CROSSED PRODUCT AND HEREDITARY ORDERS

Gerald Howard Cliff and Alfred Rheinhold Weiss
CROSSED PRODUCT AND HEREDITARY ORDERS

GERALD H. CLIFF AND ALFRED R. WEISS

Let Λ be the crossed product order $(O_L/O_K, G, \rho)$ where L/K is a finite Galois extension of local fields with Galois group G, and ρ is a factor set with values in O_L^*. Let $\Lambda_0 = \Lambda$, and let Λ_{i+1} be the left order $O_I(\text{rad } \Lambda_i)$ of rad Λ_i. The chain of orders $\Lambda_0, \Lambda_1, \ldots, \Lambda_s$ ends with a hereditary order Λ_s. We prove that Λ_s is the unique minimal hereditary order in $A = K\Lambda$ containing Λ, that Λ_s has e/m simple modules, each of dimension f over the residue class field \bar{K} of O_K, and that $s = d - (e - 1)$. Here d, e, f are the different exponent, ramification index, and inertial degree of L/K, and m is the Schur index of A.

1. Introduction. Let O_K be a complete discrete valuation ring having field of fractions K and finite residue class field \bar{K}. Let L be a finite Galois extension of K, with Galois group G, and let O_L be the valuation ring in L. Let ρ be a factor set on $G \times G$ with values in the units of O_L. We are interested in the crossed product order $\Lambda = (O_L/O_K, G, \rho)$ contained in the simple algebra $A = (L/K, G, \rho)$. If ρ is trivial, Auslander-Goldman [1] showed that Λ is a maximal order in A if and only if L/K is unramified, and Auslander-Rim [2] showed that Λ is hereditary if and only if L/K is tamely ramified. Williamson [8] extended the Auslander-Rim result to the case that ρ is any factor set. We are interested in the wild case. Benz-Zassenhaus [3] showed that Λ is contained in a unique minimal hereditary order in A.

We set $\Lambda_0 = \Lambda$, and define inductively

$$\Lambda_{j+1} = \{x \in A : x \text{ rad } \Lambda_j \subseteq \text{ rad } \Lambda_j\} = O_I(\text{rad } \Lambda_j).$$

Then we have the sequence of orders

$$\Lambda_0 \subseteq \Lambda_1 \subseteq \Lambda_2 \subseteq \cdots \subseteq \Lambda_s = \Lambda_{s+1}$$

for some integer s. Since $\Lambda_s = O_I(\text{rad } \Lambda_s)$, it follows that Λ_s is hereditary ([6, 39.11, 39.14]). From the theory of hereditary orders (see [6, 39.14]) Λ_s may be described as follows: if $A \cong M_n(D)$, the ring of $n \times n$ matrices over a division ring D, and if Δ is the unique maximal order in D, then Λ_s is the set of block matrices, with entries in Δ, where there are r diagonal blocks of size $n_i \times n_i$, and blocks above the diagonal have
entries in \(\text{rad} \Delta \). The positive integer \(r \) is called the type number of \(\Lambda_s \), and is also equal to the number of simple \(\Lambda_s \)-modules. Our main result is the following.

Theorem. (1) \(\Lambda_s \) is the unique minimal hereditary \(O_K \)-order in \(A \) containing \(\Lambda \).

(2) \(\text{rad} \Lambda_s = P_L \Lambda_s \), where \(P_L \) denotes the maximal ideal of \(O_L \).

(3) \(r = e/m \), where \(e \) is the ramification index of \(L/K \) and \(m \) is the Schur index of \(A \).

(4) \(n_1 = n_2 = \cdots = n_r = f \), the inertial degree of \(L/K \).

(5) \(s = d - (e - 1) \), where \(d \) is the exponent \(P_L^d = \mathcal{O} \) of the different of \(L/K \).

We prove this by first considering the split case (when \(p = 1 \)), and then taking an unramified extension \(K' \) of \(K \) which splits \(A \), and considering \(A \otimes_K K' \) which is a crossed product \((L'/K', G, 1) \), where \(L' = L \otimes_K K' \). Then \(L' \) is not in general a field, but a Galois algebra over \(K' \), and we find it convenient to prove the Theorem when \(L \) is a Galois algebra over \(K \) to begin with; we take \(O_L \) to be the integral closure of \(O_K \) in \(L \), we replace \(P_L \) by \(\text{rad} O_L \), and we give suitable definitions of \(d, e, \) and \(f \) in §2. We deal with the split case in §3, and the general case in §4. We find generators for the hereditary order \(\Lambda_s \) in §5, in the totally ramified split case. In §6 we show how our results yield those of Auslander-Goldman-Rim-Williamson, as well as some others.

We cite Reiner [6] as a general reference.

2. **Galois algebras.** Let \(L \) be a commutative Galois algebra over \(K \), with finite Galois group \(G \), by which we mean that \(L \) is a commutative separable \(K \)-algebra with \(G \) a group of automorphisms of \(L \) fixing \(K \) such that the fixed subalgebra \(L^G = K \) and \(|G| = \dim_K L \). Let \(O_L \) be the integral closure of \(O_K \) in \(L \). Let \(E \) denote the set of primitive idempotents of \(L \). Then for \(\varepsilon \in E \), the integral closure \(O_{L\varepsilon} \) of \(O_K \) in the field \(L\varepsilon \) is a complete discrete valuation ring, and \(O_{L\varepsilon} = O_{L\varepsilon} \). Since \(L^G = K \), \(G \) acts transitively on \(E \).

