FINITE GROUP ACTION AND VANISHING OF N^G_*

N. J. Dev and S. S. Khare
FINITE GROUP ACTION AND VANISHING OF $N^G_\ast[F]$

N. J. Dev and S. S. Khare

Let G be a finite group (not necessarily abelian). The object of this paper is to describe a G-bordism theory which vanishes. We construct a family F of G slice types, such that the N^G_\ast-module $N^G_\ast[F]$ is zero. Kosniowski has proved a similar result earlier for a finite abelian group. The present work is a generalisation of his result by using basically the same technique. A recent result of Khare is obtained as a corollary to the vanishing of $N^G_\ast[F]$.

1. Preliminaries and statement of the main theorem. Let G be a finite group with centre $C(G)$ and G_2 be the subgroup generated by the elements of order 2 in $C(G)$. We also assume that G_2 is nontrivial. By a G-manifold M we mean throughout a closed differentiable manifold on which G acts smoothly. G_x denotes the isotropy subgroup at $x \in M$. For every $x \in M$, there exists a G_x-module \overline{V}_x which is equivariantly diffeomorphic to a G_x-invariant neighbourhood of x. \overline{V}_x has a submodule V'_x in which G_x acts trivially and a complementary submodule V_x in which no nonzero element is fixed by all of G_x. By the G-slice type of x we mean the pair $[G_x; V_x]$. By a G-slice type we mean a pair $[H; U]$ where U is a H-module in which no nonzero element is fixed by all of H (equivalently U contains no trivial H-submodule). A family F of G-slice types is a collection of G-slice types such that if $[H; U] \in F$ then for every $x \in G \times_H U$ the G-slice type $[G_x; V_x] \in F$. A G-manifold is said to be of type F if for all $x \in M$, $[G_x, V_x] \in F$. Bordism relation is defined in the usual way. Two n-dimensional closed G-manifolds M_1, M_2 of type F are said to be F-bordant if there exists an $(n + 1)$-dimensional compact differentiable G-manifold W of type (F, F) such that the disjoint union of M_1 and M_2 is G equivariantly diffeomorphic to ∂W. It is clearly an equivalence relation on the set of G-manifolds of type F and gives rise to a bordism theory $N^G_\ast[F]$. We note that $N^G_\ast[F]$ is a graded N_\ast-module, N_\ast being the unoriented bordism ring.

Kosniowski has described a family $\tilde{F}(\hat{G})$ in [4] for an abelian group G such that $N^G_\ast[\tilde{F}(\hat{G})] = \hat{0}$, \hat{G} being a subgroup of G containing G_2. As a consequence he proved that if M is a G-manifold (G abelian) in which G_2 acts without fixed points then M is a G-boundary—a result obtained earlier by Khare using a different technique [1]. The main theorem of this
paper is a generalisation of Kosniowski’s theorem in [4] for an arbitrary finite group. Once again another result of Khare [2] is obtained as a corollary of this theorem.

The subgroup G_2 consisting of the identity and elements of order two in the centre of G is isomorphic to \mathbb{Z}_2^k for some $k > 0$. Kosniowski has studied \mathbb{Z}_2^k-bordism in [3] and the techniques used here are generalized from his techniques. We choose once for all a basis g_1, g_2, \ldots, g_k of G_2 and order the elements by

$$g_1 < g_2 < \cdots < g_k < g_1g_2 < \cdots < g_1g_k < \cdots < g_1g_2 \cdots g_k.$$

Now let $[G_x; V_x]$ be the G-slice type of a point x in a G-manifold M and $G(x)$ be the orbit of x. Then $G(x)$ is a closed and compact submanifold of M. Consider the normal bundle $\nu(i)$ of the canonical embedding of $G(x)$ in M. This is a G-vector bundle and its disc bundle is a closed G-invariant tubular neighborhood of $G(x)$. Further G acts as a group of bundle maps on the normal bundle and the fibre over x is G_x-invariant and contains no G_x-trivial subspace. It is precisely V_x the G_x-module present in the G-slice type $[G_x; V_x]$ of x. Let $g \ast$ be the map on the total space $E(\nu(i))$ induced by the action of g on the base space $G(x)$. The G-slice type of $gx \in G(x)$ is $[gG_xg^{-1}; g \ast V_x]$. The underlying vector space of V_x and $g \ast V_x$ are same and the action of $ghg^{-1}, h \in G_x$ on $v \in g \ast V_x$ is same as the action of h on $v \in V_x$. Again if F be a family of G-slice types and $[H; V] \in F$ then from the definition of family the G-slice type $[G_x; V_x]$ of every point $x \in G \times_H V$ belongs to F. Now the G-slice type of $[e,0] \in G \times_H V$ is $[H; V]$ and the G slice type of $[g,0] \in G \times_H V$ is $[gHg^{-1}; g \ast V]$. The G-slice type $[H; V]$ will be denoted by ρ and the collection

$$\{ [gHg^{-1}; g \ast V] | g \in G \}$$

termed as a conjugate class of G-slice types will be denoted by $\bar{\rho}$ or $[H; V]^g$.

