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A central piece of classical Lie theory is the fact that with each local
Lie group, a Lie algebra is associated as tangent object at the origin, and
that, conversely and more importantly, every Lie algebra determines a
local Lie group whose tangent algebra it is. Up to equivalence of local
groups, this correspondence is bijective.

Attempts at the development of a Lie theory for analytical loops
have not been entirely satisfactory in this direction, since they relied
more or less on certain associativity assumptions. Here we associate with
an arbitrary local analytical loop a unique tangent algebra with a ternary
multiplication in addition to the standard binary one, and we call this
algebra an Akivis algebra. Our main objective is to show that, conversely,
for every Akivis algebra there exist many inequivalent local analytical
loops with the given Akivis algebra as tangent algebra. We shall give a
good idea about the degree of non-uniqueness. It is curious to note that,
on account of this non-uniqueness, the construction is more elementary
than in the case of analytical groups.

The First and Third Fundamental Theorems of Sophus Lie assert the
following statements (Cf. [18], IV, Kap. 15, pp. 365-404):

THE FIRST THEOREM. Every local analytical group determines on its
tangent vector space at the identity the structure of a unique Lie algebra with
the Lie bracket given by the formula

(1) [*,,] ty°t

where the local group operation ° is transported into the tangent space, and
where g/h is written for g <> A"1.

THE THIRD THEOREM. If L is a finite dimensional real Lie algebra, then
there exists a local analytical group whose tangent Lie algebra according to
the First Theorem is isomorphic to L. Moreover , local analytical groups with
this property are locally isomorphic.
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A reasonable proof of the Third Theorem proceeds along these lines
(see e.g. [10], Chap. II, [26]): In the algebra of formal power series in two
non-commuting variables X and Y, there is a well-defined power series
X*Y defined by the equation exp(X* Y) = expXexp Y. If X*Y =
Σn=xHn(X,Y), where Hn{X,Y) are the homogeneous polynomials of
degree w, being defined as the linear combinations of the monomials of
degree n occurring in the series, then it turns out that Hn(X,Y) is always
contained in the Lie algebra L[X, Y] generated by the variables X and Y
in the Lie algebra of all polynomials relative to the commutator bracket
[P,q\=pq~ 4P In particular HX(X, Y) = X + 7, H2(X, Y) = ±[X, Y],
H3(X, Y) = M*> [X, Y]] + [Y,IY, χ]\) One shows further, that
Lie [X, Y] is in fact the free Lie algebra generated by X and Y so that for
every given Lie algebra L the polynomials Hn(x,y) are well defined for
any pair of elements JC, y e L. If we now consider a finite dimensional
real Lie algebra L we can introduce a norm which is compatible with the
topology and which satisfies ||[JC, y]\\ < \\x\\ \\y\\. Then one shows that the
Campbell-Hausdorff series converges absolutely on the open ball B with
radius ^Iog2. Thus one obtains an analytical function (x9y)*-*x*y:
B X B -> L which defines on B the desired structure of a local group.

A loop is a group except that one allows the multiplication to be
non-associative. Specifically: A loop is a set G with a distinguished
element e and three binary operations (x, y) *-> xy, x/y, y\x: G X G ->
G such that xe = ex = x and y(y\x) = (x/y)y = x for all x, y e G.
Topological and analytical loops are easily defined, and with the usual
circumspection one defines local analytical loops (see §3 below or [2]). In
this paper we prove Lie's fundamental theorems for local analytical loops.

Why bother? There are several reasons. Firstly, Lie loops have been
considered in the literature at least since that paper by A. I. Malcev [20]
which is considered the start of the theory. The area of Moufang Lie loops
is in fact a highly developed theory for which most results of classical Lie
group theory have been verified mostly through the work of Kuzmin and
Kerdman [14, 15, 16, 17] and through Sagle [22, 23, 24]. In his extensive
study of webs in differential geometry, Akivis and his school [1 through 7,
21] contributed substantially to the general foundations of Lie loop
theory. However, Lie's Third fundamental theorem was never established
(see [3]). Holmes and Sagle studied local power associative Lie loops and
dealt with the question to which extent the Campbell-Hausdorff for-
malism could be brought to bear on the theory [13]. A similar discussion is
to be found in a paper by Akivis [1].

However, apart from the applications to Lie loop theory we feel that a
discussion of Lie's fundamental theorems in the absence of associativity
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sheds new light on the classical associative case. In fact, before we can

deal with the non-associative case we first have to find the appropriate

generalization of the concept of a Lie algebra. The way in this direction

was shown by Akivis. In (local) Lie group theory, the Lie bracket [x, y]

introduced in (1) measures the degree of commutativity of the local

operation. It is Lie's most remarkable insight that the bracket is de-

termined by the degree two terms in the Taylor expansion of the product,

a n d that is suffices as a basis for the entire local theory. Akivis [3] has

observed that, in the absence of associativity, one must measure the degree

of associativity by a ternary operation called associator bracket:

/i\ / \ v .si {tx°ty)otz\
(2) (x, y, z) = hm t 3

 Q ' ^—r

and that the two are linked by an identity which we shall call the Akivis

identity (cf. [3], [7])

(A) Σ sgn(g)(xg(1), xg(2), xg(3))

One remarks immediately that in the case of an associative local

multiplication the associator bracket vanishes and the Akivis identity

reduces to the classical Jacobi identity.

We shall say that an algebra with a bilinear anticommutative multipli-

cation (x, y) •-> [x, y] and a trilinear ternary multiplication is an Akivis

algebra if it satisfies the Akivis identity (A). (Akivis calls these algebras

W-algebras [3].) This concept is quite natural: If one considers an algebra

E over a field F with a binary bilinear multiplication (x, y) -> xy and

defines two new operations by [x, y] = xy — yx and (x, y, z) = (xy)z —

x(yz), then the resulting algebra (2?, [ , ], ( , , )) is an Akivis algebra.

Thus a problem is whether for any finite dimensional real Akivis

algebra we find a local analytical loop whose associated tangent Akivis

algebra is the given one. Our answer is affirmative and reads, perhaps a

bit surprisingly, as follows:

T H E O R E M . Let Wbe a completely normable vector space over the field of

real or complex numbers and suppose that we are given continuous multilin-

ear maps [ , ]: W2 ~> W and ( , , ) : W3 -> W making W into an

Akivis algebra. Then there are continuous trilinear maps r, s: W3 -> Wsuch
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that the multiplication

{x,y)>-* x°y = x+y + \[x,y] + r(x,x,y) + s(x,y,y): W2 -> W

defines near 0 the structure of a local analytical loop in such a way that the
commutator and associator bracket defined for it according to formulae (1)
and (2) is the given one (so that the associated Akivis algebra is indeed the
given one).

