Vol. 123, No. 1, 1986

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
The absolute Galois group of a pseudo real closed algebraic field

Dan Haran and Moshe Jarden

Vol. 123 (1986), No. 1, 55–69
Abstract

The absolute Galois group of a PRC ( = pseudo real closed) field is characterized as a real projective group. Specifically, it is known that if E is a PRC field, then its absolute Galois group G(E) is real projective. Conversely, if G is a real projective group, then there exists a PRC field E such that G(E)G. The construction of E makes it of infinite transcendence degree over Q. However, if a field E is algebraic over Q, then rank G(E) ≤ℵ0. Therefore it is natural to ask whether for a given real projective group G of rank ≤ℵ0 we may choose E to be algebraic over Q.

There are two reasons for asking this question. First of all, the corresponding question for projective groups and PAC fields is known to have an affirmative answer, since there exist algebraic PAC fields E such that G(E)Fω = the free profinite group of ranks 0 and since every projective group G of rank ≤ℵ0 is isomorphic to a closed subgroup of Fω. A generalization of this fact to real projective groups and PRC fields will be a contribution to the desired description of the closed subgroups of G(Q). Secondly, an affirmative answer to this question will give us a necessary tool to the study of the elementary theory of all PRC fields which are algebraic over Q.

The main goal of this work is indeed to give the desired affirmative answer:

Theorem. If K is a countable formally real Hilbertian field and G is a real projective group of rank ≤ℵ0, then there exists a PRC algebraic extension E of K such that G(K)G.

Mathematical Subject Classification 2000
Primary: 12D15
Secondary: 12F10
Milestones
Received: 11 December 1984
Published: 1 May 1986
Authors
Dan Haran
Moshe Jarden
Tel Aviv University