A THEOREM ON HOLOMORPHIC EXTENSION OF CR-FUNCTIONS

Guido Lupacciolu
A THEOREM ON HOLOMORPHIC EXTENSION OF CR-FUNCTIONS

GUIDO LUPACCIOLU

We prove the holomorphic extendability on a domain $D \subset C^n$, $n \geq 2$, of the continuous CR-functions on a relatively open connected subset of ∂D, provided the complementary subset of ∂D is $\mathcal{O}(\overline{D})$-convex.

Introduction. Let D be a relatively compact open domain in C^n, $n \geq 2$, with boundary ∂D, and K a compact subset of ∂D. We require D and K to be such that $\partial D \setminus K$ is a real hypersurface of class C^1 in $C^n \setminus K$.

The purpose of this paper is to give a sufficient condition on D and K guaranteeing the holomorphic extendability on all of D of the CR-functions on $\partial D \setminus K$. Our theorem, which states the condition, improves and generalizes previous results in this direction obtained in Lupaccioli-Tomassini [6] and in Tomassini [10].

Let $\mathcal{O}(\overline{D})$ be the algebra of complex-valued functions on \overline{D} each of which is holomorphic on an open neighborhood of \overline{D}, and \hat{K}_D the $\mathcal{O}(\overline{D})$-hull of K. i.e.,

$$\hat{K}_D = \bigcap_{\varphi \in \mathcal{O}(\overline{D})} \{ z \in \overline{D} ; |\varphi(z)| \leq \max_{K} |\varphi| \}.$$

Our main result is the following theorem on holomorphic extension of CR-functions.

THEOREM 1. Assume that K is $\mathcal{O}(\overline{D})$-convex, i.e., $\hat{K}_D = K$, and $\partial D \setminus K$ is connected. Then every continuous CR-function f on $\partial D \setminus K$ has a unique extension F continuous on $\overline{D} \setminus K$ and holomorphic on D.

A seemingly more general theorem is the following one.

THEOREM 2. Assume that $\partial D \setminus \hat{K}_D$ is a connected real hypersurface of class C^1 in $C^n \setminus \hat{K}_D$. Then every continuous CR-function f on $\partial D \setminus \hat{K}_D$ has a unique extension F continuous on $\overline{D} \setminus \hat{K}_D$ and holomorphic on $D \setminus \hat{K}_D$.

1Added in proof. Recently Edgar Lee Stout kindly informed me of his paper [12], where the same condition is already recognized to be sufficient, when D is a domain of holomorphy, for a parallel extendability's property in the setting of holomorphic functions.
However, if we set \(D' = D \setminus \hat{K}_D \) and \(K' = D' \cap \hat{K}_D \), it is an easy matter to see that Theorem 2 is equivalent to Theorem 1 with \(D' \) and \(K' \) in place of \(D \) and \(K \).

Before going into the proof of Theorem 1, let us discuss a nontrivial situation where it applies.

Observe that, since plainly

\[
\hat{K}_D = \bigcap_{U \supseteq D} \hat{K}_U,
\]

where \(U \) ranges over the open neighbourhoods of \(D \), it suffices, in order that \(\hat{K}_D = K \), that, for some \(U \), \(\hat{K}_U \cap \overline{D} = K \), i.e. \(\hat{K}_U \) does not meet \(\overline{D} \setminus K \). Suppose, then, that the following holds: there is an upper semicontinuous plurisubharmonic function \(\rho \) on a Stein open neighbourhood \(U \) of \(\overline{D} \), so that \(K \subset \{ \rho = 0 \} \) and \(\overline{D} \setminus K \subset \{ \rho > 0 \} \). Since \(\hat{K}_U \) coincides with \(\hat{K}_U^p \), the hull of \(K \) with respect to the plurisubharmonic functions on \(U \) (cf. Hörmander [5], p. 91), it follows that \(\hat{K}_U \) is contained in \(\{ \rho \leq 0 \} \), and hence \(\hat{K}_U \cap \overline{D} = K \). In the case \(\rho \) is pluriharmonic, \(U \) may be required to be simply connected, instead that Stein; for \(\rho \) has then a unique pluriharmonic extension \(\tilde{\rho} \) to the envelope of holomorphy \(\tilde{U} \) of \(U \), and hence \(\hat{K}_U \subset \hat{K}_U = \hat{K}_U^p \subset \{ \tilde{\rho} \leq 0 \} \).