The proof is relatively elementary insofar at it is practically carried
out in the domain of multilinear algebra which never goes beyond degree
3. Not only is this proof more elementary than any of the proofs of Lie's
Third Theorem, but it also lacks the uniqueness statement. Even among
the polynomial multiplications of degree three there are many pairs of
trilinear maps (r, s) which satisfy the condition of the Theorem. In fact,
the variety of different solutions to the problem in the realm of poly-
nomial maps of degree three is in bijective correspondence to the space of
all continuous symmetric trilinear maps W3 -> W, as we will show. More
ambiguity comes in if we modify one of the multiplications exhibited in
the Theorem by allowing for additional summands of higher order than
the third. All such will always define the same Akivis tangent algebra. In
particular, if we start from any of the familiar finite dimensional Lie
algebras, there are numerous local analytical loops whose associated
Akivis algebra is the given Lie algebra and there are several among them
whose multiplication is polynomial of total degree not more than three.
However, up to local isomorphism, there will be only one which is
associative, namely, the one guaranteed by Lie's Theorem and which we
can obtain from the Campbell-Hausdorff series. If we start with an
arbitrary Akivis algebra, the Campbell-Hausdorff formula will not in
general give a local loop whose associated Akivis algebra is the given one.
This is, however, the case if the given Akivis algebra is alternative—which
means that any pair of its elements is contained in a Lie subalgebra. Since
the relation between the proof of Lie's Third Theorem and the Campbell-
Hausdorff formalism is so important, we will also comment on the
Campbell-Hausdorff formalism. In this context we discuss the property of
alternativity. We emphasize, however, that we do not wish to deal prim-
arily with the effect of weak associativity hypotheses; we are interested in
the Fundamental Theorems in the absence of any associativity assump-
tion. Under such general circumstances it is not even known whether local
one parameter subloops exist (although a recent theorem by Hofmann and
Lawson shows that in any local analytical loop one can, perhaps after
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making the domain of the multiplication smaller, when necessary, always
find a unique smallest closed local multiplicatively closed connected
subset having a given half-line in the tangent algebra as its tangent space
[11]). Our methods therefore do not rely on the traditional local Lie
theory. We proceed as follows: In the first section we provide some
background from multilinear algebra. Since the action of the symmetric
group on the arguments of multilinear maps is crucial for our proof, we
need some information on the representation theory of symmetric groups.
The second section gives the proof of the Fundamental Theorems, how-
ever, in a purely algebraic setting of formal loops. We also comment on
the Campbell-Hausdorff formula in the context of power-associative
algebras. Indeed, power-associativity is the very least assumption we have
to require to be even able to speak about the exponential function. We
indicate a purely algebraic proof of a result of Holmes and Sagle's,
according to which one can express the homogeneous components of the
Campbell-Hausdorff series, in the context of non-associative power-as-
sociative algebras, completely inside the Akivis algebra associated with the
algebra [13]. One can show in this context that a power-associative local
Bruck loop (i.e. a loop satisfying x~x(xy) = {yx)x~ι = y) is alternative.
We formulate some problems which appear to be of urgency in the general
context of Akivis algebras and any theory which would parallel that of Lie
algebras and Lie groups. In the third section we utilize the accumulated
information to give a proof of the Fundamental Theorems; given standard
analysis results this is no longer difficult, since all the work is done in the
algebraic context of the first two sections.

Acknowledgment. We thank the referee for his careful scrutiny of the
paper, which has prevented an error in a lemma and which has eliminated
a number of typographical errors.

1. A Lemma on multilinear algebra. Symmetry and antisymmetry

of multilinear maps are governed by the actions of the symmetric group
on the arguments. Hence we consider actions of the group Sn (on n
elements) on vector spaces. The case that actually interests us is that of
n = 3. We will take a groundfield of characteristic zero. (A characteristic
relatively prime to n! would suffice!) We define R to be the group algebra
F[Sn]. In R we define the antisymmetry element a e R

(0
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This element is idempotent, and if An is the subgroup of even permuta-

tions in Sn, then ag = a for g e An and ag = -a for g £ Sn\ An. We are

interested in the right ideal (1 — a)R and note

(ii) (1 — a)R = { JC e iϊ: ax = 0} = annihilator of a on the right.

In particular,

(iii) \+(Sn\An)<z{\-a)R9

(iv) \-An<i{\-a)R.

Asthe«!/2 + (n\/2 - 1) elements of (1 + (Sn\An))U(l - (An\{l}))

are linearly independent, and since a does not annihilate a because of

a2 = a Φ 1, we know

(iv) dim(l - a ) # = n\ - 1.

If i/ isp-a subgroup of 5Π and we set e = (1/\H\)ΣH, then ei? is the fixed

point set of H on R for left multiplication. If T c Sπ is a set which meets

each coset ifg in precisely one point, then Sn = //T and eHs = {es} for

each s e Γ, and thus ei? is spanned precisely by the [G:/ί] linearly

independent elements es, s e Γ. In particular, if ί is an involution (/2 = 1

¥= /), then this applies to H = (1, t) and shows

(v) dim(l + t)R = dirndl + 0 * = f •

We are now ready for the following Lemma:

1.1. LEMMA. Let t denote a transposition of two elements in S3 and

c Φ 1 a cyclic permutation of all elements {i.e., and element of order 3).

Then

(1) (1 + t)R + (1 + tc)R = (1 - a)R.

Proof. Since n = 3, we know that tc is again an involution. Hence the

left hand side of (1) is contained in the right hand side by (iii). By (iv) it

now suffices to show that the dimension of the left hand side is n\ - 1.

Since dim(l 4- 0 # = dim(l + ct)R = n\/2 by (v) it suffices to show that

(1 + f)jR Π (1 4- ct)R is one dimensional. But (1 + t)R is the precise

fixed point set of t and (1 + ct)R is the precise fixed point set of ct

(under multiplication on the left). Hence the intersection of the two set is

the fixed point set of the subgroup generated by t and tc, which is all of

Sn. But this fixed point set is precisely eR with e = (l/n\)ΣSn, and hence

is one dimensional. D
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We observe that Lemma 1.1 generalizes to more general groups G in

place of S3: Indeed if G is dihedral, i.e., contains a cyclic normal subgroup

C = (c) of order m > 3 and of index 2 such that G/C acts on C by

inversion, then we let sgn: G -> (1, -} denote the homomorphism with

kernel C and note that every element / G G \ C is an involution. If we

replace n\ by \G\ = 2m, then the Lemma remains intact.

The identity (1) in Lemma 1.1 is of the form I + J = eR for two

right ideals / and / and an idempotent e in a ring R. The following

Lemma generalizes it to the corresponding relation IV + JV = eV for

any arbitrary left i?-module V. Just as Lemma 1.1, we formulate it,

however, in the more narrow frame which we need in Corollary 1.5 below,

and this in turn is all that is used later in the paper.

1.2. LEMMA. Let V be an arbitrary left S3-module over JP, hence an

R = F[S3]-left-module. Then

(2) (1 + t)V + (l + tc)V= (1 - ά)V

for any element t,c e S3 of order 2 and 3, respectively.

Proof. We want to reduce the proof to the information gathered in

Lemma 1. We recall that the left i?-module V is isomorphic to the left

module R ®Λ V under the map v >-+ 1 <8> v: V -> R ®RV (with the

inverse map x 0 v •-> xv), where the i?-left-multiplication on R ®R V is

given by x(y ® v) = xy ® v, and where, in the formation of the tensor

product R is considered as a Λ-right-module. Since every submodule of

an ϋ-module splits by Maschke's theorem, the functor - <g> R V from the

category of 7?-right-modules to the category of F-vector spaces is exact.