Suppose that K is a subgroup of H. We write $K \subset_2 H$ if $H = (x) \times K$ where $x \in G_2$. Quite a number of elements of G_2 may yield H when a direct product of above type is formed. We take the minimal element x according to the total order fixed at the beginning of this article. We now have a homomorphism

$$p = p_{H,K} : H \to K.$$

which is the projection onto the second factor. This is termed as the distinguished projection. It enables us to obtain an H-module p^*U from a K-module U. The modules p^*U and U have the same underlying vector
space and H acts on p^*U via the map p. Corresponding to a G slice type $[K; U]$ such that $K \subset H$ we have an extension function $e = e_{K, H}$ given by

$$e_{K, H}[K; U] = [H; V(K) \oplus p^*U]$$

where $V(K)$ is one dimensional real representation of H in which $h \in H$ acts by multiplication with 1 if $h \in K$ and multiplication with -1 if $h \notin K$. Since $gHg^{-1} = (x) \times gKg^{-1}$ when $H = (x) \times K$, we have

$$e[gKg^{-1}; g_*U] = [gHg^{-1}; V(gKg^{-1}) \oplus p^*(g_*U)]$$

Thus $e_{K, H}$ induces a map $e^g = e_{K, H}^g$ on the collection of conjugate classes of G slice types $[K; U]^g$ and

$$e_{K, H}^g[K; U]^g = [H; V(K) \oplus p^*U]^g.$$

Corresponding to a subgroup \hat{G} of G containing G_2 we have three families of G slice types.

$$F(\hat{G}) = \{[gHg^{-1}; g_*V]|[H, V] \text{ is a } G \text{ slice type with } H \text{ contained in } \hat{G}, g \in G\}$$

$$F'(\hat{G}) = \{[K; U] \in F(\hat{G})|K \cap G_2 \neq G_2\}$$

and

$$\tilde{F}(\hat{G}) = F'(\hat{G}) \cup \{e_{K, H}[K; U]|[K; U] \in F'(\hat{G})\}$$

and $K \subset H$ with $H \cap G_2 = G_2$.

That each collection is a family is clear. Now we are in a position to state the main theorem of this paper.

Theorem 1. If G be a finite group and \hat{G} be a subgroup of G which contains G_2 then $N_*^G[\tilde{F}(\hat{G})] = 0$.

Corollary (Khare [2]). Suppose that G is a finite group. If M is a G-manifold on which G_2 acts without fixed points then M is a G-boundary.

The corollary follows because if G_2 acts without fixed points then an isotropy subgroup H of a point in M satisfies the condition $H \cap G_2 \neq G_2$ so that M is of the type $F'(G)$ and consequently of the type $\tilde{F}(G)$.

The proof of the theorem will be given in §7. In §2, §3, §4 and §5, we develop the necessary tools and results.
2. Vector bundles of type \(\bar{\rho} \). Let \(F' \subseteq F \) be two families of \(G \) slice types with \(F = F' \cup \bar{\rho} \) where \(\bar{\rho} \) is a class of conjugate \(G \) slice types. By a \(G \)-vector bundle of type \(\bar{\rho} \) we mean a \(G \)-vector bundle \(\xi: E(\xi) \rightarrow B(\xi) \) where the set of points of \(E(\xi) \) having \(G \) slice type in \(\bar{\rho} \) is precisely the zero section. We have the bundle bordism groups \(N^G_n[\bar{\rho}] \) obtained by defining a bordism relation on the set of all \(G \) vector bundles of type \(\bar{\rho} \) having total dimension \(n \).

Let \(M^n \) be a \(G \)-manifold of type \(F \) and \(F_\bar{\rho} \) be the set of all points in \(M^n \) with slice type in \(\bar{\rho} \). Then the normal bundle over \(F_\bar{\rho} \) is a \(G \) vector bundle of type \(\bar{\rho} \). This assignment of the normal bundle over \(F_\bar{\rho} \) in \(M^n \) leads to a \(N_* \)-homomorphism

\[
\nu_\bar{\rho}: N^G_n[F] \rightarrow N^G_n[\bar{\rho}].
\]

We have the following proposition and lemmas involving the bundle bordism groups.

Proposition 2. There exists a long exact sequence

\[
\cdots \rightarrow N^G_n[F'] \rightarrow N^G_n[F] \rightarrow N^G_n[\bar{\rho}] \rightarrow N^G_{n-1}[F'] \rightarrow \cdots
\]

where \(F' \subseteq F \) are families of \(G \) slice types such that \(F - F' = \bar{\rho} \).

For proof we refer to 1.4.2 of [3].

Lemma 3. Suppose that \(K \subset H \) and \(\bar{\rho} = [H; V]^g, \bar{\rho}' = [K; U]^g \) be two classes of conjugate \(G \) slice types such that \(e^g(\bar{\rho}') = \bar{\rho} \). Then there exists an \(N_* \)-isomorphism

\[
N^G_n[\bar{\rho}] \rightarrow N^G_{n-1}[\bar{\rho}']
\]

given by \([\xi] \rightarrow [\nu_\bar{\rho} S(\xi)]\), where \(S(\xi) \) is the sphere bundle of \(\xi \).

The proof of this lemma is similar to that given for Lemma 4.5.8 of [3].

Lemma 4. Let \(F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots \) be a sequence of families of \(G \)-slice types with

(i) \(F_0 = \bar{\rho}_0 = \{[e; R^0]\} \)
(ii) \(F_i = F_{i-1} \cup \bar{\rho}_i \) for all \(i \geq 1 \)
(iii) \(\bigcup_{i \geq 0} F_i = F \)

and

(iv) \(e^g(\bar{\rho}_{2i}) = \bar{\rho}_{2i+1} \) for all \(i \geq 0 \). Then \(N_*^G[F] = 0 \).