Lemma 2.1. Let \(I \) be a non-zero \(O_L \)-submodule of \(L \) which is \(G \)-invariant. Then \(I = (\text{rad} O_L^i) \) for some integer \(i \).

Proof. For any primitive idempotent \(\varepsilon \) of \(L \), \(I\varepsilon \) is a non-zero \(O_{L\varepsilon} \)-submodule of \(L\varepsilon \), and therefore \(I\varepsilon = (\text{rad} O_{L\varepsilon})^i \varepsilon \) for some \(i \varepsilon \in \mathbb{Z} \), since \(O_{L\varepsilon} \) is a discrete valuation ring. Because \(G \) acts transitively on \(E \)
and I is G-invariant, it follows that $i_{\varepsilon} = i$ is independent of ε. Then

$$I = \sum_{\varepsilon \in E} I_{\varepsilon} = \sum_{\varepsilon \in E} (\text{rad } O_{L_{\varepsilon}})^i = \sum_{\varepsilon \in E} (\text{rad } O_L)^i \varepsilon = (\text{rad } O_L)^i$$

as desired.

First, let $I = P_K O_L$. Then $P_K O_L = (\text{rad } O_L)^e$ for some integer e, and we call e the ramification index of L/K.

Next, let $\text{tr}_{L/K}: L \to K$ be the trace map, and let

$$\tilde{O}_L = \{ x \in L: \text{tr}_{L/K}(xO_L) \subseteq O_K \}$$

be the complementary module to O_L under the trace. Since

$$\text{tr}_{L/K}(x) = \sum_{g \in G} g(x), \quad x \in L,$$

it follows that \tilde{O}_L is a G-invariant O_L-submodule of L, so $\tilde{O}_L = (\text{rad } O_L)^{-d}$ for some integer d. We call d the different exponent of L/K (and $(\text{rad } O_L)^d$ the different $\mathfrak{D}_{L/K}$ of L/K).

Define the inertial degree f of L/K to be $\dim_K(\text{rad } O_L/\text{rad } O_{L^e})$.

Let $\rho: G \times G \to O_L^*$ be a factor set on G with values in the units of O_L. The crossed product algebra $A = (L/K, G, \rho)$ is the free left L-module with basis $u_g, g \in G$, with multiplication given by

$$xu_g \cdot yu_h = xg(y)\rho(g, h)u_{gh}, \quad x, y \in L, \ g, h \in G.$$

The order $\Lambda = (O_L/O_K, G, \rho)$ is the O_L-submodule of A spanned by $u_g, g \in G$. We assume that $\rho(g, 1) = \rho(1, g) = 1$, so that O_L may be identified inside Λ as $\{ xu_i : x \in O_L \}$.

Lemma 2.2. (1) L has a normal K-basis with respect to G.

(2) A is a central simple K-algebra, and A is isomorphic to a full matrix ring over K if and only if the class of ρ in $H^2(G, L^*)$ is 1.

(3) The reduced trace $\text{tr}_d: A \to K$ is given by

$$\text{tr}_d \left(\sum_{g \in G} a_g u_g \right) = \text{tr}_{L/K}(a_1).$$

Proof. These results are well known if L is a field, and the proofs are essentially the same if L is a Galois algebra. We omit the details.

3. **The split case.** In this section we assume that L/K is a Galois algebra, and we prove the theorem in the case that $\rho = 1$, with P_L replaced by $\text{rad } O_L$, and with d, e, f defined as in §2. Since $\rho = 1$, then
Let V be a simple A-module. The structure theory for hereditary orders ([6, 39.18]) provides a Λ_s-submodule M contained in V with the following properties:

(a) r is the unique positive integer such that $(\text{rad } \Lambda_s)^r M = P_\mathbb{K} M$, (since $\text{End}_A(V) = \mathbb{K}$).

(b) $\Lambda_s = \{ x \in A : x(\text{rad } \Lambda_s)^i M \subseteq (\text{rad } \Lambda_s)^{i+1} M, 0 \leq i < r \}$.

(c) $\text{rad } \Lambda_s = \{ x \in A : x(\text{rad } \Lambda_s)^i M \subseteq (\text{rad } \Lambda_s)^{i+1} M, 0 \leq i < r \}$.

(d) $(\text{rad } \Lambda_s)^{i-1} M/(\text{rad } \Lambda_s)^i M, 1 \leq i \leq r$, are a full set of simple Λ_s-modules.

(e) $n_i = \dim_{\mathbb{K}} (\text{rad } \Lambda_s)^{i-1} M/(\text{rad } \Lambda_s)^i M, 1 \leq i \leq r$.

The algebra A acts on L, via

$$(\sum x_g u_g) \cdot y = \sum x_g g(y), \quad \sum x_g u_g \in A, \ y \in L,$$

and acts irreducibly on L, so we may take L to be V. The non-zero Λ-submodules of L are O_L-submodules of L which are G-stable, so they are precisely $(\text{rad } O_L)^i, i \in \mathbb{Z}$, by Lemma 2.1. We denote the Λ-module $(\text{rad } O_L)^i$ by M_i.

Lemma 3.1. For each integer $j \geq 0$,

1. M_i is a Λ_j-module, $i \in \mathbb{Z}$, and every non-zero Λ_j-submodule of V is M_i for some i.
2. $(\text{rad } \Lambda_j) M_i = M_{i+1}$.