We now consider the sequence of Λ-right-modules.

(3) i?θ R^R^R, f(x,y) = (1 + t)x-(l + ct)y9 f\x) = ax.

To say that (3) is exact is precisely the statement of Lemma 1.1. Hence

upon applying -®R V to (3) we obtain the exact sequence of F-vector

spaces

(4) (Rφ R)®RVf^R®R Vf^R®R V.

The function

h: (R θ R) ®RV-+ (R ®Λ V) +(R ®R V),

h((x,y) ® v) = (x ® υ, y ® v)
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induces an isomorphism of iϊ-left-modules (see e.g. MacLane [19], p. 189,
(1.6)ff).

Now we consider the following diagram:

F F'

V

(5) (RS

(R

V

i θ /

>*v)
h

θ R)

Φ V

t

®(R ®

T

®RV

—>

RV) -

f l

V

/t

* ® R

i t

F f ^

V -*

V

/T

* ®κ

i t

* ® Λ

F

with F(v,w) = (1 4- 0 ^ - (1 + ίc)w, F*(p,q) = (1 + ί)/> - (1 + '<?)#,
F'(ί ) = αy, and i(x 0 ϋ ) = JCU.

Commutativity of this diagram is readily checked and all vertical
maps are isomorphisms. Since the bottom line is the exact sequence (4),
the top line sequence is exact. But this is just another expression for the
assertion (2). D

We remark that the maps / 0 1, F and F * are only F-linear, but not
Λ-linear.

1.3. REMARK. Under the circumstances of 1.2 and its proof, the kernel
kerF of the map F = ((ϋ,w) •-> (1 + t)υ - (1 + tc)w) is isomorphic to
(ker/) 0 Λ V.

Proof. From the commutative diagram (5) we draw the information
k e r F = ker(/<8> 1). Since - ® Λ V is exact, we conclude ker(/<8> 1) =
(ker/) ®Λ V. D

We have dim ker/= dimdom/— d i m i m / = 2n\ — (nl — 1) =
n\ + 1(= 7, if n = 3), since dom/= i? θ iί and i m / = (1 + 0 # +
(1 + tc)R.

We remark that kerF as well as (ker/) ®Λ V are F-vector spaces, but
not necessarily iί-left-modules.

Now we consider arbitrary F-vector spaces Wγ and W2 and define
V to be the F-vector space 1Aom(W"\W2) of all multilinear maps



LIE'S THEOREMS FOR LOOPS 309

v: Wγ X X Wx -> W2. Then Sn acts on V on the left by permutation

of the arguments as follows:

( 6 ) F o r x e S n a n d v ^ V l e t x v ( w v . . . , w n ) = v ( w M 1 ) , . . . , w H n ) ) ,

x = x~ι. (If we write w'k = w^{ky then

If we set m = ( 1 / Λ ! ) Σ 5 Π and e = (2/n\)ΣAn, we notice am = ma = 0,

m + a = e. A multilinear map v is called symmetric iff gt> = *; for all

g G S n , equivalently m^ = v. It is called antisymmetric iff ft; = -ϋ for all

transpositions t; this means gυ = sgn(g)υ for all g ^ Sn, equivalently

av = v.

For each multilinear map v we have υ = aυ + (1 — a)v = mυ +

(1 — m)v; thus it can be represented as a sum of its antisymmetric part av

and a complement (1 — #)?; which is annihilated by a, and it can be

written as a sum of its symmetric part mv and a complement (1 — m)v

which is annihilated by m. The symmetric parts of v and (1 — a)v agree

because of am = 0; likewise the antisymmetric parts of v and (1 — m)υ

agree.

From our preceding Lemmas we now readily derive the following

result:

1.4. PROPOSITION. // V denotes the F-vector space HomίW^3; W2) of all

3-linear maps v: Wl —> W29 then the space (1 — a)V of all 3-linear maps

with zero antisymmetric part is (1 4- t)V + (1 + tc)Vfor each transposition

t and each 3-cycle c in S3.

This follows immediately from Lemma 1.2.

We now formulate 1.4 in the form we shall need it later:

1.5. COROLLARY. Every trilinear map v: Wl —> W2 with zero antisym-

metric part can be written in the form v(x, y, z) = r(x, y, z) + r(y, x9 z) —

s(x, y, z) — s(x, z, y) with two trilinear maps r, s: Wl —» W2

Proof. In 1.4 we take for t the transposition t = (1 2), and for c the

cyclic permutation (1 2 3). Then tc = (2 3), and the assertion is a direct

consequence of 1.4. D
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In this very context we now consider the F-vector space U =
VoΫ{Wι,W2) all homogeneous polynomial functions p: WιxWι-> W2

of degree 3 with the additional property that p(x, 0) = /?(0, x) = 0 for all
x. This means that each p e U is of the form p(x, y) = r(x,x,y) +
s(x, y9 y) with a pair (r, s) e V X F. We define the linear function G:
K x F - ^ ί / by G(r,s)(x, y) = r(x,x, y) + s(x, y, y) and notice that
(r,s) G kerG iff r(x, x9 y) + s{x9 y9 y) = 0 for all x, y; this condition
implies r(x + y9 x 4- y9 z) 4- 5 (x + y,z,z) = 0 for all x, j>, z. A quick
calculation shows that this implies r{x,y,z) + r(y,x,z) = 0 for all
x, y9 z, and this is equivalent to r(x, x, y) = 0 for all x9 y. Similarly we
obtain s(x, yy y) = 0 for all x, y. Clearly, these conditions in turn imply
that (r, s) e kerG. If we again denote the transposition (1 2) in S3 with /
and the transposition (2 3) with tc, we have shown that

(7) kerG = ker(l + t) θ ker(l + tc),

where we use the expression 1 + t for the F-endomorphism υ »-> (1 + t)v,
and similarly for 1 + tc. In particular, we have kerG c keri7 with F(v, w)
= (1 + t)v — (I + tc)w as in 1.2 and 1.3. Now G induces an isomor-
phism G*: F/ker(l + t) θ F/ker(l 4- re) -> ί/, and i 7 induces a mor-
phism F * : F/ker(l + /) θ F/ker(l + tc) -> (1 - a)V. This allows us to
define the morphism φ = F*G*"X: U -> (1 - α)F which we know to be
surjective after 1.4. and 1.5. The kernel of F*G*~1 is isomorphic to
kerF*. We may replace F/ker(l + /) by its isomorphic copy (1 + t)V9

and F/ker(l + tc) by its isomorphic copy (1 -I- tc)V\ under this replace-
ment, we have to replace F * by the map D: (1 4- t)V Θ (1 + tc)V ->
(1 — Λ)F, D(y,w) = y — w. But the kernel of this morphism is isomor-
phic to (1 -I- t)V Π (1 + tc)V under the map v -> (υ, u). We have ob-
served earlier that (1 4- t)V Π (1 + tc)V is the fixed point space of / and
of tc, which generate S3. Hence it is the fixed point space mV of all
symmetric trilinear maps. We have shown:

1.6. PROPOSITION. Let V be the vector space of all trilinear maps
Wl -> W2, and consider the following vector subspaces:

(a) the subspace aV of all antisymmetric maps,
(b) the subspace (1 — a)V of all trilinear maps without antisymmetric

parts, and
(c) the subspace mV of all symmetric trilinear maps.