Proof. Using Proposition 2 and Lemma 3 we get

\[
N_*^G[F_{2i}] = N_*^G[\bar{\rho}_{2i}]
\]

and \(N_*^G[F_{2i+1}] = 0 \).
Taking direct limit

\[N_*^G[F] = \lim_{\rightarrow} N_*^G[F_i] = 0. \]

The rest of the paper is aimed to show that the family \(\tilde{F}(\hat{G}) \) satisfies the conditions laid down in Lemma 4. The \(G \) slice types of \(\tilde{F}(\hat{G}) \) are to be ordered suitably now in order to get the families \(F_0 \subset F_1 \subset \cdots \).

3. Ordering the conjugate classes of \(G \) slice types. We define three distinct relations \(<\) on the collection \(\tilde{A} \) of all subgroups conjugates to subgroups of \(\hat{G} \), on the collection of all \(H \)-modules, \(H \in \tilde{A} \) and finally on the collection of all conjugate classes of \(G \) slice types of the family \(\tilde{F}(\hat{G}) \) and extend each of these relations into a total order on the respective collection. We note that the elements of \(G_2 \) are totally ordered by

\[g_1 < g_2 < \cdots < g_k < g_1g_2 < \cdots < g_1g_k < \cdots < g_1g_2 \cdots g_k \]

and a subgroup \(H_2 \) of \(G_2 \) has a distinguished base \(h_1 < h_2 < \cdots < h_m \) such that \(h_1 \) (≠ identity) is the least element in \(H \) and for \(i > 1 \), \(h_i \) is the least element in \(H \) which is not present in \((h_1, h_2, \ldots, h_{i-1}) \), the subgroup generated by \(h_1, h_2, \ldots, h_{i-1} \). The subgroups of \(G_2 \) are now totally ordered first by the order of the subgroup and then lexicographically on the distinguished base:

\[(e) < (g_1) < (g_2) < \cdots < (g_1g_2 \cdots g_k) < (g_1, g_2) < \cdots. \]

Rule A. Let \(H \) and \(K \) belong to \(\tilde{A} \). We define \(\leq \) by:

(i) if \(|H| \leq |K| \) Then \(H \leq K \),
(ii) if \(|H| = |K| \) and \(|K_2| \leq |H_2| \). Then \(H \leq K \) where \(K_2 = K \cap G_2 \) and \(H_2 = H \cap G_2 \),
(iii) if \(|H| = |K|, |K_2| = |H_2| \) but \(H_2 \leq K_2 \) then \(H \leq K \) and
(iv) if \(|H| = |K|, H_2 = K_2 \) then we order them arbitrarily so as to make the relation \(\leq \) a total ordering on \(\tilde{A} \).

Next a relation \(\preceq \) is introduced on the collection of all nontrivial irreducible \(H \)-modules \(H \in \tilde{A} \). We write \(U \preceq V \) if \(U = V \) or else there exists \(K \subset H \) such that \(U = p^*i^*V \) where \(i: K \to H \) is the natural inclusion and \(p: H \to K \) is the distinguished projection. We now have the following lemma whose proof is similar to Lemma 8 of [4].

Lemma 5. The relation \(\preceq \) is a partial order on the collection of all nontrivial irreducible \(H \)-modules.

We now choose a total ordering on the set of all nontrivial irreducible \(H \)-modules having the same dimension compatible with the partial ordering introduced. The total ordering is now extended to all irreducible
H-modules by writing $U \leq V$ if and only if $\dim U \leq \dim V$. Since any
H-module can be expressed uniquely as the sum of irreducible H-mod-
ules, we can extend this total ordering on all H-modules by lexicography.
The following rule expresses the whole rule coincisely.

Rule B. Let U and V be two H-modules.
(i) If $\dim U \leq \dim V$ then $U \leq V$
(ii) If $\dim U = \dim V$ and V follows U lexicographically then $U \leq V$.

Finally Rule C given as below defines the order \leq on the collection
of all classes of conjugate G slice types of the family $\tilde{F}(\tilde{G})$.

Rule C. Let $\tilde{\rho} = [H; U]^g$, $\tilde{\rho}' = [K; V]^g$ be two classes of conjugate G
slice types of $\tilde{F}(\tilde{G})$
(i) If $\dim U \leq \dim V$ then $\tilde{\rho} \leq \tilde{\rho}'$.
(ii) If $\dim U = \dim V$ and $H \leq K$ then $\tilde{\rho} \leq \tilde{\rho}'$.
(iii) If $\dim U = \dim V$, $H = K$ and $U \leq V$ then $\tilde{\rho} \leq \tilde{\rho}'$.

We now proceed to prove some algebraic results relating to the
extension map e.

4. Algebraic lemmas and extension map. The following lemmas are
generalisations of propositions of Z_2^k bordism given in 4.5 of [3]

Lemma 6. Let $(e) \subset K \subset_2 H \subset G$ and

$g_1 < g_2 < \cdots < g_k,$
$h_1 < h_2 < \cdots < h_m,$

and

$k_1 < k_2 < \cdots < k_{m-1}$

be the distinguished bases of G_2, H_2 and K_2 respectively and r be the
largest integer for which $k_i = h_i$ for all $i < r$. Then K is not contained in a
predecessor of H if and only if $h_i = g_i$ for all $i < r$. (By a predecessor of H
we mean a subgroup $H' = H$ such that $H'_2 < H_2$.)

Proof. We have $(e) \subset K_2 \subset_2 H_2 \subset G_2$. If $K \subset_2 H'$, a predecessor of
H then by definition $K_2 \subset_2 H'_2$, a predecessor of H_2. Further if $K_2 \subset_2 H'_2$, a
predecessor of H_2, then $H'_2 = (x) \times K_2$ (x being chosen minimally)
and $K \subset_2 (x) \times K$, a predecessor of H.