1. Preliminary facts. (a) We denote by \(\omega(\xi) \) the Martinelli form relative to a point \(\xi = (\xi_1, \ldots, \xi_n) \in \mathbb{C}^n \), that is

\[
\omega(\xi) = C_n \frac{dz_1 \wedge \cdots \wedge dz_n}{|z - \xi|^{2n}} \\
\wedge \sum_{a=1}^{n} (-1)^{a-1}(\bar{\xi}_a - \bar{\xi}_a) d\bar{z}_1 \wedge \cdots \wedge \hat{\alpha} \cdots \wedge d\bar{z}_n
\]

(\(C_n = (-1)^{n(n-1)/2}(n-1)!/(2\pi i)^n \)).

Given a holomorphic function \(\varphi \) on an open set \(U \subset \mathbb{C}^n \) and a point \(\xi \in U \), we denote by \(L_\xi(\varphi) \) the level set of \(\varphi \) through \(\xi \), that is

\[
L_\xi(\varphi) = \{ z \in U; \varphi(z) = \varphi(\xi) \}.
\]

It is known that for any \(\varphi \in \mathcal{O}(U) \) there exist holomorphic maps \(h = (h_1, \ldots, h_n) \in \mathcal{O}^n(U \times U) \) such that, for each \((z, \xi) \in U \times U \),

\[
(*) \quad \varphi(z) - \varphi(\xi) = \sum_{a=1}^{n} h_a(z, \xi)(z_a - \xi_a)
\]

(cf. Harvey [3], Lemma 2.3). Then we set:

\[
(1.1) \quad \mathcal{O}_\varphi^n(U \times U) = \{ h \in \mathcal{O}^n(U \times U); (*) \text{ holds} \}.
\]

Any \(h \in \mathcal{O}_\varphi^n(U \times U) \) allows one to define canonically, for \(\xi \in U \), a \(\bar{\partial} \)-primitive of \(\omega(\xi) \) on \(U \setminus L_\xi(\varphi) \), that is \((n, n-2) \)-form \(\Phi_h(\xi) \) on
\(U \setminus L_\zeta(\varphi) \) such that
\[
\omega(\zeta) = \overline{\partial} \Phi_h(\zeta) = d\Phi_h(\zeta).
\]

As a matter of fact, consider, for every \(\alpha = 1, \ldots, n \), the following \((n, n-2)\)-form on \(\mathbb{C}^n \setminus \{z_\alpha = \zeta_\alpha\} = \mathbb{C}^n \setminus L_\zeta(z_\alpha) \):
\[
\Omega_\alpha(\zeta) = \frac{(-1)^{\alpha+n}}{n-1} C_n \frac{dz_1 \wedge \cdots \wedge dz_n}{(z_\alpha - \zeta_\alpha)|z - \zeta|^{2n-2}}
\]
\[\wedge \left[\sum_{\beta=1}^{\alpha-1} (-1)^\beta \left(\bar{z}_\beta - \bar{\zeta}_\beta \right) d\bar{z}_1 \wedge \cdots \hat{\beta} \cdots \hat{\alpha} \cdots \wedge d\bar{z}_n \right. \]
\[+ \sum_{\beta=\alpha+1}^n (-1)^{\beta-1} \left(\bar{z}_\beta - \bar{\zeta}_\beta \right) d\bar{z}_1 \wedge \cdots \hat{\beta} \cdots \hat{\alpha} \cdots \wedge d\bar{z}_n \bigg].
\]