If further U denotes the F-vector space of all homogeneous polynomial maps
p: Wι —» W2 of degree 3 with /?(0, x) = p{x, 0), then there are exact
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sequences

(8) 0-+mV-+ U ^ (1 - Λ ) F - > 0 ,

(9) O^mF-^ί/i V^aV-^0.

If Wλ and W2 are finite dimensional F-vector spaces of dimension j
and k, respectively, then elementary calculations show that mV is the
space of homogeneous polynomials of degree 3 in j commuting variables,
tensored with W2\ thus mV is (y2 + (^))/c-dimensional, while aV may be
identified with Hom(W1 A Wλ A Wv W2), hence is (^-dimensional. From
the fact (1 - a)V is the kernel of a: V -> aV.it then follows that

dimF(l - a)V = dimV- dimaV = fk -{ζ)k.

Thus

dimί/ = dimmV + dim(l - a)V

2. Formal power series in two variables, Akivis algebras. We con-
sider a field F of arbitrary characteristic and a vector space W over F. A
monomial function f: W X W -> W in x and j> of degree « = 1,2,... is a
function for which there is a multilinear map Φ: Wp X Wq -» W with
/ ( J C , J ) = Φ ( ( X , . . . , X ) , ( j , . . . ,^) ) ? p + q = n. We say that /: W X »F
—> Ŵ  is a homogeneous polynomial in JC and j ; of degree π if it is a finite
linear combination of monomial functions of degree n. We consider
constants as degree 0 polynomials. We say that a sequence (/0, / 1 ? . . .) of
homogeneous polynomials of x and y of degree deg/n = n is a formal
power series in x and j which we write / = /o + Λ + * * * Clearly, formal
power series in x and j form an F-vector space. (It should be clear how
one defines formal power series in any finite set of variables.)

We shall consider a formal power series in x and y which we shall
denote x ° y9 and for which we postulate

(1) Λ OO = OOJC = t for all JC.

We then note

(2) χo y = x + y + q(x,y) + r(x9x9 y ) + s(xyy,y) + / 4 + •••

with a bilinear monomial q and trilinear monomials r and s.
From §1 we recall that /3 does not determine the pair (r, s) e

Hom( W3; W) uniquely, but only up to pairs (r, s) such that r is antisym-
metric in the first two variables and s is antisymmetric in the second two.
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If / = fλ + f2 + 4- is a power series with zero constant term, then

substitutions of the type x °/(JC, y) and /(JC, y)° y are well defined. By

induction, we construct unique power series x/y and x\y satisfying the

equations

(3) (x/y)°y = x and x<>(χ\y)=y.

(Indeed, if e.g. x/y = pλ + p2 + with homogeneous polynomials pn

which are to be determined, we obtain equations pλ + y = x9 p2 +

q( Pι,y) = Q, Λ + 4(P2>y) + r( Pv PV y) + s( p» y> y) = °>
allow a unique successive solution

Pi = χ-y, Pi = -q(χ> y)

-s(x -y,y,y),....)

On account of (1), (2) and (3) we shall call the pair (W9 °) a formal loop.

By straightforward calculation we obtain

2.1. LEMMA. The power series (x ° y)/(y ° x), (y ° x)\(x ° y), and

(x ° y) — (y°x) all have vanishing degree 1 term and the same degree 2

component q(x, y) — q(y, JC).

The following is a bit more technical, but presents no essential

difficulty:

2.2. LEMMA. The power series

((X o y)o z ) / ( χ o(y o z ) ) 9 (X o(y o z))\((x o y) o Z )

and {χo y)o z — J C ° ( ^ ° Z ) have all vanishing degree 1 and 2 components

and the same degree 3 component

(4) q(q(x,y),z) - q(x,q(y9z)) + r(x9y9z) + r(y9x9z)

-s(x,y,z) -s(x9z9y).

Proof. We record the calculation for the last power series: Firstly, we

calculate up to degree 3:

u = (χoy)oZ = x+y + q(χ,y) + r(x9x9y) + s(x9y9y) +z

+ q(x +y9z) + q(q(x9y)9z) + r(x +y,x +y9z) + s(x +y9z9z)

= x + 7 + z + q(x9y) + q(x9z) + q(y9z) + q(q(x9y)9z)

+ r(x9x9y) 4- r(x,x,z) +r(x9y9z) + r(y9x9z) + r(y9y9z)

+ s(x9y9y) + s(x9z9z) + s(y9z9z).
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Secondly and similarly we calculate up to degree 3:

v = x°(y° z) = x + y + z + q(x,y) + q(x,z) + q(y>z)

+ q(x9q(y9z)) + r(x9x9y) + r(x,x,z) + r(y,y,z)

+ s(x,y,y) + s(x,y,z) + s{x9z9y) + s(x,z,z) + s(y,z,z).

Subtracting the two polynomials gives us precisely the vanishing of

the degree 1 and 2 components and the degree 3 component (4) of u — v,

the last of the three power series in the Lemma.

If we consider the first of the three power series, then the linear term

u — u in the expansion of u/υ give us (4). The quadratic term -q(u, υ) +

q(v, u) yields vanishing components of order 2 and 3, since the linear and

quadratic terms of u and v agree, and the higher order components do

not concern us here. In a similar vein, the third order term f3(u,υ) of u/υ

cannot bring any contribution since only the degree 1 components of u

and v play a role here, and they are equal: indeed /3( w, w) is clearly 0. D

Through the preceding calculation we have associated with the degree

2 and 3 components of the given power series x ° y a bilinear map in

Lemma 2.1 and a trilinear map in Lemma 2.2. These measure the "degree

of commutativity and associativity" of the power series operation x° y

and thus deserve special attention.

2.3. DEFINITION. With a power series x ° y = x + y + q(x, y) +

r(x, x, y) + s(x, y, y) + we associate (a) the commutator [x, y] =

q(x, y) — q(y, x) and (b) the associator

(x,y,z) = q(q(x9y)9z) - q(x, q(y9z)) + r(x9y,z)

+ r(y,x,z) - s(x9y,z) - s(x9z9y).

Thus we have equipped the vector space W with a binary and ternary

operation. If, by chance, W is a Lie algebra over a field of characteristic 0

and if q(x9 y) = \[x9 y]9 r(x9 y9z) = s(y9z9x) = &[x9[y9z]]9 fn = Hn

so that x ° y is the Campbell-Hausdorff series x * y9 then we have by a

well-known basic property of this series the associative identity (x° y)° z

= x ° ( j ° z ) , whence (JC, y9z) = 0 by Lemma 2.2, and the commutator is

the given Lie bracket by Lemma 2.1. What is the general situation? As a

guiding principle, let us consider an F-algebra E with a binary bilinear

multiplication (x, y) *-> xy: E X E -* E. We then define

(5) [x9 y] = xy ~ yx and (x9 y9 z) = (xy)z - x(yz)9
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thereby creating a new binary multiplication and a new ternary trilinear
operation. We define two further ternary trilinear operations from the
bracket [x, y] by setting

(6) K=K(x9y9z)=[[x9y]9z] and

J = J(x9y9z) = [[x9y]9z] +[[y,*],x] + [ k ^ ] j L

We will also abbreviate (x9 y, z) by Ao = A(x, y, z). Let V again denote
the F-vector space of all trilinear maps E3 -» E. Then S3 acts on V as in
§1, paragraph (6). We can rewrite the definition of / as

(7) / = (1 + c + c2) K with the cyclic permutation c = (1 2 3).

