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In this paper, we consider the norm form of a definite rational
quaternion algebra restricted to the elements of trace zero in a maximal
order of the algebra. When the algebra has class number one, we derive
an equation which relates the representation numbers of the norm form
to the class number of imaginary quadratic extensions of the rational
numbers.

O Introduction. Kneser [8] observed that the existence of a relation
between these two quantities is not unexpected. When compared to the
Dirichlet class number formula, the Minkowski-Siegel formulas suggest a
connection between the weighted average of the number of primitive
representations of an integer m by the different forms in the genus of a
given definite ternary quadratic form and the number of ideal classes in
an order of Q(\/-m) (e.g. see [3] Appendix B). This connection is
evidenced by comparing the local /^-factors in each formula. In the case
that the genus consists of only one class, one derives information about
the representation numbers of the given form. However, this approach has
two disadvantages. First, the job of determining the p-ίactors for primes p
dividing twice the discriminant of the form is at best awkward, and
second, such an analytic proof would not provide as explicit a correspon-
dence between ideal classes and primitive elements as the one given by the
arithmetic approach which we shall use.

In [6], Gauss showed that the number of primitive integral solutions
(i.e. X J , Z G Z and (x,y,z) = 1) to x2 + y2 + z2 = m is a constant
multiple of the class number of primitive binary quadratic forms of
discriminant -Am the constant is 12 or 24 depending only on the
congruence class of m modulo 4. In the 1920's, Venkov [15] elegantly
reproved Gauss' result by viewing the ternary form as the (reduced) norm
of a generic element of trace zero in the maximal order

(Hurwitz's quaternions) in the quaternion algebra (z:i<fi). Rehm [11]
recently reproved some of Venkov's results in a more modern framework.
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In this paper, we extend the ideas of Venkov and Rehm to consider
ternary forms realized by restricting the norm form of various definite
quaternion algebras over Q to the elements of trace zero. Such a form has
the shape ax2 + by2 + abz2 with a, b e Q x . There are two natural lines
along which to generalize the results of Gauss and Venkov. One can ask
for the number of primitive integral solutions to equations of the form
ax2 + by2 + abz2 = m, or one may take the reduced norm form of the
quaternion algebra and restrict it to the elements of trace zero in various
orders in the algebra and ask for a characterization of its representation
numbers on these orders. In [13], we considered the first question; in the
present paper, we consider the second. The questions are, of course,
intimately related—they coincide in the case of Hurwitz's quaternions and
the maximal order Λ above. The main constraint to obtaining a generali-
zation of Gauss' result using Venkov's ideas is the need to choose a
quaternion algebra in which the (maximal) orders are principal ideal rings.
Generalizations to algebras with class numbers greater than one are under
present consideration by the author, although they require adelic methods
which we have circumvented here by restricting to the class number one
case.

Let 2ί be a definite rational quaternion algebra of class number one
and Λ a maximal order in 3ί. It will turn out that the only such algebras
are those ramified at a unique finite prime q (and at infinity). Let m be a
positive integer not divisible by 4 and write m = ra0/

2 with m0 square-
free. Denote by T(m) the number of primitive μ e Λ with trace 0 and
reduced norm m, and let h(m) denote the order of the ideal class group
of proper β^-ideals in Q(]/-m). Let ω(m) denote the number of units in
Θf and |ΛX | the order of the unit group, Λx, of Λ.

We obtain the following theorem:

THEOREM. Suppose that T(m) > 0. Then

ω(m)T(m) = ί |Λ x | ε m ifqίm

h(m) l 2 | Λ x | ε m if q \ m

where

(1 ifm = 1,2 (mod 4)

εm = < 2 ifm = Ί (mod 8)

(4 ifm = 3 (mod8).

The idea of the proof is quite straightforward. Basically, it follows the
general plan described by Venkov and utilizes the modern framework
which Rehm has presented. Specifically, in each algebra 21 we first fix a
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maximal order Λ. For a given positive integer m, we consider all primitive
λ e Λ such that λ2 = -m and form the "root bundle" [λ] = {ελε-1|ε <=
Λ x } where Λ x is the unit group of Λ. Let W denote the set of all such
root bundles and let G denote the ideal class group of proper C^-ideals.
Following Rehm, we define a map which induces a group action of G on
W. The theorem is obtained by determining the number of orbits under
this action and the number of primitive "roots" contained in each root
bundle.

There are a number of technical difficulties which arise and encumber
the general implementation of this plan of proof. They necessitate a
detailed analysis of the arithmetic of the individual maximal orders Λ and
an investigation of the connection between the arithmetic of the quadratic
field Q(]/-m) and of its various embeddings in the algebra 31.

This paper is divided into four sections. The first two contain nota-
tion and general results about rational quaternion algebras. The third is
devoted to the detailed analysis of the arithmetic of the maximal order,
the definition of Rehm's map, a study of the bundles and of the connec-
tion between the arithmetic in the maximal order and in quadratic
subfields of the algebra. An example is worked out in detail at the end of
this section. The fourth section describes the results which one obtains
regarding integral representations. In general, the notation used is that of
[11].

The author wishes to thank J. Cremona and A. Pizer for useful
conversations, and M. Kneser for comments and suggestions about [13]
which are reflected in this present work.

1. Notation. Let Z, Q, R denote the rational integers, rational num-
bers and real numbers respectively. For a finite prime p of Q, denote by
Qp the field of /?-adic numbers and by Zp the subring of /?-adic integers.
We shall also let oo denote the infinite prime of Q and sometimes denote
R by Q^. For a ring R, denote by Rx the group of all invertible elements
of R, and by M2(R) the ring of 2 X 2 matrices with entries in R. Finally,
if A c B are groups, let [B: A] denote the index of A in B.

We now remind the reader of some of the basic facts concerning
quaternion algebras. The reader is referred to [12] or [16] for more detail.
Let K be a field (of characteristic not two) and a, b e Kx. We denote by

K

the quaternion algebra over K with basis (as a K-vεdoτ space) 1, /, j , k
subject to the relations i2 = α, j 2 = b, ij = k = -ji. If L is an extension
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field of K, then

K

For a = w + xi + jy + zk e 21, we define the conjugate of α to be
a = w — xi — yj — zk. One verifies thai a + β = a +β, aβ = βay a = a
and ra = rα for r & K. Using this notion, we define the {reduced) norm
of a by ΛΓ(α) = αά (= w2 - ax2 - by2 + abz2) and the (reduced) trace
of α by Tr(α) = α + α (= 2w). In particular, N(a), Tr(α) e iC It is easy
to check that if α e 21 and a £ K, then the minimal polynomial over K
of which α is a root is X2 - Tr(α)Z + N(a).

If 21 is a quaternion algebra over Q, and p is a prime of Q (finite or
infinite), denote by %p the quaternion algebra 2ί ΘQ Q ,̂. If L is a
Z-submodule of Λ, and /? any finite prime of Q, let Lp = L ® z Z^. Let /?
be any prime of Q. Up to isomorphism, there are precisely two quaternion
algebras over Qp: M2(Qp) and the unique quaternion division algebra
over Q^. We say that p ramifies in 2ί if %p is a division algebra, and that
p splits otherwise. The set of ramified primes is finite, even in number
(counting oo), and characterizes 21 up to isomorphism.

Let K = Q or Q^ (p finite) and let 0 be the ring of integers in K. If
21 is a quaternion algebra over K, then by an order in 2t, we shall mean a
free 0-module Λ of rank 4 which is also a subring of 2ί containing 1. One
can show that for a in an order Λ, N(a) and Tr(α) are in 0. For this and
other details concerning quaternion algebras, the reader is referred to [12].

Throughout, we shall be concerned with definite quaternion algebras

Q
We may and therefore shall assume that α, b e Z and a, b < 0. Note that
this makes the norm form positive definite and hence makes 21 a division
algebra. Let Λ c 21 be an order and μ e Λ. For a finite prime p of Q we
say that μ is p-primitive if whenever μ = cv with c e Z , *> G Λ, then
p I c. We say that μ is primitive if it is /^-primitive for all primes p.

2. Preliminaries. Throughout, let 21 be a definite rational quaternion
algebra. The following result is well-known.

PROPOSITION 2.1. Let μ e 21, μ <£ Q. ΓAew rte centralizer of μ in 21 z's
the subfieldof 2ί, Q(μ) = {r + 5μ|r, 5 G Q } .