Thus K is not contained in a predecessor of H if and only if K_2 is
not contained in a predecessor of H_2. The latter statement implies and is
implied by $h_i = g_i$ for all $i < r$ and this follows from 4.5.12 of [3].
Lemma 7. Let $K \subset_2 H,$ $K' \subset_2 H$ with K and K' not contained in a predecessor of $H.$ If

$$H = (x) \times K = (x') \times K'$$

where x and x' are chosen minimally, $x \in K',$ $x' \in K$ and K precedes K' then $K \cap K'$ is not contained in a predecessor of $K.$

Proof. We have

$$H_2 = (x) \times K_2 = (x') \times K'_2,$$

and K_2 precedes $K'_2.$ By the Proposition 4.5.13 of [3], $K_2 \cap K'_2$ is not contained in a predecessor of K_2 and this in turn implies that $K \cap K'$ is not contained in a predecessor of $K.$

In order to proceed further we need the following constructions and lemmas.

$S(H) =$ collection of all conjugate classes of G slice types with isotropy subgroup $H.$ For any $K \subset_2 H$ we have the extension function

$$e^g = e_{K,H}^g: S(K) \to S(H)$$

and consequently a function

$$E^g: \bigcup_{K \subset_2 H, K \subset_2 P(H)} S(K) \to S(H).$$

where by $P(H)$ one means a predecessor of $H.$ Let

$$\tilde{S}(K) = S(K) - \text{image} \left\{ E^g: \bigcup_{L \subset_2 K, L \subset_2 P(K)} S(L) \to S(K) \right\}.$$

The function

$$\tilde{E}^g: \bigcup_{K \subset_2 H, K \subset_2 P(H)} \tilde{S}(K) \to S(H)$$

is the restriction of $E^g.$

Lemma 8. Image $\tilde{E}^g = \text{image } E^g.$

Proof. Clearly image $\tilde{E}^g \subseteq \text{image } E^g.$

Let $\tilde{p} \in \text{im } E^g$ i.e. $\tilde{p} = e^g(\tilde{p}')$ for some $\tilde{p}' \in S(K)$ where $K \subset_2 H$ and $K \not\subset_2 P(H).$
If \(\bar{\rho}' \notin \bar{S}(K) \) then \(\bar{\rho}' = e^g(\bar{\rho}'') \) for some \(\bar{\rho}'' \in S(L) \) where \(L \subset 2 K \) and \(L \not\subset 2 P(K) \). By Lemma 6 we have the following distinguished bases of \(H_2, K_2 \) and \(L_2 \):

- \(L_2: g_1 < g_2 < \cdots < g_{s-1} < l_s < \cdots \)
- \(K_2: g_1 < g_2 < \cdots < g_{s-1} < g_s < \cdots < g_{r-1} < k_r < \cdots \)
- \(H_2: g_1 < g_2 < \cdots < g_{r-1} < g_r < h_{r+1} < \cdots \).

We note that \(l_s \neq g_s \) and \(k_r \neq g_r \). So

\[
H = (g_r) \times K \quad \text{and} \quad K = (g_s) \times L.
\]

Writing \(\bar{\rho}'' = [L; U]^g \) we get

\[
\bar{\rho}' = e^g(\bar{\rho}'') = [K; V(L) \oplus q^*U]^g,
\]

and

\[
\bar{\rho} = e^g(\bar{\rho}') = [H; V(K) \oplus p^*(V(L) \oplus q^*U)]^g
\]

\[
= [H; V(K) \oplus V((g_s) \times L) \oplus p^*q^*U]^g
\]

\(q: K \to L \) and \(p: H \to K \) are the distinguished projections.

Taking \(K' = (g_r) \times L \) we note that \(K' \subset 2 H \) and \(K \) precedes \(K' \). Moreover \(K' \not\subset 2 P(H) \). Extending \(\bar{\rho}'' \) through \(K' \) we get

\[
\bar{\rho}''' = e_{K',H}^g(\bar{\rho}'') = [K'; V(L) \oplus q^*U]^g \in S(K')
\]

and

\[
e_{K',H}^g(\bar{\rho}'''') = [H; V(K') \oplus V((g_s) \times L) \oplus p^*q^*U]^g
\]

where \(p': H \to K' \) and \(q': K' \to L \) are the distinguished projections. Since \(qp = q'p' \), we have

\[
e_{K',H}^g(\bar{\rho}''') = [H; V(K') \oplus V(K) \oplus p^*q^*U]^g = \bar{\rho}.
\]

If \(\bar{\rho}''' \in \bar{S}(K') \) then \(\bar{\rho} \in \text{image} \bar{E}^g \). If not then by arguing as before we get a conjugate class of \(G \) slice type \(\bar{\rho}^{(v)} \in S(K'') \) such that \(\bar{\rho} = e^g(\bar{\rho}^{(v)}) \) where \(K'' \subset 2 H \) and \(K < K' < K'' \not\subset 2 P(H) \).

Continuing this way we exhaust all the finite number of possibilities and find some \(\bar{\rho}^{(2n+1)} \in \bar{S}(K^{(n)}) \) such that \(K^{(n)} \subset 2 H, K^{(n)} \not\subset 2 P(H) \) and \(\bar{\rho} = e^g(\bar{\rho}^{(2n+1)}) \) i.e. \(\bar{\rho} \in \text{image} \bar{E}^g \).