Proof. If (1) holds for some j, then $(\text{rad } \Lambda_j) M_i \subseteq M_i$, by Nakayama’s Lemma, so $(\text{rad } \Lambda_j) M_i \subseteq M_{i+1}$, since M_{i+1} is the unique maximal Λ_j-submodule of M_i. But $\text{rad } O_L \subseteq \text{rad } \Lambda_j$, since $(\text{rad } O_L) M_i \subseteq M_i$ for each i, and $(\text{rad } O_L) M_i = M_{i+1}$, so $(\text{rad } \Lambda_j) M_i = M_{i+1}$, proving (2). For (1), we use induction on j, having noted that it holds for Λ_0. Then for $j + 1$,

$$\Lambda_{j+1} M_i = \Lambda_{j+1} (\text{rad } \Lambda_j) M_{i-1} \quad \text{(by (2) for } j)$$

$$\subseteq (\text{rad } \Lambda_j) M_{i-1} \quad \text{(by definition of } \Lambda_{i+1})$$

$$= M_i$$

so M_i is a Λ_{j+1}-module, $i \in \mathbb{Z}$. Since any Λ_{j+1}-module is also a Λ-module, the proof is complete.

Lemma 3.2. (1) $\Lambda_s = \{ x \in A : xM_i \subseteq M_i, i \in \mathbb{Z} \}$.

(2) $\text{rad } \Lambda_s = \{ x \in A : xM_i \subseteq M_{i+1}, i \in \mathbb{Z} \}$.

(3) $\text{rad } \Lambda_s = (\text{rad } O_L) \Lambda_s = \Lambda_s (\text{rad } O_L)$.
Proof. The structure of Λ_s is given in terms of a Λ_s-submodule M contained in V. From Lemma 3.1, any Λ_s-submodule of V must be M_k for some integer k. We have, from (b) and Lemma 3.1,

$$\Lambda_s = \{ x \in A: xM_{k+i} \subseteq M_{k+i}, 0 \leq i < r \}.$$

From (a), $M_{k+r} = (\text{rad} \Lambda_s)^r M_k = P_k M_k$, and since P_k is a principal ideal of O_κ, then $M_{k+r} \cong M_k$ as Λ_s-modules. Then for $i \in \mathbb{Z}$,

$$(\text{rad} \Lambda_s)^i M_{k+r} = M_{i+k+r} \cong (\text{rad} \Lambda_s)^i M_k = M_{i+k}$$

so $M_{i+r} \cong M_i$ as Λ_s-modules, $i \in \mathbb{Z}$. Thus

$$\Lambda_s = \{ x \in A: xM_i \subseteq M_i, i \in \mathbb{Z} \},$$

proving (1), and (2) follows from (1). Since $\text{rad} O_\kappa \subseteq \text{rad} \Lambda_s$ and

$$(\text{rad} \Lambda)^i M_i = M_{i+1} = (\text{rad} \Lambda_s) M_i, i \in \mathbb{Z},$$

(3) follows from (2).

Parts (1)–(4) of the Theorem are now straightforward in this case. If Γ is a hereditary order in A containing Λ, then applying the structure theory to Γ, there is a Γ-submodule M of V such that

$$\Gamma = \{ x \in A: x(\text{rad} \Gamma)^i M \subseteq (\text{rad} \Gamma)^i M, 1 \leq i \leq \text{type number of } \Gamma \}.$$

Since $\Lambda \subseteq \Gamma$, M is a Λ-module, so $M = M_j$ for some integer j. Also, since $(\text{rad} O_\kappa) M_i \subseteq M_i$, $i \in \mathbb{Z}$, then $\text{rad} O_\kappa \subseteq \text{rad} \Gamma$, and then $(\text{rad} \Gamma)^i M_j = M_{j+i}, i \in \mathbb{Z}$. It follows from Lemma 3.2 that $\Lambda_s \subseteq \Gamma$, proving (1) of the theorem. Part (2) is contained in Lemma 3.2. For (3), we know from (a) that r is the integer such that $(\text{rad} \Lambda)^r M_k = P_k M_k$. But

$$P_k M_k = P_k O_\kappa M_k = (\text{rad} O_\kappa)^e M_k = M_{k+e}$$

so $r = e$. (Note that $m = 1$ here.) For (4),

$$(\text{rad} \Lambda)^{r-1} M_k / (\text{rad} \Lambda)^r M_k = M_{k+e} / (\text{rad} \Lambda)^r M_k$$

and as K-modules $(\text{rad} O_\kappa)^{k+e} / (\text{rad} O_\kappa)^{k+1} \cong O_\kappa / \text{rad} O_\kappa$ so

$$n_i = \dim_K O_\kappa / \text{rad} O_\kappa = f, 1 \leq i \leq r.$$

In order to prove (5), we use the following result.

Lemma 3.3. Suppose that a is an integer ≥ 0 such that $(\text{rad} \Lambda)^a$ is the largest left Λ_s-ideal contained in Λ. Then $s = a$.