We note that the element βa = Σg€=s3sgn(g)g is well-defined for any
characteristic.

2.4. LEMMA. Let p e (1 — a)V be any trilinear map E3 -> E without
non-trivial antisymmetric part and define A = Ao + p (i.e., A(x, y, z) =
(x,y,z) +p(x9y9z)). Then

(A) βaA = /, equiυalently,

(l)? XgW> Xg(3)) = /(Xi,X 2^3)«

Proof. Since / ^ G ( 1 - α ) F w e have ap = 0, so it obviously suffices to
verify (A) with Ao in place of A.

If we set w(x, y, z) = (xy)z and v(x, y, z) = x{yz), then yί0 = w — ϋ,
and we note that with / = (1 2) and c = (1 2 3) in 53, we have iΓ =
u — tu — (cv — cto), for w — tu = (jcy)z — (jx)^ and CU — cίϋ =
z(xy) — z(^x). Then

/ = ( l + c + c2)K

= (1 + c + c2 - t - ct - c2t) -(c + c 2 4- 1 - ct - c2t - t)υ

= 6a(u — v) = 6(5L40. D

This leads us to the following Definition:

2.5. DEFINITION. An Akivis algebra L over a field F of any character-
istic is a F-vector space together with a binary bilinear antisymmetric
multiplication (x, j ) •-> [JC, y] and a ternary, trilinear multiplication
(x, j , z) •-> (JC, .y, z) such that the identity (A) links the two operations.
The relation (A) is called the Akivis identity. The Akivis algebra is called
alternative iff the ternary multiplication A = (x,y9z) is antisymmetric,
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i.e., is in aV, where V is the space of all trilinear maps L X L X L -> L.

This is t a n t a m o u n t to saying that aA=A or, in other words, that

( x , x, y) = (JC, y, x ) = ( x , y9 y) = 0. We call an Akivis algebra power-

associative iff ( x , JC, x) = 0 for all x e L.

We noted in Lemma 2.4 that for any binary algebra E we have

constructed an Akivis algebra EA = (2s, [ , ], ( * ,*, ) ) , which we call the

Akivis algebra associated with E.

A few simple remarks are in order:

2.6. REMARKS. 1. If L is an alternative Akivis algebra over a field of

char F Φ 2,3 then (x, y9 z) = ^J(x, J>, Z). Thus the ternary operation is

completely determined by the bracket operation, and the algebra may be

considered as a binary algebra whose associator is defined by (x,y,z)

= \J{x, y, z)9 and which then satisfies (A).

2. If £ is a binary algebra which is alternative in the sense that the

associativity condition x(yz) = (xy)z holds whenever two of the argu-

ments agree, then the associated Akivis algebra E is alternative. If E is

power-associative in the sense that each element generates an associative

subalgebra, then EA is power-associative.

3. If E is binary algebra with an antisymmetric multiplication (x, y)

-> [x, y]9 then the definition (x9y9z) = \J(x,y,z) turns E into an

alternative Akivis algebra (2s, [ , ], ( , , )).

Proof. 1. Since L is alternative, and in view of the Akivis identity, we

have / = 6aA = A. We leave 2 and 3 as exercises. (Cf. [12], IX.6.5.)

The gist of these observations is that in the context of alternative

structures, no harm comes from forgetting the ternary multiplication,

because it can be reconstituted from the binary one. In particular, every

Lie algebra is an Akivis algebra with A = 0, and conversely, an Akivis

algebra with A = 0 is nothing but a Lie algebra.

Now we have the concepts for clarifying the link between the commu-

tator and the associator associated with a power series (for a differential

geometric version see Akivis [3], Theorem 5):

2.7. T H E O R E M I. Let W be a vector space over the field F of characteris-

tic Φ 2,3 and let

χo y = x + y + q(x9y) + r(x9x9y) +s(x9y9y) + / 4 + •••
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be a formal power series with a bilinear map q and two trilinear maps r and
s. If [x, y] and (JC, y,z) denote the commutator and associator associated
with the formal loop (W, °) according to 2.1, 2.2, and 2.3, then writing
L(W, °):= (W,[-,- ],< , , » we find that L(W, <>) is an Akivis algebra.
If the power series x° y is such that (x° y)° z = x°(y ° z) holds whenever
two (respectively, all three) of x, y and z are equal, then L(W, °) is
alternative (resp., power-associative). If (x ° y)° z = x °(y ° z) for all
x, y, z, then L(W, °) is a Lie algebra.

Proof. We let A = (JC, y, z) and write Aq(x, y9 z) = q(q(x, y), z) -
q(x,q(y,z)) for the associator bracket for the binary multiplication q.
Then by 2.3 we have

(8) A = Aq+(l + t)r-(l + tc)s

with t = (1 2), c = (1 2 3), tc = (2 3) in S3.

If we write p = (1 + t)r - (1 + tc)s (= F(r,s) in the notation of §1!)
then ap = a(l + t)r — a(\ + tc)s = 0. Then Lemma 2.4 shows that 6aA
= Jq where Jq = (1 + c + c2)Kq with Kq(x, y, z) = [[x, y\φ z]q9 where
[x, y]q = q(x, y) - q(y, JC). But by Lemma 2.1. we know q(x, y)-
q(y,x) = [x, y], whence Jq = J. Thus the Akivis identity is proved. If
x o(y o z) = (χo y)o z whenever two of x, y, z are equal, then by Lemma
2.2, we find that (x9y9z) = 0 whenever two of x9y9z are equal. The
proof of Theorem 1 is complete. D

In Theorem 1 we associate with a formal loop (W9 °) an Akivis
algebra L(W, °). To what extent, if at all, is the converse true: Given an
Akivis algebra E, is there a formal loop (W9 °) such that L(W, °) = EΊ

2.8. THEOREM II. Let W be an Akivis algebra over a field F with
characteristic Φ2,3. Then there is a polynomial in x andy of total degree 3:

χo y = x + y + \[x9y] +r(x9x9y) +s(x9y9y)

such that the formal loop (W, °) satisfies L(W, °) = W.
Let U denote the vector space of all homogeneous polynomials p(x, y) in

x andy of degree 3 with p(x, 0) = p(0, x) = 0, and Uw the set of allp e U
such that the definition x° y = x + y + \[x, y] + p(x, y) implies L(W, °)
= W. Then Uw is an affine variety in U whose translation group is
isomorphic to the vector space mV of all symmetric trilinear maps W3 -> W.
If dimW=j is finite, then dimmV=j2(j2 - \{j - l)(j - 2)).
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Proof. We let V be the vector space of all trilinear maps W3 -» W.
Again we define F: V ® V-* V by F(r,s) = (1 + t)r - (1 + tc)s.
According to Lemma 2.4, using the fact that q(x, y) - q(y, x) = 2?(x, y)
for any antisymmetric map q, we must find pairs (r,j) e F θ F such
that

(9) (*,;>,*> = έ [ i U ^ ] ^ l - \[xΛ[y,Λ\+r{x9y,z)

+ r(y,xyz) -s(x,y9z) -s(x9z9y).