Let m be a positive integer and μ, P e 2ί with μ2 = v2 = -m. We
characterize the set ^4μ „ = {α e 21 |αμ = va) with

PROPOSITION 2.2. Aμv is a right Q(μ)-vector space of dimension 1.
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Proof. Since μ2 = v2 = -m, the map μ -* v induces an isomoφhism
of Q(μ) and Q(v) which, by the Skolem-Noether theorem [12], extends to
an inner automoφhism of 9ί. Thus there exists an α0 e 9ίx such that
v = oίQμoίQ1. Let β e Aμv, β Φ 0. Since a^μa^ = v = βμβ'1, a^ιβ is in
the centralizer of μ. By Proposition 2.1, we have αo1/? e Q(μ) or β e
α0Q(μ) from which the proposition follows.

In this paper, we are interested in definite rational quaternion alge-
bras, 91, which have class number one (i.e. the maximal orders all have
class number one). Since 9ί is definite, it is ramified at infinity and hence
at an odd number of finite primes. It follows from the class number
formula [2], [5] for maximal orders, that class number one occurs if and
only if 9ί is ramified at infinity and at precisely one of the primes q = 2,
3, 5, 7, 13. A useful table of class and type numbers of Eichler (in
particular maximal) orders can be found in [9]. The case of q = 2 is that
of Hurwitz's quaternions which has been considered in [11], [15], so we
shall concern ourselves with the other four cases.

Denote by 2ί(#) the unique (up to isomoφhism) rational quaternion
algebra ramified precisely at the primes q, oo. From Proposition 5.1, 5.2
of [10], we have that if q = 3 (4),

Q
and if q s= 5 (8),

Q
Moreover, a maximal order A(q) of %{q) (in terms of the canonical basis
of 91 (q)) is given by:

( y ) ( ^ ) Zy + ZA: if q Ξ 3 (4) or

(2.1) A(,)-z(I±ft*)+z(ί±^±*) + z, + Z*

if q = 5(8).

We also fix for the remainder of the paper the order

(2.2) Λ0 = Z + Zi + Zy+.ZΛ

Henceforth, we restrict to the case of class number one, i.e. q = 3, 5,
7,13. Since class number one implies that the type number is one, any two
maximal orders of 9l(#) are conjugate (by an element of 2ί(#)x).
Furthermore, since the questions which we wish to consider regard the
representation numbers of the norm form restricted to a maximal order,
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the answers will be independent of the particular maximal order we
choose. Thus for convenience, we shall restrict our attention to the
maximal order A(q) defined above.

Let 21 = %(q) and Λ = A(q). Recall that Λo c Λ. We want to
consider the notion of primitive elements in both Λo and Λ. We record
some elementary observations as:

LEMMA 2.3. (1) Let μ e Λ 0 andp e Z a prime. Then
(a) μ is p-primitive in A implies μ is p-primitiυe in Λo;
(b) μ is primitive in A implies μ is primitive in Λo;
(c) μ is primitive in Λo implies μ is p-primitive in A for all primes

p>2;
(d) μ is primitive in Λo and N(μ) & 0 (4) implies μ is primitive in A.
(2) Let v G Λ be primitive in A. Then 4 ^ G A 0 and is p-primitive in

A for all primes p > 2.

Let m be a positive integer and write m = m0f
2 with m0 square-free.

Let μ, ϊ ' G Λ b e primitive in Λ with μ2 = v2 = -m. We wish to consider
the set Tμv = {λG Λ|λ*> = ?λ}. It is clear that Tμv = Aμv Π Λ (i.e., the
intersection of a rank 4 Z-module and a two-dimensional Q-vector space)
is a free Z-module of rank 2.

Write

with a = 1 if q = 3 (4), and a = 2 if q s 5 (8).

LEMMA 2.4. Wzϊλ /λe flfowe notation, suppose that (f,2q) = 1.
/Aere exists a Z-basis ξ,ηofT such that (N(η),f) = 1.

Proof. Let μ0 = 4μ, J>0 = 4P. Then by Lemma 2.3, ju0, v0 e Λo and
are /^-primitive for all primes p > 2. Let μ0 = xxz + x2j + x3k and
ô = JV + ^2^ + Λ^ Then x7, j , e Z , / = 1, 2, 3 and the greatest com-

mon divisors (xv x29 x3) and (yv y2, y3) have only 2 as a possible prime
divisor. Since μ2 = v2 = -m, one checks that for any λ e Λ the element
λμ 4- i>λ is in Tμv. Consider the elements γ1? γ2, γ3 in 7̂  ̂  defined by:

Ύι = 4(μ + v) = (xx + Λ ) i + (x2 + Λ ) y + (x3 + Λ)fc,

Ϊ2 = 4 ( φ + w) = -«(^i + JΊ) + «(Λ ~ xi)J + (^2 " ^ ) ^ ?

Y3 = 4(M + υ) = -9(^2 + 72) + 9(^3 - Λ ) ' ' + ( J Ί ~ ^ I ) ^

One computes

N(y2) = 2a(16m + axxyλ - ^ 2 j 2 - aqx3y3),

- axλyλ 4- ^2 <y2 - aqx3y3).



TERNARY QUADRATIC FORMS 229

Let p be a prime dividing /. Then one of γ l9 γ2, γ3 has norm not divisible
by p. Otherwise, since p \ 2q we have

ΞΞ 0 (mod p) where A =
α
(3

α 9 -aq

and since det(yί) = 2(aq)2 & 0 (p) we must have x ^ = x2j>2

 Ξ

(/?). Clearly, /? cannot divide all the x/s since μ0 is /^-primitive. More-
over, p cannot divide two of the x/s since this would imply p divides the
third. Thus p divides at most one x,.. But this implies p divides at least 2
and hence all three y(% contradicting v0 is /^-primitive. Thus one of γl9 γ2

or γ3 has norm not divisible by p.
It is now a standard argument which shows that a basis of the desired

type can be found.

3. The Form ax2 + qy2 4- aqz2. For the remainder of the paper we fix

with a = 1 if q = 3, 7, and a = 2 if q = 5, 13. We let Λ = Λ(#) be the
maximal order given in (2.1) and Λo the suborder given in (2.2). Observe
that for a = w + xi + jy + zfc e 2ί, iV(α) = w2 4- αx2 + ̂ y2 4- aqz2, so
that the norm form restricted to elements of trace zero yields the ternary
form of interest.

Let m be a positive integer not divisible by 4. We are interested in
characterizing the number of primitive elements μ in Λ which satisfy
Tr(μ) = 0 and N(μ) = m, i.e., μ2 + m = 0. By a primitive root ofX2 + m,
we shall always mean a μ as above. Note that if we were interested in
characterizing the number of primitive integral solutions (i.e., x, y9 z e Z
and (x, 7, z) = 1) to the equation ax2 Λ- qy2 Λ- aqz2 = m, then since
there is an obvious correspondence between the solution (JC, y9 z) and the
element μ = xi 4- jy 4- zλ: e Λo (of norm m), we would seek our char-
acterization (as above) in terms of the elements of Λo (see [13]).

3.1. The Arithmetic of Λ. We begin with a study of the arithmetic of
the maximal order Λ.

PROPOSITION 3.1. (1) Every left A-ideal is principal. (2) Λx, the group
of units in Λ, is a finite group.

Proof. The first statement is true since Λ has class number one. For
the second, recall that ε e Λ is a unit if and only if N(έ) = 1. Since the
norm form is positive definite and Λ a lattice, the result is clear.
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PROPOSITION 3.2. Let λ e A, N{\) = 0 (mod#). ΓΛen λ e Ay = yΛ
where j is the element of the canonical basis of 31 satisfying j 2 = -q.

Proof. Since NO') = q, Aqj = jΛ^ (see Theorem 13.2 of [12]), and
for primes p Φ q, y e A*, whence /A = Ay = { λ e Λ|7V(λ) = 0 (#)}
since it is true in all localizations. Here we use the local-global correspon-
dence of orders and ideals (see Proposition 5.1 of [16]).

PROPOSITION 3.3. There are precisely three integral left A-ideals of
(reduced) norm 2, denoted Λτ1? Λτ2, Λτ3. The union of these ideals
contains all the elements of A of even norm.

Proof. Since 2 is a split prime in 31, Λ2 is isomorphic to M2(Z2), and
therefore contains 3 distinct integral left Λ2-ideals of norm 2 (Theorem
2.3 of [16]). From the local-global correspondence, it follows that there are
at most 3 integral left Λ-ideals of norm 2. One then checks directly that in
each of our four algebras, there are 3 distinct ideals. The second statement
follows from Theorem 19.6 of [12].

