SPACE CURVES THAT INTERSECT OFTEN

Steven P. Diaz
SPACE CURVES THAT INTERSECT OFTEN

STEVEN DIAZ

In intersection theory one tries to understand $X \cap Y$ in terms of information about how $X$ and $Y$ lie in an ambient variety $Z$. When the sum of the codimensions of $X$ and $Y$ in $Z$ exceeds the dimension of $Z$ not much is known in this direction. The purpose of this note is to provide some results in perhaps the simplest nontrivial case of this—that of curves in $\mathbb{P}^3$ (projective three space). A weaker result for $\mathbb{P}^n$ is also obtained. We work over any fixed algebraically closed field of arbitrary characteristic.

(1) THEOREM. Let $X$ of degree $d$ and $Y$ of degree $e$ be two distinct reduced, irreducible curves in $\mathbb{P}^3$ neither of which is contained in a hyperplane. Assume $d < e$. Let $m$ be the number of points in $X \cap Y$ (not counting multiplicity). Then:

(i) $m \leq (d - 1)(e - 1) + 1$

(ii) If $m = (d - 1)(e - 1) + 1$ then there exists a quadric hypersurface $Q$ containing $X \cup Y$. If furthermore $d \geq 4$ then $Q$ is smooth and on $Q$ $X$ has type $(d - 1, 1)$ and $Y$ has type $(1, e - 1)$.

(iii) If $d \geq 4$ and $m \geq (d - 2)e + 1$ then there exists a smooth quadric $Q$ containing $X \cup Y$.

The key to the proof of this theorem will be a study of the ideal of the curve $X$. Results of [GLP] will be crucial.

The author would like to thank David Eisenbud and Marc Levine for helpful discussions in the course of the investigations which led to this paper.

Before starting the proof of (1) we quote results from other sources that will be needed.

(2) DEFINITION ([GLP], p. 491). Let $X \subset \mathbb{P}^r$ be a reduced curve. For a given integer $n \geq 0$ we say $X$ satisfies property $(C_n)$ if $X$ is cut out in $\mathbb{P}^r$ by hypersurfaces of degree $n$, and the homogeneous ideal of $X$ is generated in degrees greater than or equal to $n$ by its component of degree $n$. 

263
(3) **Theorem** ([GLP], p. 492, 504). Let \( X \subset \mathbb{P}^r \) \( (r \geq 3) \) be a reduced, irreducible curve of degree \( d \), not contained in any hyperplane. Then:

(i) Property \( (C_{d+1-r}) \) fails if and only if \( X \) is a smooth rational curve having a \( (d + 2 - r) \)-secant line.

(ii) Let \( \mathcal{I}_X \) be the ideal sheaf of \( X \). If \( d \geq r + 2 \) and \( (C_{d+1-r}) \) fails then \( H^1(\mathbb{P}^r, \mathcal{I}_X(d - r)) \) is one dimensional unless both \( r = 3 \) and \( X \) lies on a smooth quadric surface.

(4) **Definition** ([M], lecture 14, and [GLP], p. 494). Let \( X \subset \mathbb{P}^r \) be a reduced curve then for \( n \geq 0 \) we say \( X \) is \( n \)-regular if \( H^i(\mathbb{P}^r, \mathcal{I}_X(n - i)) = 0 \) for \( i > 0 \).

(5) **Theorem** (Castelnuovo, see [M] lecture 14). If \( X \subset \mathbb{P}^r \) is an \( n \)-regular curve then \( X \) satisfies property \( (C_n) \).

**Proof of (1).** The cases \( d = 3 \) and \( d = 4 \) follow from elementary considerations. If \( d = 3 \) then \( X \) lies on three independent quadrics. If \( Y \) meets \( X \) in at least \( (3 - 1)(e - 1) + 1 = 2e - 1 \) points then at least one quadric containing \( X \) meets \( Y \) in at least \( 2e + 1 \) points. By Bézout's theorem this quadric contains \( X \cup Y \). If \( d = 4 \) \( X \) lies on at least one quadric. If \( Y \) meets \( X \) in at least \( (4 - 2)e + 1 = 2e + 1 \) points, then Bézout's theorem says this quadric contains \( X \cup Y \). The rest of the theorem for \( d = 3 \) or \( d = 4 \) now follows from standard knowledge about curves on quadrics (smooth or singular).