One verifies that, on \(\mathbb{C}^n \setminus L_\zeta(z_\alpha) \), \(\omega(\zeta) = \overline{\partial} \Omega_\alpha(\zeta) \).
Then set
\[
(1.2) \quad \Phi_h(\zeta) = \frac{1}{\varphi(z) - \varphi(\zeta)} \sum_{\alpha=1}^n h_\alpha(z, \zeta)(z_\alpha - \zeta_\alpha) \Omega_\alpha(\zeta).
\]

It is plain that \(\Phi_h(\zeta) \) is indeed a real analytic \(\overline{\partial} \)-primitive of \(\omega(\zeta) \) on \(U \setminus L_\zeta(\varphi) \).

Such \(\overline{\partial} \)-primitives of the Martinelli form will play a fundamental role in the proof of our extension theorem. Now we derive the properties of them that will be needed.

Let there be given open sets \(U, U' \subset \mathbb{C}^n \) such that \(U \cap U' \neq \emptyset \), functions \(\varphi \in \mathcal{O}(U) \), \(\varphi' \in \mathcal{O}(U') \) and maps \(h \in \mathcal{O}_\varphi(U \times U) \), \(h' \in \mathcal{O}_{\varphi'}(U' \times U') \), and let \(\zeta \) be a point in \(U \cap U' \). Suppose first that \(n \geq 3 \), and consider, for every \(\alpha, \beta = 1, \ldots, n \) with \(\alpha \neq \beta \), the \((n, n-3)\)-form \(\Lambda_{\alpha,\beta}(\zeta) \) on \(\mathbb{C}^n \setminus (L_\zeta(z_\alpha) \cup L_\zeta(z_\beta)) \) defined as follows: for \(\alpha < \beta \)
\[
\Lambda_{\alpha,\beta}(\zeta) = \frac{(-1)^{n+\alpha+\beta}}{(n-1)(n-2)} C_n \frac{dz_1 \wedge \cdots \wedge dz_n}{(z_\alpha - \zeta_\alpha)(z_\beta - \zeta_\beta)|z - \zeta|^{2n-4}}
\]
\[\wedge \left[\sum_{\gamma=1}^{\alpha-1} (-1)^\gamma \left(\bar{z}_\gamma - \bar{\zeta}_\gamma \right) d\bar{z}_1 \wedge \cdots \hat{\gamma} \cdots \hat{\alpha} \cdots \hat{\beta} \cdots \wedge d\bar{z}_n \right. \]
\[+ \sum_{\gamma=\alpha+1}^{\beta-1} (-1)^{\gamma-1} \left(\bar{z}_\gamma - \bar{\zeta}_\gamma \right) d\bar{z}_1 \wedge \cdots \hat{\gamma} \cdots \hat{\alpha} \cdots \hat{\beta} \cdots \wedge d\bar{z}_n \bigg] \]
\[+ \sum_{\gamma=\beta+1}^n (-1)^\gamma \left(\bar{z}_\gamma - \bar{\zeta}_\gamma \right) d\bar{z}_1 \wedge \cdots \hat{\gamma} \cdots \hat{\beta} \cdots \hat{\alpha} \cdots \wedge d\bar{z}_n \bigg].
\]

\(^2\)The forms \(\Omega_\alpha(\zeta) \) were considered first by Martinelli [7], to give a proof of Hartogs' theorem.
and for $\alpha > \beta \Lambda_{\alpha,\beta}(\zeta) = -\Lambda_{\beta,\alpha}(\zeta)$. One can verify that $\Omega_{\alpha}(\zeta) - \Omega_{\beta}(\zeta) = \overline{\partial} \Lambda_{\alpha,\beta}(\zeta)$. Then, consider the following $(n, n - 3)$-form on $(U \setminus L_{\zeta}(\varphi)) \cap (U' \setminus L_{\zeta}(\varphi'))$

$$X_{h,h'}(\zeta) = \frac{1}{(\varphi(z) - \varphi'(\zeta))(\varphi'(z) - \varphi'(\zeta))} \sum_{1 \leq \alpha < \beta \leq n} (h_{\alpha} h_{\beta}' - h_{\beta} h_{\alpha}') (z_{\alpha} - \zeta_{\alpha}) (z_{\beta} - \zeta_{\beta}) \Lambda_{\alpha,\beta}(\zeta).$$