Now let mbea positive integer not divisible by 4 and write m = m0f
2

with m0 square-free. Let μ be a primitive root of X2 + m in A. We want
to connect the arithmetic of the quadratic field Q(y/-m) with that of
Q(/x) c 31. We begin with

PROPOSITION 3.4. Let Θμ = A n Q(μ). Then Z + Zμ c Θμ c Z +
Z(l + μ)/2. Moreover, ΰμ = Z + Z(\ + μ)/2 if and only if (1 + μ)/2
e A. In particular, ifm = 1,2 (4), then Θμ = Z + Zμ.

Proof. Clearly, Z + Zμ c Θμ and Θμ is an order in Q(μ). Let ω = μ
if m s 1, 2 (4) or ω = (/ + μ)/2 if m = 3 (4). Then the maximal order of
Q(μ) is Z 4- Zf~ιω, so that Φμ = Z + Zlf~ιω for some non-zero integer /.
It follows from the primitivity of μ that If'1 e Z, from which the first
statement is immediate. The second statement is obvious. Finally, since
(1 + μ)/2 e A implies N((\ 4- μ)/2) = (1 + m)/4 e Z, we have
(1 4- μ)/2 e A only if m = 3 (4), which completes the proof.

3.2. The Map Δ. For m and μ as above, let φμ: Q(\/-m) -> Q(μ) be
the canonical embedding sending ]/-m to μ. For a Z-submodule M of
Q(y/-m), denote by Mμ, the image Φμ(M). Write m = m 0 / 2 where m0 is
square-free and let

o = m = 1,2(4)
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Denote by Θt = Z 4- Z/ω the uniquely determined suborder of index / in
the maximal order Z + Zω of Q(\/-m). Since 2 + /, 0f can also be written
as

By Proposition 3.4, Λ Π Q(μ) equals 0fμ if m = 1, 2 (4) or m = 3 (4)
and (1 + μ)/2 € Λ, and Θlfμ otherwise.

When m is not square-free, we must extend our notion of the ideal
class group of Q(\/-m). In the case of imaginary quadratic fields, there
are several equivalent formulations. We shall consider the ideal class
group of (fractional) proper 6^-ideals (see §4.4 of [14]) where by proper
β^-ideal we mean a fractional β^-ideal whose coefficient ring is Θf or
equivalently, in terms of adeles, a "locally principal" 6^-ideal. In this
setting, two proper β^-ideals /, / are equivalent if and only if / = λJ for
some λ e Q(\/-m)x. All ideals are assumed to be non-zero. An equiva-
lent notion and one which we shall also use is that of a regular ideal. We
shall discuss regular β^-ideals in more detail somewhat later. For the
equivalence of the notions of regular and proper C^-ideals, see §10 of [4]
and Proposition 4.11 of [14]. Also note that the class number which arises
here is also equal to the number of equivalence classes of primitive binary
quadratic forms of discriminant -Am (or -m) (see Chapter 15 of [4] or
§2.7 of [1]).

PROPOSITION 3.5. Let Θμ = A Π Q(μ) and let J be a fractional proper

Θμ-ideal. Then AJ Π Q(μ) = /.

Proof. Rehm's proof [11] of the analogous proposition for Hurwitz's
quaternions remains valid here, however for the convenience of the reader
we sketch the argument. We may assume that / c Θμ. By AJ we mean the
Z-module of 31 generated by all elements of the form λα, λ e Λ, a e /.

Since l e Λ w e have / c Λ / n Q ( μ ) . Conversely, since / is invert-
ible, there is a Z-module J'1 c Q(μ) such that / J'1 = 0μ. Now J C- Θμ

so that AJ Π Q(μ) c A ί l Q(μ) = 0μ. Thus

= (Λ/ Π Q(μ)) = J-ιJ c (AJJ-1 Π Q(μ)J~ι) /
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Fix m, μ as above and let G denote the ideal class group of proper
fi^-ideals in Q(}f^m). For any μ e A with μ2 = -m, denote by [μ] =
{εμε'^ε G A X ) and call [μ] the bundle of the root μ. Denote by W~
{[μ]\μ e A, μ2 = -m}, the set of rooί bundles. We want to define an
action of G on W and from this to deduce a relation between \G\ and the
number of primitive representations of ax2 + qy2 + aqz2. Following [11],
we define a map Δ: G X ϊF -» WΓ as follows.

For a proper fi^-ideal / and a primitive root μ of X2 4- m in Λ, the
set AIμ is a fractional left Λ-ideal and, by Proposition 3.1, it is principally
generated, say A/ = ΛK where K = /c(/, μ) depends both upon the ideal
/ and the element μ. K is determined up to left multiplication by elements
of Λ x and so v = fcμ/c"1 is determined up to inner automorphisms
induced by the units of Λ. We shall subsequently show that κμκ~ι e Λ.
Define Δ by Δ( J, [μ]) = [/cμ/T1].

Rehm's proof [11] that the map Δ is well-defined when Λ is Hurwitz's
quaternions remains valid in our present context, however since this map
is central to this paper, we shall sketch the proof.

With /, μ and K as above, we see that

Aκμκ~λ = Λ/^μ/c"1 = Aμlμκ~ι c AIμκ~ι = Aκκ~ι = Λ

since I c Q(μ) centrahzes μ (Proposition 2.1). Thus κμκ~ι e Λ and
since norm and trace are preserved under conjugation, Δ(/, [μ]) =

"1] e W. We have already observed that [/cμfc"1] is independent of
the choice of K in AIμ = Λ/c.

The image of Δ depends only on the bundle [μ] and not on the choice
of element used to define it. If ε e Λ x and v = εμε"1 e [μ] we can
choose κ(I,v) = /cε"1 = κ(I,μ)ε~1 since AIV = Aεlμε~ι = Λfcε"1. Thus
Λ( J, [p]) = [Kε-hεK-1] = [fcμ/c"1].

If / = Θfa9 a e Q(\/^m)x is a principal ideal, then 7μ = φμ(I) =
^ / μ^β, jβ = φμ(α). We may choose K = β <Ξ Q(μ), the centralizer of μ, and
hence Δ(/,[μ]) = [μ]. It follows that Δ depends only upon the ideal class
and we may therefore restrict ourselves to integral proper 6^-ideals. Thus
Δ is a well-defined map. Also, if /, / e G and [μ] e W, then a straight-
forward computation shows that Δ(//, [μ]) = Δ(/, Δ(/, [μ])).

In particular, Δ induces an action of the ideal class group G on the
set of root bundles W. Later, we shall restrict Δ to a subset of Won which
the left kernel of Δ will consist of the set of principal proper β̂
This will imply that all orbits under this action have the same size (=
To proceed, we need information on the root bundles of primitive
elements in A.
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3.3. The Root Bundles. Throughout this section, let m be a positive

integer not divisible by 4 and μ a primitive root of X2 + m in Λ.

PROPOSITION 3.6. Lei Θμ = An Q(μ). 77*ew [μ] αwuώte of |Λ X | / |0 X |

elements.

Proof. By definition, Λ x acts transitively on [μ] by conjugation. The

stabilizer of μ consists of the set of ε e A x such that εμε"1 = μ. By

Proposition 2.1, ε G Q(μ) and hence ε G ^ x . Conversely, every element

of Θ* stabilizes μ and is in Λ x. The result is now immediate.

REMARK 3.7. By Proposition 3.4, |0 X | = 2 with 2 exceptions: | 0 X | = 4

if m = 1 and, \&*\ = 6 if m = 3 and (1 + μ)/2 G Λ.

The following is an elementary, but technical lemma which we re-

quire.

LEMMA 3.8. Let m and μ be as above. Then

(1) m = N(μ)mO(modq2).

(2) The prime q does not split in Q(]/-m).

Proof, μ primitive in Λ implies that 4μ G Λo and 4μ is ^-primitive in

Λ. Let 4μ = xi + yj + zk, JC, y9 z G Z. Clearly N(μ) = 0 (q2) if and only

if N(4μ) = 0 {q2\ and N(4μ) = ax2 + qy2 + aqz2 where a = 1 if

4 = 3 (4) and a = 2 if # s 5 (8). iV(4μ) Ξ 0 (q2) implies ςr|jc and

hence, y2 4- αz2 s 0 (q). Since # + α, we see that #|j/ <=> q\z. Moreover, if

q \ yz9 then y2 + ΛZ2 = 0 (̂ r) yields (^) = - 1 , a contradiction. Thus

q\x, q\y, and #|z. But this contradicts that 4μ is ^-primitive, hence (1).