Lemma 9. The function

\[
\bar{E}^g: \bigcup_{K \subset 2 H} S(K) \to S(H)
\]

is injective.
Proof. Suppose that $$\bar{p} = [K; U]^g$$, $$\bar{p}' = [K'; U']^g$$
where K and $K' \subset H$, K and $K' \not\subset \mathcal{P}(H)$, K precedes K' and
$$e^g(\bar{p}) = e^g(\bar{p}') = [H; V]^g.$$
From Lemma 6 we get
$$H = (g_r) \times K = (g_s) \times K'$$
where g_r and g_s are the minimal possible choices and $s < r$. We have
$$[H; V(K) \oplus p^*U]^g = [H; V]^g = [H; V(K') \oplus p'^*U']^g$$
where $p: H \to K$, $p': H \to K'$ are the distinguished projections. Writing $U = \sum n_i U_i$ and $U' = \sum n'_j U'_j$ where U_i and U'_j are nontrivial irreducible K and K' modules respectively we get
$$V(K) \oplus \sum n_i p^*U_i = V(K') \oplus \sum n'_j p'^*U'_j.$$
Since $K \neq K'$, $V(K) = p'^*U'$ for some t and $n'_t = 1$. The underlying vector space of these modules is R.
We write $g_s = g^a_sk$, $a_i \in \{0, 1\}$ and $k \in K$ and consider its action on $x \in V(K) = p'^*U'_t$. We get $g_s x = x$ i.e. $(-1)^{a_i} x = x$ i.e. $a_1 = 0$. So $g_s \in K$. Similarly $g_r \in K'$. By Lemma 7, $L = K \cap K' \not\subset \mathcal{P}(K)$ and $K = (g_s) \times L$ (L is the intersection of two normal subgroups of H). We have also the restriction function
$$r^g = r^g_{\mathcal{H}, K}: S(H) \to S(K)$$
such that $r^g[H; V]^g = [K; I^*V]^g$ where I^*V is the nontrivial part of i^*V, $i: K \to H$ being the natural inclusion. Note that
$$r^g_{\mathcal{H}, K} e^g_{K,H} [K; U]^g = r^g_{\mathcal{H}, K}[H; V(K) \oplus p^*U]^g$$
$$= [K; I^*(V(K) \oplus p^*U)]^g$$
$$= [K; I^*p^*U]^g = [K; i^*p^*U]^g = [K; U]^g$$
i.e. $r^g_{\mathcal{H}, K} e^g_{K,H} = \text{identity}$.
Therefore
$$\bar{p} = [K, U]^g = r^g_{\mathcal{H}, K} e^g_{K,H} [K; U]^g = r^g_{\mathcal{H}, K} e^g_{K',H} [K'; U']^g$$
$$= r^g_{\mathcal{H}, K}[H; V(K') \oplus p'^*U']^g$$
$$= [K; V(K' \cap K) \oplus I^*p'^*U']^g$$
$$= [K; V(L) \oplus NTq^*j^*U']^g$$
where \(i: K \rightarrow H, \quad i': K' \rightarrow H, \quad j: L \rightarrow K, \quad j': L \rightarrow K' \) are the natural inclusions and \(p: H \rightarrow K, \quad p': H \rightarrow K', \quad q: K \rightarrow L, \quad q': K' \rightarrow L \) are the distinguished projections. We have \(p'i = j'q \) and \(NT \) stands for the nontrivial part. Also

\[
\rho^g_{K,L}(\bar{\rho}) = [L; NTj^*q^*U']^g = [L; NTj'^*U']^g
\]

(since \(qj = \text{id} \)). So

\[
e_{L,K}^g \rho^g_{K,L}(\bar{\rho}) = [K; V(L) \oplus NTq^*j'^*U']^g = \bar{\rho}.
\]

Thus \(\bar{\rho} = e(\rho'') \) for \(\rho'' = r_{K,L}(\bar{\rho}) \in S(L) \) and \(L \subset_2 K, \quad L \not\subset_2 P(K) \) i.e.

\[
\bar{\rho} \in \text{im} \left(E^g: \bigcup_{L \subset_2 K \atop L \not\subset_2 P(K)} S(L) \rightarrow S(K) \right)
\]

i.e. \(\bar{\rho} \not\in \bar{S}(K) \)—a contradiction.

With this we come to an end of this section.

5. Decomposition of the collection of conjugate classes of \(G \) slice types of a family. If we now define the dimension of a conjugate class of \(G \)-slice types as dimension of the module present therein then it is clear that there are only a finite number of conjugate classes of \(G \) slice types of a given dimension. The classes of the family \(\hat{F}(\hat{G}) \) are totally ordered by the Rule C and we index them by nonnegative integers as

\[
\bar{\rho}_0 < \bar{\rho}_1 < \bar{\rho}_2 <
\]

where \(\bar{\rho}_0 = \{[(e), R^0]\} \). We define \(F_j = \bigcup_{i \leq j} \bar{\rho}_i \). \(F_j \) is clearly a family of \(G \) slice types. Corresponding to the family \(F_j \) we form the collection \(\bar{F}_j = \{ \bar{\rho}_0, \bar{\rho}_1, \ldots, \bar{\rho}_j \} \) and define inductively three subcollections \(A_j, B_j \) and \(C_j \) of \(\bar{F}_j \) such that \(\bar{F}_j = A_j \cup B_j \cup C_j \). For \(j = 0 \), \(\bar{F}_j = \{ \bar{\rho}_0 \} \) and we set

\[
A_j = \{ \bar{\rho}_0 \}, \quad B_j = \emptyset, \quad C_j = \emptyset
\]

Let \(A_{j-1}, B_{j-1}, C_{j-1} \) be defined for some \(j \geq 1 \). We have

\[
\bar{F}_{j-1} = A_{j-1} \cup B_{j-1} \cup C_{j-1}
\]

and

\[
\bar{F}_j = \bar{F}_{j-1} \cup \{ \bar{\rho}_j \}.
\]

There are two possibilities:

(i) either \(\bar{\rho}_j = e^g(\bar{\rho}) \) for some \(\bar{\rho} \in A_{j-1} \) or

(ii) \(\bar{\rho}_j \neq e^g(\bar{\rho}) \) for any \(\bar{\rho} \in A_{j-1} \).