It is easily seen that, on $(U \setminus L_{\zeta}(\varphi)) \cap (U' \setminus L_{\zeta}(\varphi'))$,

$$(1.3) \quad \Phi_{h}(\zeta) - \Phi_{h'}(\zeta) = \overline{\partial} X_{h,h'}(\zeta).$$

In case $n = 2$ we simply have:

$$\Omega_{1}(\zeta) - \Omega_{2}(\zeta) = -\frac{1}{(2 \pi i)^2} \frac{dz_{1} \wedge dz_{2}}{(z_{1} - \zeta_{1})(z_{2} - \zeta_{2})},$$

and hence we find, on $(U \setminus L_{\zeta}(\varphi)) \cap (U' \setminus L_{\zeta}(\varphi'))$:

$$(1.4) \quad \Phi_{h}(\zeta) - \Phi_{h'}(\zeta) = -\frac{1}{(2 \pi i)^2} \frac{(h_{1} h_{2}' - h_{2} h_{1}') dz_{1} \wedge dz_{2}}{(\varphi(z) - \varphi'(\zeta))(\varphi'(z) - \varphi'(\zeta))}.$$

Next, we observe that all the above differential forms depend in a real analytic fashion also on the point ζ, so that we may perform any derivative of these with respect to the parameters $\text{Re} \, \xi_{\alpha}, \text{Im} \, \zeta_{\alpha}, \alpha = 1, \ldots, n$ (by taking the derivative of each coefficient). In particular we may consider the forms $\partial \omega / \partial \bar{\xi}_{\alpha}$, $\partial \Omega_{\beta} / \partial \bar{\xi}_{\alpha}$, etc., obtained by applying the Wirtinger operator $\partial / \partial \bar{\xi}_{\alpha}$. We first note that, for every $\alpha = 1, \ldots, n$, the $(n, n - 2)$-form $\partial \Omega_{\alpha} / \partial \bar{\xi}_{\alpha}$ satisfies

$$\frac{\partial \Omega_{\alpha}}{\partial \bar{\xi}_{\alpha}}(\zeta) = (n - 1) \frac{z_{\alpha} - \zeta_{\alpha}}{|z - \zeta|^{2}} \Omega_{\alpha}(\zeta),$$

and hence is defined (and real analytic) on $C^{n} \setminus \zeta$, instead that only on $C^{n} \setminus L_{\zeta}(z_{\alpha})$ as $\Omega_{\alpha}(\zeta)$. It follows that, on $C^{n} \setminus \zeta$,

$$(1.5) \quad \frac{\partial \omega}{\partial \bar{\xi}_{\alpha}}(\zeta) = \overline{\partial} \left[\frac{\partial \Omega_{\alpha}}{\partial \bar{\xi}_{\alpha}}(\zeta) \right] \quad (\alpha = 1, \ldots, n).$$

Similarly, if $n \geq 3$, for every $\alpha, \beta = 1, \ldots, n$ with $\alpha \neq \beta$, the $(n, n - 3)$-form $\partial \Lambda_{\alpha,\beta} / \partial \bar{\xi}_{\alpha}$ satisfies

$$\frac{\partial \Lambda_{\alpha,\beta}}{\partial \bar{\xi}_{\alpha}}(\zeta) = (n - 2) \frac{z_{\alpha} - \zeta_{\alpha}}{|z - \zeta|^{2}} \Lambda_{\alpha,\beta}(\zeta),$$
and hence is defined on $\mathbb{C}^n \setminus L_\zeta(z_\beta)$, instead that only on $\mathbb{C}^n \setminus (L_\zeta(z_\alpha) \cup L_\zeta(z_\beta))$ as $\Lambda_{\alpha,\beta}(\zeta)$. It follows that, on $\mathbb{C}^n \setminus L_\zeta(z_\beta)$,