Now assume \( d \geq 5 \). First note that once (iii) is proven the rest easily follows from standard knowledge about curves on a smooth quadric. Assume we have \( X \) and \( Y \) as in the hypothesis of (iii). By Bézout's theorem once \( X \) lies on a smooth quadric that quadric will contain \( Y \) also. In fact any hypersurface of degree less than or equal to \( d - 2 \) containing \( X \) must also contain \( Y \). That means \( X \) does not satisfy property \( (C_{d-2}) \).

By (3) we conclude that \( X \) is a smooth rational curve with a \( (d - 1) \)-secant line, call it \( L \). Bézout again tells us that the intersection of all hypersurfaces of degree \( d - 2 \) containing \( X \) must contain at least \( X \cup Y \cup L \). The following lemma now completes the proof of the theorem.

(6) **Lemma.** Let \( X \subset \mathbb{P}^r \) \( (r \geq 3) \) be a reduced, irreducible curve of degree \( d \geq r + 2 \) not contained in any hyperplane that does not satisfy property \( (C_{d+1-r}) \). In particular by (3) we know that \( X \) is a smooth rational curve with a \( (d + 2 - r) \)-secant line, call it \( L \). Let \( W \) equal the intersection of all hypersurfaces of degree \( d + 1 - r \) which contain \( X \). Then:

(i) If \( r = 3 \) and \( X \) lies on a smooth quadric \( Q \), then \( W = Q \).

(ii) Otherwise \( W = X \cup L \).
Proof. (i) is elementary. Among the surfaces of degree $d - 2$ containing $X$ there will certainly be every surface of the form $Q \cup$ an arbitrary surface of degree $d - 4$, so $Q \supseteq W$. On the other hand one of the rulings of $Q$ consists entirely of $(d - 1)$-secant lines to $X$, so $W \supseteq Q$.

To prove (ii) we will use (5). That is, we want to show that if either $r \neq 3$ or $X$ does not lie on a smooth quadric, then $X \cup L$ is $(d + 1 - r)$-regular. Let $\pi : Z \to X \cup L$ be the normalization map. $Z$ is just the disjoint union of $X$ and $L$. As usual let $O$ stand for structure sheaf. We have three exact sheaf sequences.

(7) \[ 0 \to O_{X \cup L}(k) \to \pi_*O_Z(k) \to O_{X \cap L} \to 0 \]
(8) \[ 0 \to \mathcal{I}_X(k) \to O_{\mathbb{P}^r}(k) \to O_X(k) \to 0 \]
(9) \[ 0 \to \mathcal{I}_{X \cup L}(k) \to O_{\mathbb{P}^r}(k) \to O_{X \cup L}(k) \to 0 \]

Since $H^0(\pi_*O_Z(k)) \cong H^0(O_X(k)) \oplus H^0(O_L(k))$ it has dimension $k(d + 1) + 2$. Because $L$ is $(d + 2 - r)$-secant to $X$, $H^0(O_{X \cup L})$ has dimension $d + 2 - r$.

What is presented from here to (11) is a simplification of our original proof. This was suggested by the referee and independently by P. Rao to whom we are grateful.

\[ H^1(\pi_*O_Z(k)) \cong H^1(O_X(k)) \oplus H^1(O_L(k)) = 0, \quad \text{for } k \geq 1. \]
Putting this into the cohomology sequence for (7) we see that if we wish to show that $H^1(O_{X \cup L}(k)) = 0$ it is sufficient to show that the map

(10) \[ H^0(\pi_*O_Z(k)) \to H^0(O_{X \cap L}) \]

is surjective. But this map is just the difference of the homomorphisms $H^0(O_X(k)) \to H^0(O_{X \cap L})$ and $H^0(O_L(k)) \to H^0(O_{X \cap L})$ arising from the inclusions of $X \cap L$ in $X$ and $L$. So it is enough to show that either of these, in particular the first, is surjective. But this is clear, since

\[ O_X(-(X \cap L)) \cong O_{\mathbb{P}^r}(r - 2 - d) \]

and hence $H^1(O_X(-(X \cap L)) \otimes O_{\mathbb{P}^r}(k)) = 0$ for $k > 0$.

