Vol. 123, No. 2, 1986

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
On the Kato-Rosenblum theorem

James Secord Howland

Vol. 123 (1986), No. 2, 329–335
Abstract

The Kato-Rosenblum Theorem has no straightforward generalization to operators with non-absolutely continuous spectra. For example, if A is a bounded selfadjoint operator such that the singular continuous parts of H and H + A are unitarily equivalent for every selfadjoint operator H, then A = 0.

Mathematical Subject Classification 2000
Primary: 47A55
Secondary: 47B10
Milestones
Received: 8 March 1985
Published: 1 June 1986
Authors
James Secord Howland