Proof. If $a = 0$, then $\Lambda_s \subseteq \Lambda$, so $\Lambda_s = \Lambda$, and $s = 0$. Assuming that $a > 0$, we show that $(\text{rad} \Lambda)^{a-1}$ is the largest left Λ_s-ideal contained in Λ_1. First,

$$(\text{rad} \Lambda)^{a-1} \text{rad} \Lambda \subseteq (\text{rad} \Lambda)^{a-1} \text{rad} \Lambda_s = (\text{rad} \Lambda)^a.$$
Now \((\text{rad } \Lambda_s)^a \subseteq \Lambda\) by hypothesis, and \(\Lambda_s \cap \Lambda \subseteq \text{rad } \Lambda\), by Lemma 3.2. Thus \((\text{rad } \Lambda_s)^a \subseteq \text{rad } \Lambda\). Then \((\text{rad } \Lambda_s)^{a-1}(\text{rad } \Lambda) \subseteq \text{rad } \Lambda\), so \((\text{rad } \Lambda_s)^{a-1} \subseteq \Lambda_1\).

Next, if \(L\) is a left \(\Lambda_s\)-ideal contained in \(\Lambda_1\), then \(L \text{rad } \Lambda \subseteq \text{rad } \Lambda\), so \(L \text{ rad } \Lambda \subseteq (\text{rad } \Lambda_s)^a\). Then

\[
L \text{ rad } \Lambda_s = L(\text{rad } \Lambda) \Lambda_s \subseteq (\text{rad } \Lambda_s)^a.
\]

Since \(\text{rad } \Lambda_s\) is invertible, \(L \subseteq (\text{rad } \Lambda_s)^{a-1}\) as desired.

Now by induction, the length of the chain \(\Lambda_1 \subseteq \Lambda_2 \subseteq \cdots \subseteq \Lambda_s\) is \(a - 1\), so \(s = a\), and the proof is complete.

Let \(\text{trd} : A \rightarrow K\) be the reduced trace, and for an \(O_K\)-submodule \(L\) of \(A\) with \(KL = A\), let

\[
\tilde{L} = \{ x \in A : \text{trd}(xL) \subseteq O_K \}
\]

be the complementary module.

Lemma 3.4. Let \(\Gamma\) be any hereditary \(O_K\)-order contained in the split simple algebra \(A = M_n(K)\). Then

\[
\tilde{\Gamma} = P_K^{-1} \text{rad } \Gamma.
\]

Proof. Suppose that \(\Gamma\) has type number \(r\), invariants \(n_1, \ldots, n_r\), and \(\Gamma\) consists of block matrices as mentioned in section 1. Let \(\pi_K\) be a prime element of \(O_K\). For integers \(i, j, 1 \leq i, j \leq n\), let \(Y_{ij}\) denote the matrix whose \(i, j\)-entry is \(\pi_K\) if the \(i, j\)-position is above the diagonal of blocks of \(\Gamma\), or \(1\) otherwise, and all of whose other entries are \(0\) (so \(Y_{ij} \in \Gamma\)). Let \(y_{ij}\) denote the non-zero entry of \(Y_{ij}\). Let \(X = (x_{ij})\) be any element of \(A\). Then \(XY_{ij}\) has at most one non-zero entry on the main diagonal, namely \(x_{ij}y_{ji}\). We have \(\text{trd}(XY_{ij}) = \text{trace of matrix } XY_{ij} = x_{ij}y_{ji}\). Then \(X \in \tilde{\Gamma} \iff x_{ij}y_{ji} \in O_K\), all \(i, j \iff\) when \(X\) is partitioned according to the block partition induced by \(\Gamma\), the entries below the diagonal of blocks are in \(P_K^{-1}\), and the other entries are in \(O_K\). But such matrices are precisely those in \(P_K^{-1} \text{rad } \Gamma\). Since the \(Y_{ij}\) give a free basis for \(\Gamma\) over \(O_K\), the result follows.

Lemma 3.5. Let \(w = d - (e - 1)\). Then \((\text{rad } \Lambda_s)^w\) is the largest left \(\Lambda_s\)-ideal contained in \(\Lambda\).

Proof. From Lemma 3.2, we have \(\text{rad } \Lambda_s = (\text{rad } O_L) \Lambda_s\), so \((\text{rad } \Lambda_s)^w = (\text{rad } O_L)^{d-(e-1)} \Lambda_s\). From Lemma 3.4

\[
\tilde{\Lambda}_s = P_K^{-1} \text{rad } \Lambda_s = (\text{rad } O_L)^{-e}(\text{rad } O_L) \Lambda_s = (\text{rad } O_L)^{-e+1} \Lambda_s,
\]
so

\[(\text{rad } \Lambda_s)^w = (\text{rad } O_L)^d \tilde{\Lambda}_s = \left((\text{rad } O_L)^{-d} \Lambda_s \right)^{\sim} \text{.}\]

From Lemma 2.2, \(\text{trd}(\sum x_g u_g) = \text{tr}_{L/K}(x_1)\), so

\[\tilde{\Lambda} = \mathcal{D}^{-1} \Lambda = (\text{rad } O_L)^{-d} \Lambda \subseteq (\text{rad } O_L)^{-d} \Lambda_s,\]

\[(\text{rad } \Lambda_s)^w = \left((\text{rad } O_L)^{-d} \Lambda_s \right)^{\sim} \subseteq \tilde{\Lambda} = \Lambda,\]

so \((\text{rad } \Lambda_s)^w\) is contained in \(\Lambda\). If \(L\) is any other left \(\Lambda_s\)-ideal contained in \(\Lambda\), then \(\tilde{L}\) is a right \(\Lambda_s\)-module containing \(\tilde{\Lambda}\), so

\[\tilde{L} \supseteq \tilde{\Lambda} \Lambda_s = \mathcal{D}^{-1} \Lambda_s = (\text{rad } O_L)^{-d} \Lambda_s,\]

\[L = \tilde{L} \subseteq \left((\text{rad } O_L)^{-d} \Lambda_s \right)^{\sim} = (\text{rad } \Lambda_s)^w,\]

completing the proof.