(11) \[ H^1(O_{X \cup L}(k)) = 0 \quad \text{for } k \geq 1. \]
Putting (11) and the other cohomology groups calculated just after (9) into the exact cohomology sequence for (7) we obtain:

(12) \[ \dim H^0(O_{X \cup L}(k)) = (k - 1)d + k + r, \quad \text{for } k \geq 1. \]

Compare the cohomology sequences for (8) and (9) with $k = d - r$. Using (12), (3)(ii), and the facts that $H^0(\mathcal{I}_X(d - r)) = H^0(\mathcal{I}_{X \cup L}(d - r))$ (Bézout) and \[ \dim H^0(O_X(k)) = kd + 1 \] one proves that

\[ H^1(\mathcal{I}_{X \cup L}(d - r)) = 0. \]
Using the cohomology sequence for (9) together with (11) one shows that $H^2(S_X \cup L(d - r - 1)) = 0$. Finally that $H^i(S_X \cup L(d + 1 - r - i)) = 0$ for $i \geq 3$ comes directly from the cohomology sequence for (9).

(13) **Corollary.** Let $X$ of degree $d$ and $Y$ of degree $e$ be two reduced curves in $\mathbf{P}^r$ ($r \geq 4$), with $X$ irreducible and not contained in any hyperplane, and no component of $Y$ equal to a line or $X$. Assume $r + 2 \leq d$. Let $m$ be the number of points in $X \cap Y$ (not counting multiplicity). Then $m < (d - r + 1)e + 1$.

**Proof.** Otherwise some component of $Y$ would be contained in every hypersurface of degree $d - r + 1$ that contained $X$ contradicting (6).

**Remarks (14).** In intersection theory one usually likes to count intersections with appropriate multiplicities. In the case of a hypersurface $H$ intersecting a reduced, irreducible curve $X$ in finitely many points $p_1, \ldots, p_n$ there is more or less universal agreement on the definition for $i(X, H, p_j)$ the intersection multiplicity of $X$ and $H$ at $p_j$. Let $\mathcal{O}_{p_j, X}$ be the local ring of $p_j$ in $X$ and $r_j$ the image of an equation for $H$ in $\mathcal{O}_{p_j, X}$, then $i(X, H, p_j) =$ the length over $\mathcal{O}_{p_j, X}$ of $\mathcal{O}_{p_j, X}^{(r_j)}$. For a reducible curve, add up the multiplicities for each component. For the case of two curves $X$ and $Y$ intersecting in finitely many points $p_1, \ldots, p_n$ a possible definition for an intersection multiplicity is: $i(X, Y, p_j) =$ the minimum over all hypersurfaces $H$ which contain $X$ but do not contain any component of $Y$ of $i(Y, H, p_j)$.

If in either (1) (with $d \geq 5$) or (13) we replace $m$ with $\Sigma_{p \in X \cap Y} i(X, Y, p)$, then the proofs as stated go through without change. This multiplicity has the disadvantage that it is not symmetric. Also it is not known whether this is the largest multiplicity one can use and have these results remain true.

(15) In (1) the assumptions that $X$ and $Y$ are irreducible are necessary. For instance if $X$ consisted of $d$ lines from one ruling of a smooth quadric and $Y$ was $e$ lines from the other ruling, then $X \cap Y$ would consist of $de$ points.