$$\frac{\partial \Omega_\alpha}{\partial \bar{\xi}_\alpha}(\zeta) - \frac{\partial \Omega_\beta}{\partial \bar{\xi}_\alpha}(\zeta) = \bar{\partial} \left[\frac{\partial \Lambda_{\alpha,\beta}}{\partial \bar{\xi}_\alpha}(\zeta) \right].$$

If $n = 2$ we simply have, for $\alpha = 1, 2$:

$$\frac{\partial \Omega_1}{\partial \bar{\xi}_\alpha}(\zeta) - \frac{\partial \Omega_2}{\partial \bar{\xi}_\alpha}(\zeta) = 0.$$

Now, let there be given an open set $U \subset \mathbb{C}^n$, a function $\varphi \in \mathcal{O}(U)$ and a map $h \in \mathcal{O}_\varphi^n(U \times U)$, and let ξ be a point in U. In case $n \geq 3$ consider, for every $\alpha = 1, \ldots, n$, the following $(n, n - 3)$-form on \mathbb{C}^n:

$$\Psi_h^\alpha(\zeta) = \frac{1}{\varphi(z) - \varphi(\zeta)} \sum_{\beta=1}^{n} h_\beta(z_\beta - \zeta_\beta) \frac{\partial \Lambda_{\alpha,\beta}}{\partial \bar{\xi}_\alpha}(\zeta).$$

Then we find, on $U \setminus L_\zeta(\varphi)$:

$$(1.6) \quad \frac{\partial \Phi_h}{\partial \bar{\xi}_\alpha}(\zeta) = \frac{\partial \Omega_\alpha}{\partial \bar{\xi}_\alpha}(\zeta) - \bar{\partial} \Psi_h^\alpha(\zeta) \quad (\alpha = 1, \ldots, n).$$

On the other hand, if $n = 2$, we have:

$$(1.7) \quad \frac{\partial \Phi_h}{\partial \bar{\xi}_\alpha}(\zeta) = \frac{\partial \Omega_\alpha}{\partial \bar{\xi}_\alpha}(\zeta) \quad (\alpha = 1, 2).$$

(b) It is well known that, given an oriented real hypersurface Σ of class C^1 in \mathbb{C}^n (without boundary, not necessarily closed) and a complex-valued function f in $L^1_{loc}(\Sigma)$, one may say that f is a CR-function on Σ in case it satisfies the tangential Cauchy-Riemann equation in the weak form, that is

$$(1.8) \quad \int_{\Sigma} f \bar{\partial} \lambda = 0,$$

for every $(n, n - 2)$-form λ of class C^1 on an open neighbourhood of Σ, such that $\Sigma \cap \text{Supp}(\lambda)$ is compact. However we need for our purposes a sharper characterization of continuous CR-functions on Σ than (1.8) is. This is provided by the following proposition.

Proposition 1.9. Let f be a complex-valued continuous function on Σ. Then f is a CR-function if and only if it satisfies

$$(1.10) \quad \int_{\partial \Sigma} f \bar{\partial} \mu = \int_{\partial \Sigma} f \mu,$$
for every singular \((n + q)\)-chain \(c_{n+q}\) of \(\Sigma\) of class \(C^1\) and every \((n, q - 1)\)-form \(\mu\) of class \(C^1\) on an open neighbourhood of \(\Sigma\) \((1 \leq q \leq n - 1)\).

Proof. This proposition asserts that (1.8) and (1.10) are equivalent for a continuous \(f\) (which would be quite immediate if \(f\) were of class \(C^1\)). We shall prove only that (1.8) implies (1.10), the converse being trivial.