Now (5) of the Theorem follows from Lemmas 3.3 and 3.5.

4. The general case. In this section we continue with the assumption that \(L/K\) is a Galois algebra, and we prove the Theorem in the case that \(\rho\) is any factor set with values in \(O_K^*\). Since \(K\) is finite, there is an unramified field extension \(K'\) of \(K\) such that the algebra \(A' = A \otimes_K K'\) splits ([7, Prop. 2, p. 191]). Let \(O'\) be the integral closure of \(O_K\) in \(K'\), and let \(\Lambda' = \Lambda \otimes_{O_K} O'\).

Lemma 4.1. If \(\Gamma\) is an \(O_K\)-order, then

\[\text{rad}(\Gamma \otimes_{O_K} O') = (\text{rad } \Gamma) \otimes_{O_K} O'.\]

Proof. Denote \(O_K\) by \(O\), and \(P_K\) by \(P\). Clearly

\[(\text{rad } \Gamma) \otimes_{O} O' \subseteq \text{rad}(\Gamma \otimes_{O} O').\]

For the reverse inclusion, we have

\[(\Gamma \otimes_{O} O')/(\text{rad } \Gamma) \otimes_{O} O' \cong (\Gamma/\text{rad } \Gamma) \otimes_{O} O'.\]

Since \(P \subseteq \text{rad } \Gamma\), then \(\Gamma/\text{rad } \Gamma\) is an \(O/P\)-module, and

\[(\Gamma/\text{rad } \Gamma) \otimes_{O} O' \cong (\Gamma/\text{rad } \Gamma) \otimes_{O/P} (O'/PO').\]

Since \(K'/K\) is unramified, then \(O'/PO'\) is field, which is separable over \(K\) since \(K\) is finite. Then the semi-simple \(O/P\)-algebra \(\Gamma/\text{rad } \Gamma\) remains semi-simple after tensoring with \(O'/PO'\), so \(\Gamma \otimes_{O} O'/(\text{rad } \Gamma) \otimes_{O} O'\) is semi-simple, and the result follows.
We let G act on $L' = L \otimes_K K'$ by
\[g(x \otimes y) = g(x) \otimes y, \quad x \in L, \ y \in K', \ g \in G. \]
Then L' is a Galois algebra over K' with Galois group G. We have $O_{L'} = O_L \otimes_{O_K} O'$, and
\[\Lambda' = \Lambda \otimes_{O_K} O' = \left(O_{L'}/O', G, \rho \right). \]

Let us show that in going from L/K to L'/K', the numbers d, e, f are unchanged.

Applying Lemma 4.1 to the O_K-order O_L, we have $\text{rad} O_{L'} = (\text{rad} O_L) \otimes_{O_K} O'$. Since the maximal ideal P' of O' is $P_K O'$, then
\[P'O_{L'} = (P_K O_L) \otimes_{O_K} O' = (\text{rad} O_L)^e \otimes_{O_K} O' = (\text{rad} O_{L'})^e \]
so the ramification index of L'/K' is still e. Similarly,
\[\dim_K (O_{L'}/\text{rad} O_{L'}) = \dim_K (O_L/\text{rad} O_L) = f. \]

For the different exponent of L'/K', since
\[\text{tr}_{L'/K'}(x \otimes y) = \text{tr}_{L/K}(x) \otimes y, \quad x \in L, \ y \in K', \]
then clearly $\hat{O}_L \otimes_{O_K} O' \subseteq \hat{O}_{L'}$; since $\hat{O}_L = (\text{rad} O_L)^{-d}$, and $\text{rad} O_{L'} = (\text{rad} O_L) \otimes_{O_K} O'$, then $(\text{rad} O_{L'})^{-d} \subseteq \hat{O}_{L'}$. If $(\text{rad} O_{L'})^{-d-1} \subseteq \hat{O}_{L'}$, then $(\text{rad} O_L)^{-d-1} \subseteq \hat{O}_L$, which is not so. Therefore $\hat{O}_{L'} = (\text{rad} O_{L'})^{-d}$.

Lemma 4.2. If Γ is an O_K-order contained in a semi-simple algebra A, then
\[O_I(\text{rad} \Gamma) \otimes_{O_K} O' = O_I(\text{rad} \left(\Gamma \otimes_{O_K} O' \right)). \]

Proof. It is clear that the left side is contained in the right. There is an isomorphism
\[\phi: O_I(\text{rad} \Gamma) \to \text{Hom}_\Gamma(\text{rad} \Gamma, \text{rad} \Gamma), \]
where $\text{rad} \Gamma$ is considered as a right Γ-module. Similarly, there is an isomorphism
\[\psi: O_I(\text{rad} \Gamma') \to \text{Hom}_{\Gamma'}(\text{rad} \Gamma', \text{rad} \Gamma'), \]
where $\Gamma' = \Gamma \otimes_{O} O'$. Since Γ is noetherian, then $\text{rad} \Gamma$ is finitely presented over Γ, so from [6, 2.37] we have an isomorphism
\[\sigma: \text{Hom}_\Gamma(\text{rad} \Gamma, \text{rad} \Gamma) \otimes_{O} O' \to \text{Hom}_{\Gamma \otimes_{O} O'}(\text{rad} \Gamma \otimes_{O} O', \text{rad} \Gamma \otimes_{O} O') \]
\[= \text{Hom}_{\Gamma'}(\text{rad} \Gamma', \text{rad} \Gamma'). \]
from Lemma 4.1. The map
\[\psi^{-1}\sigma(\phi \otimes 1) : O_t(\text{rad } \Gamma) \otimes_{O_K} O' \to O_t(\text{rad } \Gamma') \]
is the identity, and the result is proved.

