variables</td>
</tr>
<tr>
<td>Robert Coleman</td>
<td>One-dimensional algebraic formal groups</td>
</tr>
<tr>
<td>Alberto Collino</td>
<td>The Abel-Jacobi isomorphism for the cubic fivefold</td>
</tr>
<tr>
<td>N. J. Dev and S. S. Khare</td>
<td>Finite group action and vanishing of $N^G[F]$</td>
</tr>
<tr>
<td>Harold George Diamond and Jeffrey D. Vaaler</td>
<td>Estimates for partial sums of continued fraction partial quotients</td>
</tr>
<tr>
<td>Kenneth R. Goodearl</td>
<td>Patch-continuity of normalized ranks of modules over one-sided Noetherian rings</td>
</tr>
<tr>
<td>Dean Robert Hickerson and Sherman K. Stein</td>
<td>Abelian groups and packing by semicrosses</td>
</tr>
<tr>
<td>Karsten Johnsen and Harmut Laue</td>
<td>Fitting structures</td>
</tr>
<tr>
<td>Darren Long</td>
<td>Discs in compression bodies</td>
</tr>
<tr>
<td>Joseph B. Miles</td>
<td>On the growth of meromorphic functions with radially distributed zeros and poles</td>
</tr>
<tr>
<td>Walter Volodymyr Petryshyn</td>
<td>Solvability of various boundary value problems for the equation $x'' = f(t, x, x', x'') - y$</td>
</tr>
<tr>
<td>Elżbieta Pol</td>
<td>The Baire-category method in some compact extension problems</td>
</tr>
<tr>
<td>Masami Sakai</td>
<td>A new class of isocompact spaces and related results</td>
</tr>
<tr>
<td>Thomas Richard Shemanske</td>
<td>Representations of ternary quadratic forms and the class number of imaginary quadratic fields</td>
</tr>
<tr>
<td>Tsuyoshi Uehara</td>
<td>On class numbers of cyclic quartic fields</td>
</tr>
</tbody>
</table>