In case of (i) We define

\[
A_j = A_{j-1} - \{ \bar{\rho} \}, \quad B_j = B_{j-1} \cup \{ \bar{\rho}_j \}, \quad C_j = C_{j-1} \cup \{ \bar{\rho} \}
\]
and in case of (ii)

\[A_j = A_{j-1} \cup \{ \bar{\rho}_j \}, \quad B_j = B_{j-1}, \quad C_j = C_{j-1}. \]

We now establish an analogue of Lemma 9 of [4].

Lemma 10. There is at most one conjugate class of \(G \) slice types \(\bar{\rho} \in A_{j-1} \) such that \(e^g(\bar{\rho}) = \bar{\rho}_j \).

Proof. The proof of this lemma is given by induction. Clearly the lemma holds for \(j = 1 \). Let it be true for all \(i < j \).

Let \(\bar{\rho}_j = e^g(\bar{\rho}_m) \) and take \(\bar{\rho}_j \in S(H) \) and \(\bar{\rho}_m \in S(K) \) with \(K \subseteq H \). We claim that \(K \not\subseteq P(H) \). If \(K \subseteq P(H) \) then we choose \(J \) to be the least of all predecessors of \(H \). We get \(K \subseteq J \) and

\[\bar{\rho}_t = e_{k,j}^g(\bar{\rho}_m) < \bar{\rho}_j = e_{k,H}^g(\bar{\rho}_m). \]

By the induction hypothesis there exists at most one such \(\bar{\rho}_m \) such that \(\bar{\rho}_t = e_{k,j}^g(\bar{\rho}_m) \). Consequently neither \(\bar{\rho}_m \) nor \(\bar{\rho}_t \) belongs to \(A_{j-1} \). So

\[K \not\subseteq P(H) \quad \text{and} \quad \rho_m \in \bigcup_{K \subset P(H)} S(K). \]

By Lemma 8, this implies

\[\bar{\rho}_j \in \text{image } E^g = \text{image } \overline{E}^g. \]

If now

\[\rho_m \in \text{image } \left(E^g : \bigcup_{L \subseteq K} S(L) \to S(K) \right) \]

then \(\bar{\rho}_m = e^g(\bar{\rho}') \) for \(\bar{\rho}' \in S(L), \ L \subseteq K \) and \(L \not\subseteq P(K) \). From the construction of the families \(A_j \) it follows that \(\bar{\rho}_m \not\in A_{j-1} \). So

\[\bar{\rho}_m \in \overline{S}(K) = S(K) - \text{image } \left(E^g : \bigcup_{L \subseteq K} S(L) \to S(K) \right). \]

By Lemma 9, \(\overline{E}^g \) is injective and this establishes our lemma.

The next theorem further characterises the families \(A_j \).

Lemma 11. If \(N \) is sufficiently large compared to \(n \) then \(A_N \) consists of conjugate classes of \(G \) slice types of dimension greater than \(n \).

Proof. Let \(F_i \) be the family which contains all conjugate \(G \) slice types of dimension \(\leq n \) and

\[A_i = \{ \bar{\rho}_{i_1}, \bar{\rho}_{i_2}, \ldots, \bar{\rho}_{i_k} \}. \]
with \(\overline{\rho}_i = \{ K_t; U_t \}^g, 1 \leq t \leq k \). Then \(K_t \cap G_2 \neq G_2 \) because \(K_t \cap G_2 = G_2 \Rightarrow \overline{\rho}_i = e^g(\overline{\rho}') \) for some \(\overline{\rho}' \). We take

\[
\rho_i = e^g(\rho_i)
\]

If \(N \geq \max\{ j_1, \ldots, j_k \} \) then clearly \(A_N \) does not contain any conjugate class of \(G \) slice types of dimension \(\leq n \).

The next theorem reveals the necessity of ordering the conjugate classes of \(G \) slice types.

Theorem 12. If \([H; U]\) is a \(G \) slice type and \(\overline{\rho} \in A_j \) is a conjugate class of \(G \) slice types of an orbit of a point of \(G \times_H U \), then either \(\overline{\rho} = [H; U]^g \) or \([H; U]^g \not\in \overline{F}_j \).

Proof. Let \(\overline{\rho} \neq [H; U]^g \). Then \(\overline{\rho} \) is not the conjugate class of \(G \) slice types of the orbit of \([e, 0] \in G \times_H U \). So \(\overline{\rho} \) is a conjugate class of \(G \) slice types of the orbit of a point \([e, u] \in G \times_H U, 0 \neq u \in U \). The isotropy subgroup of \([e, u]\) is a proper subgroup \(K \) of \(H \). We can write \(\overline{\rho} = [K; I^*U]^g \) where \(I^*U \) is the nontrivial part of \(i^*U \), \(i: K \rightarrow H \) being the natural inclusion. Clearly \(\dim I^*U \leq \dim i^*U = \dim U \). We now discuss the two possible cases separately.

Case I. \(K \subset H \) i.e. \(H = \langle x \rangle \times K \).

We have

\[
e_{K,H}(\overline{\rho}) = [H; V(K) \oplus p^*I^*U]^g
\]

where \(p: H \rightarrow K \) is the distinguished projection.