For (2), observe that since q2 \ m, the prime q ramifies in Q(]/-m) if

and only if q\\m. li q \ m, then since 16m = N(4μ) Ξ ax2 (q), q \ x and

so (=f) = (^) = -1 which implies that 9 is inert in Q(/^m). This

yields (2).

PROPOSITION 3.9. Lei K ̂  9lx be such that κμκ~ι
 G Λ. ΓAeπ fcμ/c"1 w

primitive in Λ.

Proof. Write icμ/c"1 = CP with c e Z , ^ e A primitive and write

m = m0f
2 with m 0 square-free. Since N(v) e Z and m = m 0 / 2 = iV(μ)

= N(κμκ'λ) = c2N(v), we have c|/. By Lemma 3.8, 9 +/, and since m

* 0 (4), 2 +/. Thus (f,2q) = 1 and so, by Lemma 2.4, there exists an

η G Λ such that ημη'1 = /cμ/c"1 and (N(η), f) = 1. Now μ =

cη~λvη = c (ηvη/N(η)) G Λ, and since (N(η),f) = 1 and c\f9 it fol-
lows that ifιvη G Λ. Since μ is primitive, c = ± 1 , and so icμ/c"1 is

primitive.
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REMARK 3.10. It is clear that if μ is a primitive root of X2 4- m in Λ,

that the same is true of every element of [μ]. In view of Proposition 3.9,

we can (and shall) restrict the map Δ to the set of bundles of primitive

roots of X2 + rn, and hence obtain an induced group action on this

smaller set.

There is one further complication which is suggested by Proposition

3.4. We wish to further restrict our attention to the subset of the

"primitive bundles" [μ] for which Θf>μ = Λ Π Q(μ) and still to be able to

infer information about the set of all primitive bundles. There is no

problem when m = 1, 2 (4), so we restrict our attention to the case

m = 3 (4).

Let Λτ1? Λτ2, Λτ3 be the three integral left Λ-ideals of norm 2 given

in Proposition 3.3. We fix this notation, so that any subsequent reference

to Tj refers to these τy.

LEMMA 3.11. Let v e Λ, Tr(j>) = 0. Then there exists a r, equal to one

of the Ίp for which τvτ~ι e Λ.

Proof. If N(v) = 0 (2), then by Proposition 3.3, v e Λr for T = some

τj9 j = 1, 2, or 3. Since T e Λ, it is clear that ΛT C τ~ιAτ, and hence that

Tί/T'1 €Ξ Λ. If N(v) = l (2), then JV(1 4- v) = 0 (2), so that 1 + v e r ^ Λ r

as above. Since T ^ Λ T is an order, the result follows.

Let Tj: = Λ Π T^ATJ, j = 1, 2, 3. Since Λτy has index 4 in Λ

(N(Tj) = 2), and Λτy % Yj c Λ, Γ, has index 1 or 2 in Λ. However,

Λ = Tj implies τ A = Λτy is a two-sided Λ-ideal of norm 2, which is

impossible since even Λ 2 = Λ ® Z Z 2 has no two-sided ideals of norm 2

[16]. Thus each Tj is an Eichler order of index 2 in Λ.

LEMMA 3.12. Γ1? Γ2, and Γ3 are distinct suborders of A.

Proof. It suffices to show that their localizations Γy ® Z Z 2 are distinct.

By elementary divisors, we have [ Λ 2 : Γ y ® z Z 2 ] = 2. Since Γ . 0 z Z 2 c Λ 2

Π Ί~1A2TJ c Λ2, and since Λ 2 has no two-sided ideals of norm 2, we have

Γ/<S)ZZ2 = Λ 2 Π Tj~lA2Tj. Since the prime 2 splits in 21, Λ 2 is isomorphic

to R = M 2 (Z 2 ) , so that Γy <S>ZZ2 ^ i? Π fr1/^. where i?^,y = 1, 2, 3, are

the three integral left i?-ideals of norm 2. We may assume that

tχ-\n ' 2 - ή a n d h =! )I l) ' . ( ? ϊ ) - ' 3 ( J
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Then

(3.1) L^RΠt^Rt^^ )

L3 = RΠt^Rt3 = IIa b) el?|tf+ Z> + c + d=0(2)\.

These are clearly distinct, which establishes the claim.

PROPOSITION 3.13. Let m be a positive integer not divisible by 4 and μ
a primitive root ofX2 + m in Λ. Then

(1) μ is an element of precisely one or all three of the TjS.
(2) ί i G Γ 1 Π Γ 2 n Γ 3 if and only if (1 4- μ)/2 G Λ.
(3) If m = 1,2(4) or m = 3 (4) and (1 4- μ)/2 tf Λ, ί*έ?/ι there is a

unique j = 1, 2, or 3 such that μ G Γy (i.e., swc/i /Aαί T

y/
Jtτ/1 e Λ).

Proof. We have previously observed that (1 4- μ)/2 G Λ only if
m = 3 (4). The third statement is now immediate from the first two. Also
observe that if p is an odd prime, Γy ® z Zp = Λ^, so by the local-global
correspondence of orders, μ G Γy if and only if μ e Γy ® z Z 2 and simi-
larly, (1 + μ)/2 G A if and only if (1 + /ι)/2 e A 2 .

It is an elementary exercise in group theory that if G is a group with
subgroups H, K of finite index, then H Π K has finite index in G and
[G: H Π K]< [G: H][G: K]. Thus Γx Π Γ2 Π Γ3 has at most index 8 in
Λ. Clearly (I\ Π Γ2 Π Γ3) <8>z Z 2 c Π5-i(Γy. ® z Z2), and since

Γ, ® z Z 2 - L j ( s e e ί3-1)) a n d

has index 8 in i?, we have (Γx Π Γ2 Π Γ3) <8>ZZ2 = Π5=1(Γy <8>z Z 2).
Thus, μ G I\ Π Γ2 Π Γ3 if and only if μ G Πy = 1(Γy ® z Z 2). Since Λ2 = R
= M 2(Z 2), we translate our questions to R. Under the isomorphism, let μ
correspond to A G R.

By Lemma 3.11, μ is an element of at least one Γy and hence A is an
element of at least one Ly. It is clear from the characterization of the L}

and of Lλ Π L2Π L3 above, that since Tr(^4) = 0, if A is contained in
two of the LjS, it is contained in the third. This establishes the first claim.

Now if A = ( £ 2/) G Lλ Π L2 Π L3, then since m = iV(^) = α^ =
- α 2 Ξ θ , 3 (4) and m & 0 (4), 2 I α, whence (1 + A)/2 G i?. Conversely,
if ,4 = (« 5) G R with Tr(Λ) = 0 and (1 + A)/2 G Λ, then 2 t fl, 2 I Z>
and 2 I c which implies that A G L X Π L2 Π L3. This completes the proof
of the proposition.
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Let m be a positive integer not divisible by 4 and write m = m0f
2

with m0 square-free. Let PF0 = {[μ] I μ e Λ, μ2 + m = 0, and μ primitive
in Λ} Also, let Wλ = {[μ] eW0\Aθ Q(μ) = 0/f/t} and let W2 = {[μ] e
fϊ^ I Λ n Q(μ) = $2/,μ} By Proposition 3.4, Wo is the disjoint union of
Wγ and W2, and if m s 1, 2 (4), W 2= 0 . So we again restrict our
attention to the case m = 3 (4).

PROPOSITION 3.14. There is a correspondence between the elements of

Wx and W2. If m = l (8), this correspondence is 1-1, while if m = 3 (8),

m > 3, the correspondence is 1-3.

We observe that this correspondence is to be expected since if h(Θ)
denotes the order of the ideal class group of proper 0-ideals in Q(/-m),
then it is well known [14] that

/ if™ Ξ 3(8), m > 3 ;

\h(Φf) i f m ^ 7 ( 8 ) o r m = 3.

Proof. Let [μ] e W2. Then μ is a primitive root of X2 + m for which,
by Proposition 3.4, (1 + μ)/2 £ Λ. By Proposition 3.13, there exists a
unique Tj(j = 1,2,3) such that Tjμτj'1 e Λ. It is a straightforward local
computation which verifies that [rjμrj'1] ^ W .̂ Conversely, suppose [μ] ^
W .̂ Let μj = TjμTj'1, j = 1, 2, 3. By Proposition 3.13, μy G Λ for all

j = 1, 2, 3. Another easy local computation shows that if m = 3 (8), then
all three [μy] are in W2, whereas if m = 1 (8), there is a unique j such that
[μ,] e ίF2.