Lemma 4.3. Let \(\Lambda = (O_L/O_K, G, \rho) \) be a crossed product order in \(A = (L/K, G, \rho) \) and suppose that \(A \) splits over \(K \). Then \(\Lambda \cong (O_L/O_K, G, 1) \).

Proof. Since the algebra \(A \) is split over \(K \), the class of \(\rho \) in \(H^2(G, L^*) \) is 1. We shall show that the map \(H^2(G, O_L^*) \to H^2(G, L^*) \) is one-to-one, and then the class of \(\rho \) in \(H^2(G, O_L^*) \) will be 1, and the result will follow.

Let \(E \) be the set of primitive idempotents of \(L \) and let \(M = \bigoplus_{\varepsilon \in E} Z\varepsilon \) be the free \(Z \)-module with basis \(E \); \(G \) acts on \(M \) via its action on \(E \). For \(\varepsilon \) in \(E \), let \(v_\varepsilon \) be the normalized valuation on the field \(L\varepsilon \), and define \(v : L^* \to M \) by
\[v(x) = \sum_{\varepsilon \in E} v_\varepsilon(x\varepsilon)\varepsilon, \quad x \in L^*. \]
Then we get an exact sequence of \(G \)-modules
\[o \to O_L^* \to L^* \xrightarrow{v} M \to o, \]
giving rise to the exact sequence
\[H^1(G, M) \to H^2(G, O_L^*) \to H^2(G, L^*). \]
Since \(M \) is a permutation module, \(M \) is isomorphic to the induced module \(\text{Ind}_{H}^{G}(Z) = ZG \otimes_{ZH} Z \), where \(H \) is the stabilizer of an idempotent in \(E \), and \(H \subseteq H, Z) = 0 \), since \(H \) is finite. Then \(H^2(G, O_L^*) \to H^2(G, L^*) \) is one-to-one, as desired.

From Lemma 4.2, the chains
\[\Lambda_0 \subseteq \Lambda_1 \subseteq \cdots \subseteq \Lambda_s \]
\[\Lambda'_0 \subseteq \Lambda'_1 \subseteq \cdots \subseteq \Lambda'_s \]
have the same length, and \(\Lambda'_s \) is hereditary. Since the Theorem has been proved in the split case, and since \(\Lambda' \equiv (O_{L'}/O', G, 1) \), which follows from Lemma 4.3, we find that \(s = d - (e - 1) \). If \(\Gamma \) is a hereditary order in \(A \) containing \(\Lambda \), then \(\Gamma' = \Gamma \otimes_{O_K} O' \) is a hereditary order in \(A' \) containing \(A' \), and since \(\Lambda'_s \) is the unique minimal hereditary order in \(A' \) containing \(A' \), then \(\Lambda'_s \subseteq \Gamma' \). We may embed \(\Gamma \) in \(\Gamma' \) as \(\Gamma \otimes_{O_K} 1 \), and \(A \) in \(A' \) as \(A \otimes_{K} 1 \), and then \(\Gamma = \Gamma' \cap A \supseteq \Lambda'_s \cap A = \Lambda_s \), so \(\Lambda_s \) is the unique minimal hereditary order in \(A \) containing \(\Lambda \).
From [6, 39.14] we have
\[\Lambda_s / \text{rad} \Lambda_s \equiv \prod_{i=1}^{r} M_{n_i}(\Delta) \]
where \(\Delta = \Delta / \text{rad} \Delta \), and \(\Delta \) is the unique maximal order in \(\text{End}_A(V) \), with \(V \) a simple \(A \)-module. Then
\[\Lambda_s / \text{rad} \Lambda_s \cong (\Lambda_s / \text{rad} \Lambda_s) \otimes_{O_K} O' \cong (\Lambda_s / \text{rad} \Lambda_s) \otimes_{K} K' \]
\[\cong \prod_{i=1}^{r} M_{n_i}(\Delta \otimes K') \].

Now \(\Delta \otimes_{K} K' \equiv (K')^m \), where \(m \) is the Schur index of \(A \), since \(K \) is finite ([6, 14.3]). Thus
\[\Lambda_s / \text{rad} \Lambda_s \cong \left(\prod_{i=1}^{r} M_{n_i}(K') \right)^m \].

Therefore the type number of \(\Lambda_s / \text{rad} \Lambda_s \), known to be \(e \) from §3, is equal to \(mr \), yielding
\[r = \frac{e}{m} \].

Each invariant \(n_i = f \), since the invariants \(n_i \) of \(\Lambda_s \) are \(f \). Therefore the proof of the theorem is complete.

5. Generators for \(\Lambda_s \) in the split case. In this section we find generators for \(\Lambda_s \) in the case that \(\rho = 1 \). To simplify the exposition, we assume that \(L \) is a field, which is totally ramified over \(K \). We let \(P_L \) be the maximal ideal of \(O_L \), and let \(v_L \) be the normalized valuation on \(L \). Let \(M_i \) denote the \(\Lambda \)-module \(P_i^L \), \(i \in \mathbb{Z} \).