Since \(K \) fixes \(u \in U \), \(K \) has trivial action on the one dimensional subspace \(L(u) \) spanned by \(u \). Also \(H \) has nontrivial action on \(L(u) \). So \(\langle x \rangle \) acts on \(L(u) \) nontrivially and we get \(V(K) = L(u) \subset U \). If

\[
\dim(V(K) \oplus p^*I^*U) < \dim U
\]

then

\[
\overline{\rho} < \overline{\rho}_k = e_{K,H}^g(\overline{\rho}) \leq [H; U]^g = \overline{\rho}_i.
\]

If

\[
\dim(V(K) \oplus p^*I^*U) = \dim U
\]

then \(\dim I^*U \) is just one less than \(\dim U \) and by writing \(U = V(K) \oplus U' \) we get \(I^*U = i^*U' \). So \(p^*I^*U = p^*i^*U' \leq U' \) by the ordering of irreducible \(H \)-modules and its extension by lexicography i.e. \(V(K) \oplus p^*I^*U \leq V(K) \oplus U' = U \). Again we have

\[
\overline{\rho} < \overline{\rho}_k = e_{K,H}^g(\overline{\rho}) \leq [H; U]^g = \rho_i.
\]
Case II. Let \(K \triangleleft_2 H \) i.e. \(K < H \) but \(H \neq (x) \times K \) for any \(x \in G_2 \).

If \(K_2 = G_2 \) then the class \(\bar{\rho} \) is the \(e^g \)-image of some conjugate class of \(G \) slice types occurring earlier according to the order so constructed. But this means \(\bar{\rho} \not\in A_j \)—a contradiction. So \(K_2 \nsubseteq G_2 \) and there exists an element \(x \in G_2 \) such that \((x) \times K \) can be formed. Since \(K \) is a proper subgroup of \(H \), \(|(x) \times K| \leq |H| \). If \(|(x) \times K| < |H| \) then by (i) of Rule A

\[\bar{\rho} < \bar{\rho}_k < \bar{\rho}_t. \]

If \(|(x) \times K| = |H| \) then \(|H: K| = \text{index of } K \text{ in } H = 2 \). Since \(K \triangleleft_2 H \), \(x \not\in H \). Also there does not exist \(y \in G_2 \) such that \(y \in H \) but \(y \not\in K \).

Hence \(K_2 = H_2 \) and \(|(x) \times K_2| > |H_2| \). By (ii) of Rule A, \((x) \times K < H \) and

\[\bar{\rho} < \bar{\rho}_k < \bar{\rho}_t. \]

Now

\[\bar{\rho}_i = [H; U]^g \in \bar{F}_j \Rightarrow \bar{\rho}_t < \bar{\rho}_j \]

\[\Rightarrow \bar{\rho} < e^g(\bar{\rho}) = \bar{\rho}_k < \bar{\rho}_t < \bar{\rho}_j \]

\[\Rightarrow \bar{\rho} \in A_{k-1} \text{ and } \bar{\rho} \not\in A_k \text{ (Lemma 10)} \]

\[\Rightarrow \bar{\rho} \not\in A_j \text{—a contradiction.} \]

A consequence of this theorem is:

Corollary 13. The union of all conjugate classes of \(G \) slice types of \(B_j \) and \(C_j \) is a family.

Proof. Let \([H; U]^g \in B_j \cup C_j \subseteq F_j \) and \(\bar{\rho} \) is a conjugate class of \(G \)-slice types of an orbit of a point of \(G \times_H U \). Clearly \(\bar{\rho} \in F_j \). If \(\bar{\rho} \not\in B_j \cup C_j \) then \(\bar{\rho} \in A_j \) and this contradicts Theorem 12.

6. Proof of the main theorem. We denote the elements of \(C_j \) by \(\bar{\sigma}_0, \bar{\sigma}_2, \ldots, \bar{\sigma}_{2k} \) where \(k = |C_j| \) and \(\bar{\sigma}_{2t} \leq \bar{\sigma}_{2m} \) if and only if \(t \leq m \). We have \(B_j = \{ e^g(\bar{\sigma}_{2i}) | 0 \leq i \leq k \} \) and write \(e^g(\bar{\sigma}_{2i}) = \bar{\sigma}_{2i+1} \).

By Corollary 13, \(\hat{F}_k = \bigcup_{i=0}^k \bar{\sigma}_i \) is a family when \(k \) is odd. When \(k \) is even \(\hat{F}_k \) is again a family because the \(G \) slice types of \(\bar{\sigma}_k \) are ‘maximal’ in \(\hat{F}_k \). By Lemma 11 we see that \(\hat{F}(\hat{G}) \) satisfies all the conditions of Lemma 4 and so

\[N^{\mathcal{L}} \left[\hat{F}(\hat{G}) \right] = 0. \]

An alternative proof of Theorem 1 can be given by generalising Theorem 4.5.11 of [3].
Theorem 14. There is an isomorphism

\[\bigoplus v_i : N^G_\bullet [F_j] \to \bigoplus_{\rho_i \in A_j} N^G_\bullet [\rho_i]. \]

Proof. We prove the result by induction. Clearly the result is true for \(j = 0 \). Now suppose it is true for \(j - 1 \) i.e.

\[\bigoplus v_i : N^G_\bullet [F_{j-1}] \to \bigoplus_{\rho_i \in A_{j-1}} N^G_\bullet [\rho_i]. \]

From the long exact sequence of Proposition 2 we have the composite

\[v_i \partial_j : N^G_n [\bar{\rho}_j] \to N^G_{n-1} [\bar{\rho}_i]. \]

If \(v_i \partial_j \neq 0 \) then \(\bar{\rho}_i \) is a conjugate class of \(G \) slice types of \(G \times_H V \) where \([H, V]^g = \bar{\rho}_j \) and by Theorem 12 \(\rho_i \notin A_j \).