It remains to show that these "maps" provide the desired correspon-
dences. First, we consider the case of m = 7 (8). Given [μ] e W2, there
exists a unique T (equal to some τy) such that [TμT'1] e Wl9 and given
this bundle in Wl9 there exists a unique p (equal to some τy) such that
[pτμ(ρτ)"1] e W2. We claim that [pτμ(pτ)"1] = [μ].

We have previously chosen the τy so that Λτy -> Λ2τy -> i?ίy under
localization and identification of Λ2 with R = M2(Z2) where the tj are as
in (3.1). One checks that t2tv tλt2 and t2t3 are all in 2 i? x. Thus, given
any τy, there exists a τf such that τf 7y e 2 Λ2 , and since the τ's all have
norm 2, τ7τy e Λ x = 2 Λ x for all primes p > 2. Now for the T chosen
above, there exists a ξ (equal to some τy) such that i~τ e 2 Λ^ for all
primes /?. From the local-global correspondence, it follows that £τ e 2
Λ x, and hence that [^τμ(ξτ)"1] e ίF2. Since p is the unique Ί. such that
[pτμ(pτ)"1] G PF2, we have £ = p, and our claim is estabhshed. A similar
argument establishes the other half of the 1-1 correspondence in the case
m = l (8).
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Next, suppose that m Ξ= 3 (8). Exactly as above, the composite "map"
W2-* Wλ-± W2 is the identity. Let [μ] e Wv As we saw above, μy =
Tjμrj'1 e Λ and [μ7] e W2 for all j . We need to verify that all the bundles
[μj] correspond (i.e., map back) to [μ] and that the three bundles [μ7] are,
in fact, distinct. In answer to the first, we see that given any [μy] there
exists a unique p (equal to some τk) such that [ρμjP~ι] e Wv On the
other hand, there exists a £ (equal to some τk) such that £τy e 2 Λ x and
hence for which [ζμji;~ι] = [μ] e PF1# Thus p = £ by uniqueness and so
each [μβ corresponds to [μ]. If the three bundles [μy] are not distinct, then
two of them must coincide, say [μy] = [μ j . But this is ti ue if and only if
μy = εμkεΓ1 for some ε e Λx, and hence if and only if a = τj'1ετk

normalizes μ. By Proposition 2.1, a e Q(μ). Now 2 α e A π Q(μ) = Z
+ Z(l + μ)/2 and using this and the fact that N(2a) = 4 (and m > 3)
we deduce that a = ± 1 . Thus Λτy = ΛεT^ = ΛT^, whence j = k. This
completes the proof.

3.4. The set TμtV. To recall the notation, let

with α = 1 if ήr s 3 (4) and a = 2 if q = 5 (8); let Λ be the maximal
order given in (2.1). Let m be a positive integer not divisible by 4 and let
μ, J> be primitive roots of X2 4- m in Λ.

In order to obtain information on the number of orbits into which the
set of root bundles Wo decomposes under the action of the ideal class
group G, we must analyze the set Tμ v = {λ G Λ I λμ = vλ}.

Λ7^ ,,, the Z-module generated by all elements of the form yt, y e A ,
t e Tμv, is an integral left Λ-ideal and so by Proposition 3.1 is principally
generated, say ATμp = Λp. We shall show that the only possible prime
divisors of the norm of p, N(ρ), are 2 and q and we shall discuss the
conditions for and implications of each occurrence.

LEMMA 3.15. With the notation as above, the only possible prime
divisors of N(ρ) are 2 andq.

Proof. Since Tμv = Taμ0ίV for a e Q x and 4μ, 4v e Λo, we may
assume that μ,v e Λo and are /^-primitive for all primes p > 2. Suppose
that there is a prime p Φ 2,q such that N(p) s 0 (mod/?). Since p is a
common right divisor of every element of T 9 it follows that N(y) ^ 0
(mod/?) for all γ e ΛTĴ ,. It is easy to check that λμ + vλ G Tμv for any
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λeΛ. Put

yλ = a(μ + v) + i(iμ + pi)

y2 = q(μ + v) +j(jμ + pj)

γ3 = aq(μ + v) + k(kμ + pk).

Then 7^72,73 e ATJ^. Setting P = ui + vj + wfc e Λ o (/?-primitive), and

JV(γ7) s 0 (/?) for / = 1, 2, 3 we have the system

A
u

w

s 0 (/?) where A =

/0 1 α

1 0 q

a q 0

Since det(^4) = 2α#, one can view^4 as an element of GL(3, Z/pZ), hence

w, v9 w must be divisible by p contradicting p-primitivity of p. This

completes the proof.

LEMMA 3.16. Let the notation be as above. If q\ m then q \ N(p) for

any primitive integral roots μ, P. Conversely, if q \ m then there exist μ, p

primitive roots ofX2 + m in A with A - Tμ v = Λp andN(p) = q.

Proof. Let μ, p be given. By Proposition 2.2, Tμv = λ0Q(ju) Π Λ

where λ 0 is any element of 2l x such that λoμλ~Q = p. We may assume

that λ 0 = w + xi + yj 4- zk is a primitive element of Λo.

Suppose q \ m. Since p is a common right divisor of every element of

Tμv, we need only show that there exists an element of Tμv with norm not

divisible by q. Thus we consider elements of the form λ o ( r + sμ); r,

5GQ.

If N(λ0) ^ 0 (q) then λ 0 will do, so we assume N(λ0) = w2 -f ax2

+ #}>2 + tf#z2 ΞΞ 0 (^). Since (=f) = - 1 , we must have W Ξ X = 0 (ήr), and

since λ 0 is primitive in Λo, N(λ0) ^ 0 (q2). As in the previous lemma,

we may assume that μ, p e Λ o and are /^-primitive for all primes p > 2.

Let μ = π 4- sj' + tk G Λo. Using the ήr-primitivity of μ and that m =

N(μ) = α r 2 4- ̂ 2 + aqt2 s 0 (^), we have # I r, q2 \ m and hence that

N ( λ o μ / # ) 3£ 0 (9). Moreover, we easily see that λoμ/q e Λ since it is in

Λ^ for all primes /?-recall, that since q ramifies in 21, Λ ^ = { α G 9 I ^ i

N(a) e Z^}. Thus λ 0 μ / 9 e Λ Π λ 0Q(μ) = Tμ%9.

To prove the converse, we assume q \ m. Let μ be a primitive root of

X2 + m in Λ and P —jμj~λ» By Propositions 3.2 and 3.9, p is also a

primitive root of X2 4- m in Λ. We show that every element of Tμ v has

norm divisible by q.
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TμtV = T4μAp, so letting 4μ = ri + sj + tk, every element of Tμv is of

the form

Ί=j\— + -(ri + sj + tk))

where w, x, y, Z G Z , ( W , X ) = ( ) / , Z ) = 1 . Also note that 4μ is ^-primi-
tive for all primes p > 2. We shall show that there is not choice of w, x,
y9 z for which γ e Λ and N(y) & 0 (q).

(wz) + 16m(xy) \
N(y) =

so in order to have N(y) & 0 (q), we must have q I xz. However, since
γ e Λ implies N(y) e Z, we must also have (wz)2 + 16m(x^)2 = 0 (#).
Since 16m = ar2 + φ?2 + α#/2 = #r2 (#) and since q\ m, q\ r. Thus
(wz)2 + α(rxy)2 s 0 (q). However, (=f) = -1 which implies that q I wz
and # I xy. Now q \ w <*> q \ y. If q \ w (and hence # I y), then ^ I xz so
that iV(y) s 0 (q). Thus we may assume that q \ w, q \ y9 q I x9 q\ z.
Now

z z x z '
and since the coefficient of j is w/x with #|x and ̂ r + w, γ ί A. Thus
every element of Tμv has norm divisible by q.

Finally, we consider the ideal ATμ v. A typical element is of the form
Σλiti with λi e Λ, /,. G Γμ v. By Proposition 3.2 we may write \iti = λ̂ y
for some λ̂  G Λ and so j is a common right divisor of every element of
ATμ v. Thus Λp = ATμiV c Λy. Since j e 7^^ the opposite inclusion is
immediate, and this completes the proof.