Lemma 5.1. Let \(w = d - (e - 1) \), and let \(x \) be an element of \(L \) such that \(v_L(x) = -w \). Let \(\alpha = x \sum_{g \in \mathcal{O}} u_g \in A \). Then \(\alpha M_i \subseteq M_i \), \(i \in \mathbb{Z} \) (so \(\alpha \in \Lambda_s \), from Lemma 3.2), and unless \(i \equiv -w \) (mod \(e \)), \(\alpha M_i \subseteq M_{i+1} \), whereas if \(i \equiv -w \) (mod \(e \)), \(\alpha M_i \not\subseteq M_{i+1} \).

Proof. Let \(\text{tr} \) denote the trace from \(L \) to \(K \). We first compute \(\text{tr}(P_i^L) \), \(i \in \mathbb{Z} \). We have, for \(j \in \mathbb{Z} \),
\[\text{tr}(P_i^L) \subseteq P_i^K \iff \text{tr}(P_i^L P_{e j}^{-1}) \subseteq O_K \]
\[\iff \text{tr}(P_i^{-e j}) \subseteq O_K \iff P_i^{-e j} \subseteq \mathcal{O}^{-1} \]
\[\iff P_i^{-e j + d} \subseteq O_L \iff i - ej + d \geq 0 \]
\[\iff j \leq \frac{i + d}{e} \].
We have used $\mathcal{O} = P_L^d$. Thus
\[
\text{tr}(P_L^i) = P_K^{[(i+d)/e]},
\]
where \([\]\) denotes greatest integer. Since $\sum u_g \cdot y = \sum g(y) = \text{tr} y$, $y \in L$, we have
\[
O_L \alpha M_i = O_L x \text{tr}(P_L^i) = x O_L P_L^{((i+d)/e)} = x P_L^{((i+d)/e)}.
\]
Write
\[
\left[\frac{i + d}{e} \right] = \left[\frac{i + w}{e} + \frac{d - w}{e} \right] = \left[\frac{i + w}{e} + \frac{e - 1}{e} \right].
\]
If $(i + w)/e \notin \mathbb{Z}$, then $\left[(i + d)/e\right] > (i + w)/e$, so $e[(i + d)/e] \geq i + w$, and
\[
O_L \alpha M_i \subseteq x P_L^{i + w + 1} = P_L^{i + 1} = M_{i+1}.
\]
If $(i + w)/e \in \mathbb{Z}$, then $\left[(i + d)/e\right] = (i + w)/e$, so $e[(i + d)/e] = i + w$, and
\[
O_L \alpha M_i = x P_L^{i + w} = M_i.
\]
This completes the proof.

Let π_L be a prime element of O_L. Then from Lemma 3.2, we have $\pi_L^{-1} \Lambda_s \pi_L = \Lambda_s$. Let $\alpha = x \sum u_g$ be the element of Lemma 5.1, and define
\[
\alpha_i = \pi_L^{-i} \alpha \pi_L^i, \quad 0 \leq i < e.
\]

From Lemma 5.2, it follows that α_i acts non-trivially on M_{-w+i}/M_{-w+i+1}, whereas α_i annihilates M_j/M_{j+1} if $j \not\equiv -w + i \pmod{e}$. Thus the simple Λ_s-modules M_0/M_1, M_1/M_2, ..., M_{e-1}/M_e are non-isomorphic, and hence form a complete set of simple Λ_s-modules. Recall that $\Lambda_s/\text{rad} \Lambda_s \cong \prod_{i=1}^e M_n(\overline{K})$, and each $n_i = f = 1$, since we are assuming that L/K is totally ramified. Hence $\Lambda_s/\text{rad} \Lambda_s$ is commutative. Further, $r = e$, so $\dim_{\overline{K}}(\Lambda_s/\text{rad} \Lambda_s) = e$. Then the elements $\alpha_i + \text{rad} \Lambda_s$ generate $\Lambda_s/\text{rad} \Lambda_s$ as a \overline{K}-module, $0 \leq i < e$. Since $\text{rad} \Lambda_s = P_L \Lambda_s$, we see that $O_L \alpha_i$, $0 \leq i < e$, generate Λ_s as an O_K-module. So π_L/α_i, $0 \leq j < e$, $0 \leq i < e$, generate Λ_s as an O_K-module.

Finally, from the formula $\text{tr}(P_L^i) = P_K^{[(i+d)/e]}$ from Lemma 5.1, if we set $i = -w$, then $i + d = e - 1$, so $\text{tr}(P_L^{-w}) = O_K$. Thus we may find y in L with $v_L(y) = -w$ such that $\text{tr}(y) = u$ is a unit of O_K. Then $x = u^{-1}y$ has $v_L(x) = -w$ and $\text{tr}(x) = 1$. Now $(\sum u_g)x(\sum u_g) = \text{tr}(x)\sum u_g = \sum u_g$, so $\alpha = x\sum u_g$ is idempotent. From the action of α on the simple modules M_i/M_{i+1}, we find that α is a primitive idempotent of Λ_s, and that the elements $\alpha_i + \text{rad} \Lambda_s$ are all the primitive idempotents of $\Lambda_s/\text{rad} \Lambda_s$.