This is equivalent to

(10) Λ = J(l + c)ϋΓ + F(r,s) ; equivalently,

The Akivis identity says 6aA = /. We always have 6a(l + c)K =
= 2((1 + c + c2)K - (1 + c + c2)tK) = 4/, i.e. 3α(l + c)ϋΓ = 2/.
Thus the Akivis identity is equivalent to 6a(A - J(l + c)K) =
/ - fa(l + c ) ^ = 0, i.e. to

(11) A - i ( l + c)ϋΓG (1 -a)V.

But by the results of §1, notably 1.3 and 1.4, we know that (1 — a)V =
im F, whence the desired existence of (r, s) follows.

Now let p e U be any polynomial of degree 3 such that x° y =
x + y + iί^ί ̂ 1 +P(^» ̂ ) gives us L(W, °) = W. If // is another one
with the same property, then p — p' is in the kernel of the map φ: U ->
(1 — a)V of 1.6. By 1.6, this kernel is isomorphic to mV, the space
of all symmetric trilinear maps W3 -> W. In the finite dimensional
case, the dimension of this space was given at the end of §1. D

It is precisely in the proof of this Theorem that we use the back-
ground information which we prepared in §1. We note that Theorem II is
indeed a converse of Theorem I, but it lacks a precise uniqueness
statement. The existence of the desired power series x ° y can be secured
even in the realm of polynomials of degree at most 3, but even in this
domain there is no uniqueness; the ambiguity is of the magnitude of the
space of all symmetric trilinear maps of W3 into W.

We notice that the power series x/y and y\x constructed for x ° y
as in (3) above will not be polynomial even though x ° y is a polynomial
of total degree 3. In view of the fact, that for a Lie algebra W there is one
and only one power series x * y with (x* y)* z = x*(y * z) such that
L(W, *) = W9 namely, the Campbell-Hausdorff series, it is certainly
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desirable to have more information on the relation between Theorems I

and II above and these classical results. Our understanding of the situa-

tion is limited at this time. However, the following remarks are certainly

pertinent.

Firstly, the Campbell-Hausdorff series is inseparably linked with the

exponential function. Formally, the handling of the exponential function

requires the ability to deal with formal power series on W of the form

a0 + aλx + a2x
2 + +anx

n + with an e F. Here it is an indis-

pensable hypothesis that we can talk about powers x".This means that we

are operating in an algebra W with a binary multiplication (x, y) -> xy

which is at least power-associative (see [25], p. 128). In a power-associative

algebra W we can now indeed define a power series

(12) x*y = Hι(x,y) + H2(x,y) + ••• = L((expxexp>>) - 1),

where L(z) = z - \z2 + \z* - + ,

and where the Hn(x, y) are homogeneous polynomials in x and y of

degree n which are linear combinations of monomials in x and y of

degree n, i.e., words in the free binary algebra generated by two letters.

Thus Hλ(x, y) = x + y and H2(x, y) = \(xy - yx) are verified without

undue pain. The calculation of H3(x, y) is already painful, but instructive.

In fact we have

2.9. PROPOSITION (Holmes and Sagle [13], Theorem 3.6). Let W be a

power-associative algebra over a field F of characteristic 0 and let [x, y] =

xy — yx and (JC, y9 z) = (xy)z — x(yz) be the operations in the associated

Akivis algebra WA. Then the homogeneous component of degree three in the

Campbell-Hausdorff series has the form

with

Pτ{χ>y) = 3{(*>χ,y) - (χ,y,y) - H

= \{{χ>χ,y) - (χ,y,χ) - (χ,y,y)

This Proposition was first proved by Holmes and Sagle in the context of

calculus in ^-dimensional real vector spaces. Our proof is merely a

question of book-keeping. The recipe is as follows: We set

z = (expxexpj) — 1

= x + y + W + xy + \y2 + i*3 + \xy2 + Wy + iy3
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up to terms of higher order. We then have to consider x* y = z — \z2

+ \z3 up to terms of higher order. This forces us to calculate the
homogeneous components of degree 3 in the power series z2 and z3 which
leads to the following table:

(z
2
h

(*
3
)3

X
3

6

1

1

y
3

6

1

1

xy
2

h
1

1

x
2
y

\

1

y
2
x

i

yx
2

i
1

(χy)y

1

(xy)x

1

y(χy)

1

1

x(xy)

1

1

x(yx)

1

y(yχ)

1

We must now calculate (z) 3 - \(z2)3 + \(z3)y The terms x3 and y3

drop out. There is no canonical way to proceed from here: however we
suggest to do the accounting as follows: We calculate the polynomial in
question as a linear combination of xy2, x(xy), x(yx), yx2, y(yx),

=χly -
(xy)x — x(yx)9 and (y, y, x) = y2x — y(yx). This calls for some rewrit-
ing of (z) 3 and (z 2 ) 3 , but not of (z 3) 3 . Now we collect the coefficients in
the following table:

xy
2

1

4

x(xy)

~2

1

-1
i

x(yx)

-i
1

_yx
2

~ 4

1

y(yχ)

-i -έ
J

1

-i

y) (x>y,

-h
y) (x,y,

-\

X) (y,y,

_1

X)

Now we have the following information on the series x * y:

(13) x*y = x+y+\[x,y} + ±xy2 + &x(xy) - $

+ τiyχ2 + hy(yχ) - \y(χy) + \(χ,x,y) - \{χ, y, y)

— \{x,y,x) - \{y,y,x) + terms of higher order

= x+y + \[x,y] + h(χy2 + χ(χy) + yχ2 + y{yχ)

-x(yx) - x(yx) - y(xy) - y(xy))

+ i(χ,χ,y) - \{χ,y,y) + \(y,χ,χ) - \{y,y,χ)

+ terms of higher order,

since

(14) (x,x,y) + (y,x,x) + (x,y,x) =0
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as a consequence of power-associativity, which yields (x ± y9 x ± y,
x ± y) = 0 . We now eliminate the remaining monomials xy2 etc. by
introducing brackets in a suitable fashion. We note e.g. that

χ(χy) - χ{yχ) - χ(yχ) + yχ2

= χ[χ,y] ~(χy)χ +(yχ)χ + (χ,y,χ) - (y,χ,χ)

= χ[χ,y] ~[χ,y]χ + (χ,y,χ) - (y,χ,χ)

= [*>[*>.HI + (χ>y>χ) - (y>χ>χ)

= [*>[*>jΊ] -((x,x,y) + 2(y9x9x))

(again with the aid of (14)). In a similar fashion, we calculate

χy2 + y(yχ) -y(χy) -y(χy) = Lv>Lv.*]] - (χ,y>y) + (y>χ,y)

y,χ) + 2(x,y,y)).