With p as above, we consider the case of N(p) = 2n. Let v be a
primitive root of I 2 + m in Λ. We are interested in characterizing the
bundle [ρvp~ι] when pvp~ι e Λ. By Proposition 3.3, we may write p =
°n°n-\ ''' σ i where each σι is one of the Tj of Proposition 3.3 (the
generators of the integral left Λ-ideals of norm 2). Let v0 = v and
vι = oιvι_1σfι

9 1 < I < n. Since conjugation by σ7 does not induce an
automorphism of Λ, it is not clear that ^ G A . We begin with

LEMMA 3.17. Let the notation be as above, and assume that pvp'1 e Λ.

Then we may assume ^ e Λ for all /, 0 < / < n.

Proof. The general idea is that if ^ ^ e A and vι & Λ, then since
vn = pvp~ι e Λ there is a smallest p > 1 such that P / + / ? G Λ. In fact, we
shall show that vι+ι e Λ and [pι+λ] = K-iL so that we may write
p = εσ'n o'lΛ.2°ι-ι ''' °ι f°Γ s o m e « G Ax, eliminating that portion of
the P/S outside Λ.
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Formally we proceed by induction on n. For n = 0 the result is clear.

Now assume n > 0 and that the lemma is true for any p with ρvρ~x e Λ

and N(ρ) = 2\ h < n. Suppose that v09 vλ vι_ι e Λ and i>7 £ Λ.

Since vn e Λ, / < «, so there is a smallest /? > 1 such that vι+p e Λ. We

claim that σι+pσι+p_ι E 2 Λ X from which it follows that [vι+p] = [vι+p_2]

and hence that vι+p_2

 G A. By the minimality of ;?, we have /? = 1 so

that [J>/+ 1] = [*V-i] If σι+iσι = 2ω for some ω e Λ x , then

p / + 1 = 2ωj>/_1(2ω)~ = ω ^ . ^ " 1

and

By Proposition 3.3, σ/Iσ/1_1 σ/ + 2ω = εσM' σ/+2 for some ε e Λ x

and where each σ£ is one of the τy's. Setting p' = σπ' σ/+2σ/_1 σ1?

we have [p'^p'*"1] = [p^P'1]? and we are done by induction. It remains

only to verify the claim.

As we saw in Proposition 3.14, given a τJ9 there exists a T, such that

Tjj G 2 Λ x . To show that if σι+pσι+p_λ £ 2ΛX implies vι+p £ A re-

duces to a local question at the prime 2 which, using the tt of (3.1), is

easily resolved.

3.5. The Image of Θf-ideals in Λ. Let m be a positive integer not

divisible by 4 and write m = m0f
2 with m 0 square-free. Let 0y be the

uniquely determined suborder of index / in the maximal

We have previously defined the sets:

Wo = {[μ] l μ e Λ , μ 2 + m = 0, and μ primitive in Λ },

and

Recall, that if m = 1, 2 (4), then ίΓ2 = 0 . By Remark 3.10, the map

Δ induces a group action of the ideal class group G of proper C^-ideals on

the set Wo. We shall later show that this action restricts to one on Wv For

the moment, we content ourselves with properties of Wv

Let [μ] G ffp In this section, we closely examine the correspondence

between proper β^-ideals / and the generator of the left Λ-ideal KIμ. In

the case of Hurwitz's quaternions, the following lemma is implicit in

Venkov's work (see p. 242 of [15]) and a proof for that case is given in [7].

LEMMA 3.18. Let I be a proper Θf-ideal and assume that AIμ = ΛK.

Then JY*{I) = N(κ) (i.e., the norm of the fractional ideal I is equal to the

quaternion norm of the generator of the ideal AI ) .
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Proof. It is clear that the restriction of the quaternion norm to Q(μ) is
the "field" norm from Q(μ) to Q. We may assume that / is an integral
ideal so that in this case Jf(l) = [Φf: I] = [0/>μ: Iμ]. It now follows easily
(see §24 of [12]) that N(κ) = N(Aκ) = N(AIμ) = [Θfμ\ Iμ] Z where N
here represents both the norm of elements and of ideals, which completes
the proof.

We now discuss some implications of this proposition. Let the nota-
tion be as above and let 0 denote the maximal order of Q(]/-m). Recall
[4], (Th 10.19) that there is a 1-1 correspondence between regular ideals
of Φ and Φf where by a regular 0-ideal we mean an integral ideal / with
[Φ: I] relatively prime to /, and by a regular 0^-ideal we mean Φf Π /
where / is a regular 0-ideal. Moreover under this correspondence [Φ: I]
= [Φf: Φf Π / ] .

The prime 2Z ramifies in 0 if and only if m = 1, 2 (4), splits
completely if m = 7 (8), and is inert if m = 3 (8). By Lemma 3.8, the
prime qZ ramifies if and only if q\\m. Since m i 0 (4), both 2 and q are
prime to /, whence any prime divisor of 2Z or qZ is a regular ideal.

It follows that if ^ 2 I 2Θ or q I m and &q I qΘ, then ^ 2 Π Φf and
&q Π Φf are regular β^-ideals of norms 2 and q respectively. Moreover, if
q\ m, then there are no C -̂ideals of norm q since such an ideal would
necessarily be regular and hence, would imply the existence of an 0-ideal
of norm q. By Lemma 3.8, this is impossible since q is inert in Q( f^m).

COROLLARY 3.19. If q\ m, & is a prime divisor of qΦf in Φf and
[μ] e Wl9 then A&μ = Ay.

Proof. By Lemma 3.18, A9*μ = Λ/c with K G Λ and N(κ) = q. By
Proposition 3.2, K = κ'j for some κr e Λ. Since N(κ) = q = N(j) we
have N(κ') = 1 so that κr e Λ x and ΛK = Aj as desired.

COROLLARY 3.20. Let m s 1, 2 (4) and μ a primitive root of X2 + m
in Λ. // & is a prime divisor of 2Φf in Φf, then A&μ = AT, where AT is the
unique ideal of norm 2 for which τμτ~ι G A.

Proof. A@μ = AK where JV(κ) = 2. By Proposition 3.3, Λfc = Λτl9

Λτ2, or Λτ3. By Proposition 3.13, there is a unique τz such that ^μτr1 e A,
and since κμκ~ι e A, ΛK = AT,..

Let m Ξ 7 (8) and [μ] e P^. By Proposition 3.13, T /JITΓ1 G A for all
three τf. as above, but by Proposition 3.14, there is a unique τ, (call it T)
for which [TJUT"1] e ϊF2. Let (ρ,σ, T} = {τl9 τ2,τ3}.
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COROLLARY 3.21. Let m = 7 (8) and the notation be as above and let

2Θf = ̂ x^2 be the prime factorization of 2Θf in Θf. Then {A0>lμ, A@>2μ)

= {Λp,Λσ}.

Proof. We may take

1 ~ m and ^ == 2Θf + (

Let A0>M = Λκy, j = 1, 2. (1 ± μ)/2 G ΛK, implies (1 + μ)/2 G
icĵ AiCy, which in turn implies that [K^K]1] G W .̂ Thus {Λ^ lμ,Λ^2>M}
c{Λp,Λσ}. We observe that A&XμΦ A0>Xμ otherwise (1 + μ)/2,
(1 — μ)/2 e Λfcy which implies 1 e Λfcy, a contradiction. This completes
the proof.

3.6. Determination of the orbits. Let m be a positive integer not
divisible by 4 and write m = w 0 / 2 with m0 square-free. Let Θf be the
unique suborder of index / in the maximal order of Q{f^m) and G the
ideal class group of proper (^-ideals. At the beginning of the last section,
we redefined the sets Wo, Wl9 W2 and remarked that the map Δ restricted
to a map Δ: GX Wo~* WQ. We now show that we can further restrict Δ
to a map Δ: G X Wx -> Wv There is no issue if m ss 1, 2 (4) since, in that
case Wo == Wv so we restrict our attention to m s 3 (4).

PROPOSITION 3.22. Lei m s 3 (4) &e α5 above and let [μ] e W .̂ ΓΛen
G.

