Vol. 124, No. 1, 1986

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
On solutions of differential equations which satisfy certain algebraic relations

Steven L. Sperber

Vol. 124 (1986), No. 1, 249–256
Abstract

In the following, we provide another proof (Theorem 3.1 below) of recent results of Harris-Sibuya, using some elementary commutative algebra. Our purpose is to give a uniform treatment for their results which also permits some generalization. We note that the study of differential equations under the hypothesis that the solutions satisfy an algebraic relation is not new. Fano, among others, made a systematic study of this situation in the last century. Also Lamé equations in which two solutions have a rational function as their product have proved to be a good source of examples for unusual arithmetic behavior. But in the case of Harris-Sibuya, as well as the present paper, the solutions need not be solutions of the same linear equation. In the treatment below the differential equation only enters in dilineating a type of recursion.

Mathematical Subject Classification 2000
Primary: 12H05
Milestones
Received: 29 March 1985
Published: 1 September 1986
Authors
Steven L. Sperber