(16) When $X$ and $Y$ in (1) achieve the maximum possible number of intersections both $X$ and $Y$ are smooth rational curves. This follows immediately from standard knowledge about curves on a quadric.
(17) For most values of $d$ and $e$ in (1) there is a gap between the largest possible value of $m$ as counted in (14) and the second largest. This gap gets wider as $d$ and $e$ get larger. This follows immediately from standard knowledge about curves on a smooth quadric.

REFERENCES


Received March 20, 1985 and in revised form July 2, 1985. The author was almost totally supported by an NSF fellowship.

BRANDEIS UNIVERSITY
WALTHAM, MA 02254
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

V. S. VARADARAJAN
(Managing Editor)
University of California
Los Angeles, CA 90024

HERMANN FLASCHKA
University of Arizona
Tucson, AZ 85721

C. C. MOORE
University of California
Berkeley, CA 94720

HERBERT CLEMENS
University of Utah
Salt Lake City, UT 84112

RAMESH A. GANGOLLI
University of California
Berkeley, CA 94720

H. SAMELSON
Stanford University
Stanford, CA 94305

ROBERT C. MOORE
University of California
Stanford, CA 94305

VAUGHAN F. R. JONES
University of California
Berkeley, CA 94720

VAUGHAN F. R. JONES
University of California
Berkeley, CA 94720

HAROLD STARK
University of California, San Diego
La Jolla, CA 92037

R. FINN
University of California
Stanford, CA 94305

ROBION KIRBY
University of California
Berkeley, CA 94720

ASSOCIATE EDITORS

R. ARENS
E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSHIDA
(1906–1982)

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA
UNIVERSITY OF OREGON

UNIVERSITY OF BRITISH COLUMBIA
UNIVERSITY OF SOUTHERN CALIFORNIA

CALIFORNIA INSTITUTE OF TECHNOLOGY
STANFORD UNIVERSITY

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF HAWAII

MONTANA STATE UNIVERSITY
UNIVERSITY OF TOKYO

UNIVERSITY OF NEVADA, RENO
UNIVERSITY OF UTAH

NEW MEXICO STATE UNIVERSITY
WASHINGTON STATE UNIVERSITY

OREGON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph must be capable of being used separately as a synopsis of the entire paper. In particular it should contain no bibliographic references. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California 90024.

There are page-charges associated with articles appearing in the Pacific Journal of Mathematics. These charges are expected to be paid by the author's University, Government Agency or Company. If the author or authors do not have access to such Institutional support these charges are waived. Single authors will receive 50 free reprints; joint authors will receive a total of 100 free reprints. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $190.00 a year (5 Vols., 10 issues). Special rate: $95.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics at P.O. Box 969, Carmel Valley, CA 93924 (ISSN 0030-8730) publishes 5 volumes per year. Application to mail at Second-class postage rates is pending at Carmel Valley, California, and additional mailing offices. Postmaster: send address changes to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Copyright © 1986 by Pacific Journal of Mathematics
David Jay Anick, A loop space whose homology has torsion of all orders . . . 257
Steven P. Diaz, Space curves that intersect often ............................... 263
Thierry Fack and Hideki Kosaki, Generalized s-numbers of τ-measurable
operators ......................................................................................... 269
Karl Heinrich Hofmann and Karl Strambach, Lie’s fundamental
theorems for local analytical loops .................................................. 301
James Secord Howland, On the Kato-Rosenblum theorem .................. 329
Frieder Knüppel and Edzard Salow, Plane elliptic geometry over rings .... 337
Alan Noell, Peak points in boundaries not of finite type ...................... 385
William J. Ralph, An extension of singular homology to Banach
algebras .............................................................................................. 391
Wade C. Ramey, Averaging properties of pluriharmonic boundary values . 407
Thomas Joseph Ransford, On the range of an analytic multivalued
function ............................................................................................. 421
Christopher Donald Sogge, On restriction theorems of maximal-type .... 441
Edwin Spanier, Cohomology with supports ......................................... 447
Emil J. Straube, Orthogonal projections onto subspaces of the harmonic
Bergman space .................................................................................... 465
Thomas Vogel, Asymptotic behavior of two semilinear elliptic free
boundary problems ........................................................................... 477