Proof. Let I & G. We may assume that / is an integral proper
0 rideal and write / - J9[9{ where 2 \ [Θf: J], 2Θf = »x»τ iί m = Ί
(8) and r, s > 0. If m s 3 (8), we may assume that / == /. Set [̂ ] =
Δ ( ^ ί ^ | , [μ]). If m s 3 (8), y = μ, and it is obvious that [̂ ] G WΛ9 while
if m ~ 7 (8), Lemma 3.21 impUes [̂ ] G FFX. Thus, Δ(J, [μ]) =
Δ( J, [v]) = [ίc f̂c"1] where AJV = ΛK. Note that 2 I iV(fc). Now [IC^IC"1] G

Wλ if an only if T^VK'^T'1 e Λ for all τ — τk9 the generators of the left
Λ-ideals of norm 2. As we previously observed, since N(r) = 2, the above
will be true if and only if τ(κϊ>«c~1)τ~1 e Λ2 for all T as above. Now by
Proposition 3.3, TK == KV for some κr G Λ (2 k N{κ')) and T' one of the
T^s. Thus r(κvκ-ι)τ~ι = (fcV)^(κ'r')"1. [̂ ] G Ŵ  implies that TVT'" 1 G

Λ and, since 2 * iV(/cO, κ;
 G Λ^ SO that K'T'P(K'T')-1 e Λ2, which com-

pletes the proof.

Thus the map Δ induces a group action of G on Wv
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LEMMA 3.23. Let m be a positive integer not divisible by 4 and write
m = m0f

2 with m0 square-free. Let [μ] e Wv Let I be a proper Θ^ideal
and suppose that Δ( J, [μ]) = [ρvρ~ι] where [v] e Wλ and N(ρ) = 2n,
n > 0. Then [v] and [ρvρ~ι] are in the same orbit under the action of G.

Proof. If m = 3 (8), then since 2 is inert in Q(]/-m), / = 27 where
r > 0 and 2 I [β^: /] and so ppp"1 = P. Thus we consider rn & 3 (8).

By Proposition 3.3, p may be written in the form p == σnσn_λ σι

where each σ7 is one of the generators τv τ2, or τ3 of the left Λ-ideals of
norm 2. Let vo = v and vι =* o^i-ivf1, 1 < I < n. By Lemma 3.17, we
may assume that all vt e Λ. If, in addition, each [J>J e Wv then it follows
from Propositions 3.13, 3.14 and Corollaries 3.20, 3.21 that given [ i ^ J e
WP\, there exists a prime ^ I 2<^ such that Δ(^, [^/-i]) = [?/]. From this it
follows that [̂ ] and [p^p"1] are in the same orbit.

Now, we show that we can reduce to the above case. Since Wo = Wλ

if m ΞΞ 1, 2 (4), we may restrict to m Ξ= 7 (8). Suppose that [P 0], . . . , [̂ /_x]
e Ŵ  and [v^ <£ Wv By Proposition 3.22, I < n. Now it follows Proposi-
tion 3.13 and from the proof of Proposition 3.14 that together, [ p m ] e Λ
and [vg] e W2 imply σ/+1σ7 e 2ΛX, whence [̂ /+ J = [ ^ J e H .̂ The
proof is completed by induction on n.

We have shown that the map Δ restricts to a map (also called Δ), Δ:
G X W1 -* Wp The next proposition says that all of the orbits of the
group action have the same (= \G\) size.

PROPOSITION 3.24. The left kernel of Δ is the set of principal proper

Proof. If Δ(/, [μ]) = [μ], then AIμ = Λ/c where K may be chosen so
that κμκ~ι = μ. By Proposition 2.1, K G Q(μ) so that d̂ /̂c is a fractional
0/M-ideal in Q(ju). By Proposition 3.5,

Iμ = Λ/μ Π Q(M) = Ai>/f#ljc Π Q(μ) = β?Λμ/c.

Thus Iμ and / = Φ~\Iμ) are principal ideals. This completes the proof of
the assertion.

Note that here we use Φμ

ιΦμ(®/) = Θf9 which is not true if [μ] e W2.
Now we completely describe the orbits of G acting on Wv

PROPOSITION 3.25. Let m be as above and [μ] e Wv If q I m,

W^ = { Δ ( / , [ μ ] ) | / e ( ? } ; while if q\m, then

(?} U {Δ(/, [jμΓι])\I e
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Proof. The construction below is analogous to the one given in [11].
Let [v] be any other element of Wv The set T = { λ e A\λv = μλ) is a
free Z-module of rank 2 (see discussion prior to Lemma 2.4), say T =
Z£ + Zη. Note that by Lemma 2.4, we may and do assume that N(η) = ηη
is relatively prime to /. Put Iμ = Θμξr\ + Θμηη where Θμ = A D Q(μ) =
Θfμ. It is easy to see that a e Tvμ iff α e Tμv so that ξη centralizes μ,
and so by Propositions 2.1 and 3.5, ξη e Q(μ) n Λ = 0μ. Trivially,
7777 G Q n Λ c 0μ. It follows that Iμ is an integral ί^-ideal.

Λ/μ = A(Θμ£η + Θμηη) = (A£ + Λη)τ)

= (AT9Jrj and letting ΛΓ^ = Λp

= Λprj.

Let / = φμ

ι(Iμ). By Lemma 3.15, the only possible prime divisors of N(ρ)
are 2, 9 so that (N(pη)J) = 1. Since by Lemma 3.18, [0μ: Iμ] = N(pη),
I is a regular (i.e., proper) 0^-ideal.

Suppose 9 l m. By Lemma 3.16 we may assume that N(p) = 2",
« > 0. If n = 0, AIμ = Aη so that Δ(/, [μ]) = [ημψ1] = [v] as desired. If

n > 0, then by Lemma 3.23 there is a / E G such that Δ(//, [μ]) = [ι>].
Next suppose q\ m. Here we may assume N(p) = 2rqs > 0, s = 0, 1

by Proposition 3.15. If s = 0, we are reduced to the above case, so we
consider N(p) = q 2r. From the previous case and Proposition 3.2 we
can assume the existence of an ideal / e G such that Δ(//, [μ]) = [jvj'1].
We shall show that [v] e {Δ(/, [jμΓ1])!/ e G}.

To accomplish this, we need to look at the set Tvjμj-i. First we claim
that j - Tv j -1 = Tvμ. One inclusion is obvious. For the other, let γ e Tvμ.
Then γ ejT9jμΓi if and only if j~ιy e Λ. Now Tvμ = Zξ ^r Zη and
ΛT^ = Λp with N(p) s 0 (9). Thus both £ and η have norms divisible
by q and so by Proposition 3.2 we may write Tvμ = j(Z^ + Zη2) for
some ξl9 ηλ e Λ. It follows that y^γ ^j-λTvμ =j~ιj(Zξ1 + ZηJ c Λ
which establishes the claim.

With T9jμJ-ι =Γ%,μ = Z ^ + Zih we put / y μ r i = ^ . - 1 ^ +
v Then as above,

r i = Λ Tvjμj-i

(by Proposition 3.2)

(by Proposition 3.2)
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Let/"φ^-iί/^-i). Then

(P =7Pi)

But iV(px) = 2r, so the above arguments show that [pλvp~^] and [v] are in

the same orbit.

PROPOSITION 3.26. If q \ m and [μ] e Wv then the two orbits

{Δ(/, [μ])|/ G G) and {Δ(7, [./μΓ1])!/ e G) are disjoint.

Proof. We need only show that the orbits do not coincide. If they did,

then there would be an integral proper β^-ideal J, such that Δ(/, [μ]) =

[jμj~ι\ so that Λ/μ = Λ/c and ε/cμ/c'V1 =jμj~ι for some ε e Λ x. Thus

ε/c ^ Tμjμj-1 a n d as we saw in the proof of Lemma 3.16, ε/c = jλ for some

λ G Λ. In particular, q\ N(κ) and hence q divides the norm of the ideal

/. Let s = ordqN(κ). If s is even, then K may be written as K = κxq
s/1

with κλ G Λ, q + N(κλ). But in that case ε/cx e Tμjμj-i and so must have

norm divisible by q, a contradiction. Thus s must be odd, and since

s = ord [0,: / ] , this implies the existence of a proper (PΛdeal of norm q,
H J . J

which is impossible since q is inert in Q(}/-m) (Lemma 3.8). Thus, the

orbits are disjoint.

THEOREM 3.27. Let m be α positive integer not divisible by 4 and write

m = mof
2 with m0 square-free. Let T(m) denote the number of primitive

roots of X1 + m in Λ and let h(m) denote the order of the ideal class group

of proper Θf-ideals in Q(\/-m). Finally, let ω(m) denote the number of

units in Θf and |ΛX | the order of the unit group Λ x. Suppose that

T(m) > 0. Then

ω{m)T{m) = ί | Λ x | ε w ifq\m

h(m) \2|Λ x |εw if q \ m

where

I if m = 1,2 (mod4)

ifm = 7 (mod 8)

ί/ffi = 3(mod8).