If we substitute these expressions into (13) we obtain the asserted form of
H3(x,y). Π

We notice that P3(x, y) = 0, whenever W is an associative algebra,
and then H3(x, y) becomes the usual homogeneous component of degree
3 in the classical Campbell-Hausdorff formula.

The preceding proposition suggests that for a given Akivis algebra E
we consider that polynomial

χo y = x + y + %[x9y] + r(x,x,y) +s(x,y9y)

for which the r and s are chosen so that

(15) H3(x,y) = r(x,xyy)+s(x,y,y)y with H3(x,y) as in 2.9.

If we set

(16) r(x,y,z) = £[*,[>>,*]] + \(x,y,z) + \{z9x,y)9 and

s(x,y,z) = tk[.y,[2,*]] - \{x,y,z) - \(y,z,x),

then we verify that (16) implies (15). Now the associated Akivis algebra
L(E, o) has the same commutator as E, but the associator is different. A
straightforward but somewhat lengthy calculation based on (9) yields

(17) AQ = <JC,^,Z)0 = \J +(1 + / + ct + c2t)A with A = (x9y9z).

Equivalently, we can express the deviation of the given Akivis algebra E
from the Akivis algebra L(E, °) by the difference

(18) Ao - A = (1 + c + c2)A - \J.
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We recall e = \(\ + c + c2) from §1 and then note that L(E, °) = E
iff

(AA) eA = \J, equivalently,

(x,y,z) + (y,z,x) + (z,x,y)

which is "half of the Akivis identity (A)". Of course, (AA) implies (A),
but not inversely as is readily verified in the Akivis algebra associated with
the free binary algebra in three generators x9 y9 and z. Thus, in the
absence of condition (AA), the Campbell-Hausdorff formula does not
yield a power series for which L(E, *) = E.

If E is alternative, then A = \J by 2.6.1. Then eA = \eJ = \J and
thus (AA) is satisfied.

More generally, if E is an alternative Akivis algebra, then the Akivis
subalgebra generated by two elements x and y is a Lie algebra. Hence the
homogeneous polynomials Hn(x, y) of the Campbell-Hausdorff series are
simply the ones known from Lie algebra theory. This gives us the
following remark:

2.10. PROPOSITION. If W is an alternative Akivis algebra over a field of
characteristic 0, then the classical Campbell-Hausdorff series x * y yields a
formal loop (W9 *) with the property that L(W, *) = W. The same holds
for any power series x ° y which agrees with x * y up to homogeneous
components of degree 1,2 and 3.

Several pressing questions remain open.

2.11. Problems, [12] 1. Let W be the free power-associative algebra in
two indeterminates x and y over a field of characteristic 0. In the
associated Akivis algebra WA we denote by Ak[;c, y] the Akivis subalgebra
generated by JC and y. If Hn(x, y) are the polynomials determined as the
homogeneous components of the formal power series x * y =
L((expxexpj>) — 1), is it true that

i.e. that the Hn(x, y) are linear combinations of monomials built up from
commutator and associator brackets alone? (The answer is yes for n =
1,2,3 by 2.9.)

2. Is Ak[Jf], the Akivis subalgebra generated by the set X of free
generators of a free algebra W inside the associated Akivis algebra WA the
free Akivis algebra over XΊ
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3. Let fτ(W) denote the free non-associative algebra over a vector
space W. If W carries the structure of an Akivis algebra, we denote with /
the ideal generated in ίτ{W) by the set of all xy - yx - [x, y] and
(xy)z - x(yz) - (x, y, z) with x9 y, z e W and define U(W) = ίτ{W)/I
and let fw: W -> U{W) be defined by fw(w) = w + I. Then for any (not
necessarily associative) algebra E and any morphism of Akivis algebras h:
W -> EA there is a unique morphism h': U(W) -+ E such that h'fw= h.
We call U{W) the enveloping algebra of the Akivis algebra W. Under
which circumstances if / injective? Is there a parallel to the theorem of
Poincare, Birkhoff and Witt (cf. [9], §§2, 7) in the context of enveloping
algebras of Akivis algebras? Is fr(X) = U(Ak[X])Ί (Cf. also [3], Problem
1.)

3. Lie9s fundamental theorems for local analytical loops. In this
section we let F denote the real field R or the complex field C. (We are
aware of the fact that other fields such as e.g. Q^ could be included, too.)
Let W be a completely normable F-vector space. A monomial function f:
W X W -> W of degree n = 1,2,3,... is a function for which there is a
continuous multilinear map Φ: Wp X Wq -> W with /(JC, J ) =
Φ((x,...,x),(j>,...,.y)), p + q = n.Ψe say that /: Wx W -• fΓ is a
homogeneous polynomial function of degree w if it is a finite linear
combination of monomial functions of degree n. We say that a function
/: B X B -> W is analytic (with an open neighbourhood B of 0 in W)
whenever there is a formal power series /0 + fx 4- f2 + whose homo-
geneous components fn are homogeneous polynomial functions such that
the infinite series /0 + fλ{x, y) + /2(x, y) + converges absolutely on
B X B relative to a norm on W compatible with the topology.

3.1. DEFINITION. A local analytical loop is a completely normable real
or complex vector space W together with an open neighbourhood B of 0
and with three analytical function °, /, \ : B X B -> W such that the
following identities are satisfied:

(i) x oO = 0° x = x for all x e 5
(ii) x °(jt \>>) = (.y/x) ° x = 7 for all x9 y e 5 with x \y, y/x e 5.
It follows from Definition 3.1 and the early observation (2) of §2, that

the local multiplication of a local analytical loop is given by

( 1 ) χ o y = x + ^ + q ( x 9 y ) + r ( x 9 x , y ) + s ( x , y 9 y ) + f A ( x , y ) + •••

for (x, y) G B X B with continuous multilinear maps q: W2 -> W

,s: W3 -* W.
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3.2. PROPOSITION. Let W be a completely normable F-vector space and

(2) (x,y)>-> χoy = χ+ y + q(x,y) + r(x,x,y) +s(x,y,y)

+fΛ*,y)+ :B0XB0-^W

an analytical function with multilinear continuous maps q, r, s and an open

neighbourhood of 0 in W, so that x°0 = 0° x for all x sufficiently close to

0. Then there is an open neighbourhood B of 0 in Bo and analytical functions

/ , \ : B X B -> Wsuch that (W, B, °B, /9 \) is a local analytical loop with

the restriction <>B= o \(β X B).

Proof. We consider the function m: B0X Bo-* B0X W, given by

m(x, y) = ( c, x°y). This function is analytic and has the derivative

Dm(0) given by Dm(0)(x, y) = (x,x + y) which is an isomorphism of

vector spaces. Hence m allows a local analytical inverse by the inverse

function theorem (see e.g. [8], 5.7.6.) We note that m~\x, y) = (x,u)

means ( c, y) = m(x, u) = (x, x ° w); thus if we write u = x \y9 then the

analytical function (x9 y) -> x\y satisfies the equation x°(x\y) = ^ o n

its domain. In a similar fashion one obtains x/y. If we choose B small

enough so that all functions in question are defined on B X B, we have

completed the proof. D

3.3. PROPOSITION. Let (W, B, °,/,\) be a local analytical loop. Then

the following limits all exist and satisfy the identities

(3) lim Γ2((tx © ty)/(ty ° tx)) = lim t~2((ty ° tx) \(tx ° ty))

= lim Γ2(tx oty-tyo tx) = q(χ, y) - q(y, x)

(4) lim t~3(((tx o ty)o tz)/(tx o(ty o tz)))

= lim t~3((tχo(tyotz))\((tχoty)otz))

= lim t~3((tx°ty)otz - tχo(tyotz))
ί-0

+ r(y,x,z) -s(x9y,z) - s(x,z,y).

