Vol. 124, No. 1, 1986

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
A convexity theorem for semisimple symmetric spaces

Erik P. van den Ban

Vol. 124 (1986), No. 1, 21–55
Abstract

We generalize Kostant’s convexity theorem for the Iwasawa decomposition of a real semisimple Lie group G to the following situation. Let τ be an involution of G, and H = (Gτ)0. Then there exists an Iwasawa decomposition G = KApN with certain compatibility properties, e.g. τ(K) = K, τ(Ap) = Ap. Let ap = Lie(Ap), H : G ap the projection according to the Iwasawa decomposition and Epq the projection of ap onto the 1 eigenspace apq of (e). Let X apq. Then the main result of this paper describes the image of the map H apq, h Epq H(exp(X) h) as the vector sum of a closed convex polyhedral cone and the convex hull of a Weyl group orbit through X. For τ a Cartan involution it gives precisely Kostant’s description of H(exp(X) K).

Mathematical Subject Classification 2000
Primary: 22E46
Milestones
Received: 12 February 1985
Revised: 10 May 1985
Published: 1 September 1986
Authors
Erik P. van den Ban
Mathematisch Instituut
Universiteit Utrecht
PO Box 80 010
3508 Utrecht
Netherlands
http://www.math.uu.nl/people/ban/address.html