246 THOMAS R. SHEMANSKE

Proof. In view of Proposition 3.14, the case of m = 3 is special and is
most easily checked by hand. Let t(m) denote the number of primitive
roots μ of X2 + m in Λ with [μ] e Wv Proposition 3.24 implies that all
orbits of the ideal class group G of proper 6^-ideals acting on the set W1

have h(m) elements. Thus,

t(m) = (the number of orbits of G acting on Wλ)

X (the number of bundles per orbit)

X (the number of primitive roots per bundle)

m X h ( m ) x ^
q \ m ω(m)

by Propositions 3.6, 3.24, 3.25, and 3.26.
Moreover, by Proposition 3.14 and the discussion preceding it, T(m)

= t{m) if m s 1, 2 (4); T(m) = 2t(m) if m = 7 (8); and T(m) = At{m)
if m = 3 (8). Here, the factors of 2 (= 1 + 1) and 4 (= 1 + 3) reflect the
1-1 and 1-3 correspondences of the bundles in Wx and W2. This com-
pletes the proof.

REMARK 3.28. It is interesting to observe that in the statement of the
theorem, the left hand side depends upon the exact value of m whereas
the right hand side depends only on the congruence class of m modulo 8#.

EXAMPLE 3.29. Consider the quaternion algebra

Q

(i.e., ι2 = -2, j 2 = -5) and a maximal order

A = z(±ψ±) + z(i±^fti) + z; + zk
in 9Ϊ. When restricted to the elements of trace zero in SI, the reduced
norm has the form 2x2 + 5y2 + 10z2. In this example, we shall illustrate
our results in the case m = 55. It is easy to check directly that there are
precisely 24 primitive elements of Λ with trace zero and reduced norm 55.
We now wish to see how these elements are distributed throughout the
bundles in the sets Wγ and W2.

Recall that WQ denotes the set of all bundles [μ] of primitive elements
f iGA with μ2 + 55 = 0. Since Λ x is a cyclic group of order 6, generated
by 6 = (2 + / - Ό/4, ^ch bundle [μ] contains 3 elements (Proposition
3.6) and the elements of the bundle will be listed in the following order:
[μ] = {μ, εμε"1, έμε"1}. Also recall that by Proposition 3.4, Wo is the
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disjoint union of the sets Wx and W2 where, in this example,

and

W2= {[μ] <Ξ W0\A Π Q(μ) = Z + Zμ}.

By Proposition 3.14, since m = 55 = 7 (8), there is a 1-1 correspon-
dence between the elements of Wλ and W2. To establish the correspon-
dence, we need to determine the three left Λ-ideals of norm 2, Λτl9 Λτ2

and Λτ3 in the notation of Proposition 3.3. They are Λι, Λ/ε, and Aiε
where ε is the generator of Λ x specified above.

Since 5 l m , Proposition 3.25 says that the map Δ induces a transitive
group action of the ideal class group G of Q(/-55) on Wv Specifically,
Wx = {Δ(7, [μ])\I e G) where μ is any fixed primitive root of X2 + 55
with [μ] e Wv We shall take μ = 3y + fc as our fixed element.

The ideal class number of Q(/-55) is 4 and representatives of the
ideal classes may be taken to be:

Note that 2Θ = J2/3 and 5Θ = /^ and the norms of the ideals Ily J2, /3,
74 are respectively 1, 2, 2, 5.

To employ the map Δ we need to compute κι where A/7 = Λκ/?

/ = 1, 2, 3, 4. By Lemma 3.18, the reduced norm of κι equals the norm of
7Z which greatly simplifies the chore. κγ can obviously be chosen to be 1
and, by Corollary 3.20, κ4 can be chosen to be j . One computes [μ] =
{(0,3,1), ( f ,-2, | ) , (-5,-1,0)} where we use (a,b,c) to represent the
element ai + bj + ck in Λ. Since

1 + iεμε'H'1 _ 2 + Si + 4; - 3A:
2 " 4 * Λ '

by Corollary 3.21 we may take κ2 = / and κ3 = ιε.
Thus H^ = {[Kfμκjι]\l = 1, 2, 3, 4}. ExpUcitly, we have:

1] = {(0,3,1), (|,-2,|), (-5,-1,0)},
1] = {(0, -3,-1), (^, 2,f), (5,1,0)},
1] = {(-5,1,0), (|,2,|), (0,-3,1)},
ι] = {(0,3,-1), (5,-1,0), (^,-2,^)}
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According to Proposition 3.14, for each / = 1, 2, 3, 4, there is a
unique τh(h = 1, 2, 3) such that [τΛ(ιt/μιc/-

1)τΛ~"1] e W2. It is easy to check
that if v is a primitive root of X2 + 55 in Λ and v e Z/ + Zy 4- Z&, then
(1 + p)/2 G Λ, i.e., [v] G W1# Because the elements τh are all of the form
z'ω, ω G Λ x and i(ai + 6/ + cA:)/"1 = 0/ - &/ — ck, the action of the τh

on the bundles is easy to determine. Thus, by the above comment, there is
for each bundle [κtμκjι] only one viable candidate for τh (and it works).

The elements of W2 are [vλ\ [v2\ [J>3], [vA] where vt = τhκιμκ'j'ιτ^1, for
the appropriate τh (τA = iε for / = 1, 2, 3 and τh = iε for / = 4). Ex-
plicitly,

[ V 4 \ — I V 2 > Z > 2 ) > V 4 ? 2 M / Λ 4 5 2 ) 4 / J

This yields the 24 primitive elements λ of Λ with λ2 + 55 = 0. Note
that while it may seem that "obvious solutions" to λ2 + 55 = 0 are
missing from the above lists (e.g., λ = (f, \, ^ ) ) , these elements are not in
Λ.

4. Integral representations. A question related to Theorem 3.27, which
was considered in [13], is to determine the number of primitive integral
solutions (i.e. x, y9 z e Z and (x, y, z) = 1) to ax1 + qy2 + aqz2 = m.
Since there is an obvious correspondence between a primitive integral
solution (x,y,z) and a primitive root xi + yj: + zk of X2 + m in Λo, it
is natural to try to imitate the results of section 3 by focusing on Λo

rather that Λ. However, since Λo does not, in general, have class number
one, the work must still be done in Λ. One needs to investigate how many
(if any) elements in a given bundle [μ] (μ E A) are actually in Λo. Also,
one needs to show that the group action induced by the map Δ restricts to
one on the set of bundles which contain elements of Λo.

It turns out, somewhat curiously, that results regarding integral repre-
sentations seem to hold for only two of the four algebras (and also
Hurwitz's quaternions) which were considered in this paper. It is also of
interest to note that it is precisely these three algebras for which a
maximal order is a Euclidean ring [16]. We state the final results for the
algebras

and
Q / I Q

The results for Hurwitz's quaternions are due to Venkov [15].
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Let m be a positive integer not divisible by 4 and write m = mof
2

with m0 square-free. Denote by T3(m) (resp. T5(m)) the number of
primitive integral solutions to x2 + 3y2"+ 3z2 = m (resp. 2.x2 + 5j>2 +
10z2 = m). Let 0y be the uniquely determined suborder of index / in the
maximal order of Q(]/-m) and h(m) the order of the ideal class group of
proper ύ^-ideals.

T H E O R E M 4.1. Suppose that T3(m) > 0. Then T3(m) = c3(m)h(m)
where:

//m ^ 1 , 2 (mod 4) then cΛm) ={Λ ** *"'
v ίX ' \4 if 3 \ m.

If m = 3 (modS) then c3(m) =(]] ^\\m'
(m>3) \24 l/3 + W.

8 if3\m;
Ifm = 7 (mod 8) then c3(m) = ^ ^ 3 + m

THEOREM 4.2. Suppose that T5(m) > 0. Then T5(m) = c5(m)h(m)
where:

/ / m Ξ U ( m o d 4 ) f a φ ) = (2 ^ ' ^ ;

//m s 7 (mod8) /λβn cs(m) = {* ^ ' + ^ ;

N.B. (1) If m s 3 (mod 8) or 25 I m then T5(m) = 0.
(2) If 9 I m then T3(m) = 0.
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