Now for the class \(\bar{\rho}_j \) there exists almost one conjugate class of \(G \) slice types \(\bar{\rho}_i \) such that \(e^g(\bar{\rho}_i) = \bar{\rho}_j \). If there does not exist any such \(\bar{\rho}_i \in A_{j-1} \) then for any \(\bar{\rho}_i \in A_{j-1} \) both \(\bar{\rho}_i \) and \(\bar{\rho}_j \) belong to \(A_j \) and \(v_i \partial_j = 0 \) for every \(\bar{\rho}_i \in A_{j-1} \). Thus \(\bigoplus_{\bar{\rho}_i \in A_{j-1}} v_i \partial_j = 0 \) and consequently \(\partial_j = 0 \). We have a short exact sequence

\[0 \to N^G_n [F_{j-1}] \to N^G_n [F_j] \to N^G_{n-1} [\bar{\rho}_j] \to 0. \]

If again for \(\bar{\rho}_j \) we have \(\bar{\rho}_i \in A_{j-1} \) s.t. \(\bar{\rho}_j = e^g(\bar{\rho}_i) \) then neither \(\bar{\rho}_j \) nor \(\bar{\rho}_i \) belong to \(A_j \) and by Lemma 3

\[v_i \partial_j : N^G_n [\bar{\rho}_j] \to N^G_{n-1} [\bar{\rho}_i] \]

is an isomorphism and we have again a short exact sequence

\[0 \to N^G_n [\bar{\rho}_j] \to N^G_n [F_{j-1}] \to N^G_n [F_j] \to 0. \]

Both the short exact sequences split as the modules involved are vector spaces over \(\mathbb{Z}_2 \). So

\[N^G_n [F_j] = \bigoplus_{\rho_i \in A_j} N^G_n [\rho_i]. \]

Corollary 15. \(N^G_\bullet [\tilde{F}(\hat{G})] = 0. \)

Proof. Corresponding to the positive integer \(n \) we take all conjugate classes of \(G \) slice types of dimension \(\leq n + 1 \). If \(F_N \) be the union of all these classes then

\[N^G_n [\tilde{F}(\hat{G})] = N^G_n [F_N] = \bigoplus_{\rho_i \in A_N} N^G_n [\rho_i]. \]

If now \(N \) is made sufficiently large compared to \(n \) then by Lemma 11 \(A_N \) consists of all conjugate classes of \(G \) slice types of dimension \(> n \) and hence the isomorphism \(\bigoplus v_i \) is zero.
Corollary 16.

\[N^G_*[F'(\hat{G})] \cong N^G_{*-1}[\tilde{F}(\tilde{G}), F'(\hat{G})]. \]

This follows from the main theorem and the long exact sequence for the pair \(F'(\hat{G}) \subset \tilde{F}(\tilde{G}) \) of families of \(G \)-slice types.

References

Received July 9, 1984.

Lady Keane's College

Shillong, India

AND

North Eastern Hill University

Biju Campus, Bhagyakul Road

Laitumkhrah, Shillong, 793003

Meghalaya, India
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael James Cambern</td>
<td>Near isometries of Bochner L^1 and L^∞ spaces</td>
</tr>
<tr>
<td>Kun Soo Chang, Gerald William Johnson and David Lee Skoug</td>
<td>The Feynman integral of quadratic potentials depending on two time variables</td>
</tr>
<tr>
<td>Robert Coleman</td>
<td>One-dimensional algebraic formal groups</td>
</tr>
<tr>
<td>Alberto Collino</td>
<td>The Abel-Jacobi isomorphism for the cubic fivefold</td>
</tr>
<tr>
<td>N. J. Dev and S. S. Khare</td>
<td>Finite group action and vanishing of $N_G^*[F]$</td>
</tr>
<tr>
<td>Harold George Diamond and Jeffrey D. Vaaler</td>
<td>Estimates for partial sums of continued fraction partial quotients</td>
</tr>
<tr>
<td>Kenneth R. Goodearl</td>
<td>Patch-continuity of normalized ranks of modules over one-sided Noetherian rings</td>
</tr>
<tr>
<td>Dean Robert Hickerson and Sherman K. Stein</td>
<td>Abelian groups and packing by semicrosses</td>
</tr>
<tr>
<td>Karsten Johnsen and Harmut Laue</td>
<td>Fitting structures</td>
</tr>
<tr>
<td>Darren Long</td>
<td>Discs in compression bodies</td>
</tr>
<tr>
<td>Joseph B. Miles</td>
<td>On the growth of meromorphic functions with radially distributed zeros and poles</td>
</tr>
<tr>
<td>Walter Volodymyr Petryshyn</td>
<td>Solvability of various boundary value problems for the equation $x'' = f(t, x, x', x'') - y$</td>
</tr>
<tr>
<td>Elżbieta Pol</td>
<td>The Baire-category method in some compact extension problems</td>
</tr>
<tr>
<td>Masami Sakai</td>
<td>A new class of isocompact spaces and related results</td>
</tr>
<tr>
<td>Thomas Richard Shemanske</td>
<td>Representations of ternary quadratic forms and the class number of imaginary quadratic fields</td>
</tr>
<tr>
<td>Tsuyoshi Uehara</td>
<td>On class numbers of cyclic quartic fields</td>
</tr>
</tbody>
</table>