Proof. This follows from the definitions in 3.1, the subsequent

observation (1), and Lemmas 2.1 and 2.2. D

3.4. DEFINITION. Under the circumstances of Proposition 3.3 we call

the bilinear expression in relation (3) the commutator bracket of the loop
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and denote it by [x, y]9 and we call the trilinear expression in relation (4)

the associator bracket of the loop and denote it by (JC, y9 z).

3.5. DEFINITION. A topological Akiυis algebra is a topological F-vector

space W together with two continuous multilinear maps [•,•]: W1 -> W

and ( , , ) : W3 -> W which satisfy the Akivis identity.

3.6. PROPOSITION. Let (W9B9°, /, \ ) be a local analytical loop. Then

the commutator bracket and associator bracket give continuous multilinear

maps [ , ]: W2 -> Wand ( , , >: W3 -> W9 respectively, and (W9[ 9- ],

( , , )) is a topological Akiυis algebra.

Proof. From the fact that q, r and s are continuous multilinear maps

and from Propositin 3.3 it is immediate that the commutator and associa-

tor brackets are continuous multilinear maps. From Theorem 2.7 we know

that (W9[-9- ], (•,-,•» is an Akivis algebra whenever we have the

relations [x9 y] = q(x9 y) - q(y9 x) and

(x, y,z) = q(q(x9y)9z) - q(x,q(y,z)) + r(x9y9z)

+ r(y9x9z) -s(x9y9z) - s(x9z9y)

with multilinear functions q, r9 and s. D

If (W,B,o^/9\) is a local analytical loop, then we say that the

topological Akivis algebra (W9 [ , ], ( , , )) is the Akivis algebra associ-

ated with the loop and write L(W,B, °,/,\) = (W9[ 9- ], < , , » . If no

confusion arises we will briefly write L(B, <>).

We are now ready for the fundamental theorems.

3.7. LIE'S FUNDAMENTAL THEOREMS FOR LOCAL ANALYTICAL LOOPS.

A. Every local analytical loop (W, B, °,/, \ ) determines a unique

associated topological Akivis algebra L(B, °) = (W,[-9- ], ( •,-,•)) (whose

commutator and associator brackets are given by (3) and (4) above).

B. Let W = {W9 [ , ], ( -,-,•)) be a topological Akivis algebra on a

completely normable real or complex vector space. Then there is a local

analytical loop (W,B, °,/,\) such that L(B, °) = W. Moreover, there

exist such loops for which the multiplication ° is polynomial of the form (5)

x°y = x+y+ \[x, y] + r(x, x9 y) + s(x, y9 y) with continuous multilin-

ear maps r9 s. The set of differences x° 2y — x° xy of such multiplications

is in bijective correspondence with the vector space of all symmetric continu-

ous trilinear maps W3 -> W.
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Proof. Part A is proved by Proposition 3.3. Part B follows from
Theorem 2.8 which gives us two continuous trilinear maps r and s such
that, with q(x, y) = ^[JC, y] for x ° y given by (5), we have (x9 y9 z) equal
to the expression in equation (4). Proposition 2.3 gives us the analytical
local quotient functions / and \, which will make (W,B, °,/A) a l°c al
analytical loop. The remainder now follows from Theorem 2.8. D

3.8. DEFINITION. A local analytical loop (W,B, °, / ,\) is said to be a
local analytical group if (6) (x ° y)° z = x °(y ° z) h o l d s w h e n e v e r all

products in this formula are defined. A subset C c B is called a local
subloop iff (C o C) Π B c C, (C/C) Π 5 c C and ( C \ C) Π 5 c C. Also
C is called a local subgroup if it is a local subloop and (6) holds whenever
x, y, z E: C and all products in the formula are defined.

We say that (W, B, °,/, \) *s a n alternative (power-associative) local
analytical loop if every set X Q B of at most two elements (respectively,
one element) lies in a local subgroup.

3.9. PROPOSITION. A. The Akivis algebra of a local analytical alterna-
tive loop is alternative. B. // W is an alternative topological Akivis algebra
on a completely normable vector space, then there is a local analytical
alternative loop (W,B9 *, /, \) where x* y = x + y + j[x9 y] + H3(x9 y)
+ is given by the classical Campbell-Hausdorff series converging
absolutely on B (which we may take an open ball of radius ̂ Iog2; here we
single out a norm compatible with the topology and which satisfies ||[x, y]\\ <
\\x\\ \\y\\) and where x/y = y\x = x — y, and L(B, *) = W.

Proof. A. Proposition 3.3 shows immediately that (x9y9z) vanishes
whenever [x9 y9 z) contains at most two elements. B. follows from
Proposition 2.10 and the classical circle of ideas around the Campbell-
Hausdorff formula. D

There is a considerable theory on Moufang Lie loops and the corre-
sponding Akivis algebras which are known as Malcev algebras in the
literature [12 through 16, 19 through 23]. Moufang Lie loops are alterna-
tive and Malcev algebras are alternative (here the expression binary Lie
algebra is also used in the literature instead of "alternative Akivis
algebra").

We recall that in the classical local Lie group theory the Lie algebra
determines a local Lie group up to local isomorphism. This fact was first
extended to alternative Lie loops by Malcev [20]. Through the work of
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Holmes and Sagle (see [13]) one knows that a power-associative local
analytical loop may always be parametrized in such a fashion that it takes
the form (W, B, °, /, \) with x ° y = x + y, whenever x and y are lin-
early dependent. This then holds, in particular, for alternative local
analytical loops. If (W, B, °, /, \) is an alternative local analytical loop
with x o y = x + y for linearly dependent x, y e W then x © y must
agree with the Campbell-Hausdorff product x * y for all sufficiently small
x, y. For if x and y are two elements in B and if we assume that u * υ is
defined for all u, υ ^ B, then there is a closed vector subspace V of W
containing x and j> on which the Akivis algebra structure L(W, °) of W
induces the structure of a Lie algebra, and for which © induces onVΠB
the structure of a local analytical group with x © ^ = x + j> for linearly
dependent x and jμ. Classical Lie group theory then yields u° υ = u* υ
on V for sufficiently small u and ϋ. Since © and * are both analytic, they
agree on their common domain. Since x and y were arbitrary in B, the
claim is established.

There are other applications of the canonical coordinates introduced
by Holmes and Sagle for power-associative local analytical loops.

3.10. REMARK. (Cf. [12], IX.6.23). If (W,B, °,/,\) is a power-as-
sociative local analytical loop satisfying the identity x~ι(xy) = (yx)x'1 =
y, then W is alternative.

It is no problem to carry out the theory outlined in this section for
local loops of class Ck, k = 3,4,..., instead of class Cω which we
discussed here.
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