6. Complements. The results of Auslander-Goldman-Rim-Williamson mentioned in the Introduction follow easily from our Theorem. If \(p = 1 \), \(\Lambda \) is a maximal order in \(A \) if \(s = 0 \), \(r = 1 \) if \(e/m = 1 \) if \(e = 1 \), since \(m = 1 \). For any \(p \), \(\Lambda \) is hereditary if \(s = 0 \) if \(d = e - 1 \) if \(L/K \) is tamely ramified, from [7, Prop. 13, p. 67].

We also recover a result of Janusz [4], who showed that, in the tamely ramified case, \(\Lambda \) has type \(e/m \) and invariants \(f \). (See also Merklen [5].)

From the fact that \(r = e/m \), we find a way to compute the Schur index \(m \) of \(A \) as follows: the centre of \(\Lambda_s / \text{rad} \Lambda_s \) has \(e/m \) component fields (each of dimension \(m \) over \(K \)).

It may be shown that the index

\[
(\Lambda_s : \Lambda) = \pi_K^{n^2(d-(e-1))/2e}
\]

where \(n = [L : K] \). This follows from

\[
(\bar{\Lambda} : \Lambda) = (\bar{\Lambda}_s : \Lambda_s)(\Lambda_s : \Lambda)^2.
\]

Note that Lemma 3.4 (that \(\bar{\Lambda} = P_K^{-1} \text{rad} \Lambda \) if \(\Lambda \) is hereditary) also holds in the non-split case, as may be shown by tensoring with an unramified extension.

In the split case (§3), the \(\Lambda \)-lattices contained in a irreducible \(A \)-module \(V \) are linearly ordered, but this fails to be true if \(A \) is not split. However, it may be shown, in general, that the \(\Lambda \)-lattices \(M \) in \(V \) such that \(\text{End}_A(M) \) is the maximal order in \(\text{End}_A(V) \) are linearly ordered, and this can be used to prove the Theorem, just as in §3.

Note that we could have used right-orders \(\Lambda'_{j+1} = O_j(\text{rad} \Lambda'_j) \) throughout, instead of left orders, and still obtain the same answer \(s = d - (e - 1) \) for the length of the chain \(\Lambda'_0 \subseteq \cdots \subseteq \Lambda'_s \). By uniqueness of \(\Lambda_s \), we would get \(\Lambda_s = \Lambda'_s \), but we do not know whether \(\Lambda_j = \Lambda'_j \) for all \(j, 1 < j < s \).

REFERENCES

Received September 21, 1984 and in revised form March 26, 1985. Supported by NSERC.

University of Alberta

Edmonton, Alberta

Canada T6G 2G1
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gideon Amit and David Chillag</td>
<td>On a question of Feit concerning character values of finite solvable groups</td>
<td>257</td>
</tr>
<tr>
<td>Constantin Gelu Apostol and Frank Larkin Gilfeather</td>
<td>Isomorphisms modulo the compact operators of nest algebras</td>
<td>263</td>
</tr>
<tr>
<td>Parviz Azimi and James Neil Hagler</td>
<td>Examples of hereditarily l^1 Banach spaces failing the Schur property</td>
<td>287</td>
</tr>
<tr>
<td>Brian Evan Blank</td>
<td>Boundary behavior of limits of discrete series representations of real rank one semisimple groups</td>
<td>299</td>
</tr>
<tr>
<td>Jeffrey Carroll</td>
<td>Some undecidability results for lattices in recursion theory</td>
<td>319</td>
</tr>
<tr>
<td>Gerald Howard Cliff and Alfred Rheinhold Weiss</td>
<td>Crossed product and hereditary orders</td>
<td>333</td>
</tr>
<tr>
<td>Ralph Cohen</td>
<td>Realizing transfer maps for ramified coverings</td>
<td>347</td>
</tr>
<tr>
<td>Ronald James Evans</td>
<td>Hermite character sums</td>
<td>357</td>
</tr>
<tr>
<td>C. L. Frenzen and Roderick Sue-Chuen Wong</td>
<td>Asymptotic expansions of the Lebesgue constants for Jacobi series</td>
<td>391</td>
</tr>
<tr>
<td>Bruno Iochum</td>
<td>Nonassociative L^p-spaces</td>
<td>417</td>
</tr>
<tr>
<td>John McDonald</td>
<td>Unimodular approximation in function algebras</td>
<td>435</td>
</tr>
<tr>
<td>John Robert Quine, Jr.</td>
<td>Ramification and unintegrated value distribution</td>
<td>441</td>
</tr>
<tr>
<td>Marc Raphael</td>
<td>Commutants of quasisimilar subnormal operators</td>
<td>449</td>
</tr>
<tr>
<td>Parameswaran Sankaran and Peter Zvengrowski</td>
<td>On stable parallelizability of flag manifolds</td>
<td>455</td>
</tr>
<tr>
<td>Helga Schirmer</td>
<td>A relative Nielsen number</td>
<td>459</td>
</tr>
<tr>
<td>Barry Simon</td>
<td>Schrödinger semigroups on the scale of Sobolev spaces</td>
<td>475</td>
</tr>
<tr>
<td>Viakalathur Shankar Sunder</td>
<td>Stochastic integration in Fock space</td>
<td>481</td>
</tr>
<tr>
<td>Jan de Vries</td>
<td>A note on the G-space version of Glicksberg’s theorem</td>
<td>493</td>
</tr>
</tbody>
</table>