Vol. 122, No. 2, 1986

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Schrödinger semigroups on the scale of Sobolev spaces

Barry Simon

Vol. 122 (1986), No. 2, 475–480
Abstract

We consider the action of semigroups etH, with H = Δ + V on L2(Rν), on the scale of Sobolev spaces α. We show that while etH maps L2 = 0 to 2 under great generality, there exist bounded V so that, for all β > 0, etH[β] is not contained in any α with α > 2.

Mathematical Subject Classification 2000
Primary: 47F05
Secondary: 35J10, 35P05, 81C10, 47D05
Milestones
Received: 17 December 1984
Revised: 26 March 1985
Published: 1 April 1986
Authors
Barry Simon
Department of Mathematics
California Institute of Technology
MC 253-37
Pasadena CA 91125
United States
http://www.math.caltech.edu/people/simon.html