For every differential form \(\mu\) of class \(C^1\) on an open neighbourhood \(V\) of \(\Sigma\), we denote by \(\mu|_{\Sigma}\) the restriction of \(\mu\) to \(\Sigma\) (i.e. the pull-back of \(\mu\) by the inclusion map \(\Sigma \hookrightarrow V\)). Then \(\mu|_{\Sigma}\) is a continuous regular form on \(\Sigma\).

Consider the continuous \(n\)-form on \(\Sigma\)
\[
\mu = f(dz_1 \wedge \cdots \wedge dz_n)|_{\Sigma}.
\]
We claim that (1.10) is equivalent to the following assertion:
\[
(*) \quad \text{\(u\) is regular on \(\Sigma\) and \(du = 0\).}
\]
As a matter of fact, taking in particular \(q = 1\) and \(\mu = dz_1 \wedge \cdots \wedge dz_n\), (1.10) gives:
\[
0 = \int_{\partial c_{n+1}} f dz_1 \wedge \cdots \wedge dz_n = \int_{\partial c_{n+1}} u,
\]
for every singular \((n + 1)\)-chain \(c_{n+1}\) of \(\Sigma\) of class \(C^1\); and this is just as to say that \((*)\) holds. Conversely, assume that \((*)\) holds. Any \((n, q - 1)\)-form \(\mu\) as in the statement can be written as \(\mu = dz_1 \wedge \cdots \wedge dz_n \wedge \tilde{\mu}\), where \(\tilde{\mu}\) is a \((0, q - 1)\)-form of class \(C^1\) on an open neighbourhood of \(\Sigma\). Then \(u \wedge \tilde{\mu}|_{\Sigma}\) is a continuous regular \((n + q - 1)\)-form on \(\Sigma\) and, since \(du = 0\), \(d(\tilde{\mu}|_{\Sigma}) = (d\tilde{\mu})|_{\Sigma}\), we have:
\[
d\left(u \wedge \tilde{\mu}|_{\Sigma} \right) = (-1)^n u \wedge (d\tilde{\mu})|_{\Sigma} = f (d\mu)|_{\Sigma} = f (\partial\mu)|_{\Sigma}.
\]
It follows that
\[
\int_{c_{n+q}} f \partial\mu = \int_{\partial c_{n+q}} u \wedge \tilde{\mu}|_{\Sigma} = \int_{\partial c_{n+q}} f\mu,
\]
that is, (1.1) holds. Next, we claim that \((*)\) is equivalent to:
\[
(**) \quad \text{\(u\) is weakly closed on \(\Sigma\), that is} \quad \int_{\Sigma} u \wedge dv = 0
\]
for every \((n - 2)\)-form \(v\) on \(\Sigma\) of class \(C^1\) and with compact support.

3 The same result is proved in Lupacciolu-Tomassini [6] under the additional assumption that \(f\) is locally Lipschitz, but the argument used there does not work without that assumption.

4 For the definition and basic properties of continuous regular forms we refer to Whitney [11] pp. 103–108. We denote, as usual, by \(d\) the differential acting on such forms (defined by means of Stokes' formula), as the ordinary exterior differential.
This latter equivalence is a straightforward consequence of the following general facts about continuous differential forms on a manifold of class C^1:

(i) The differential acting on continuous regular forms may be understood in the strong sense. This means that, if η, θ are continuous forms, then η, θ are regular and $d\eta = \theta$ in the sense of regular forms if and only if there exists a sequence $\{\eta_s\}_{s=1}^{\infty}$ of forms of class C^1 such that $\eta_s \to \eta$ and $d\eta_s \to \theta$ as $s \to \infty$, both uniformly on compact sets (cf. Whitney [11]);

(ii) The differential in the strong sense coincides with the differential in the weak sense. This means that, if η, θ are continuous forms, then $d\eta = \theta$ in the strong sense if and only if \(\int \eta \wedge d\xi = (-1)^{\deg \eta} \int \theta \wedge \xi \), for every form ξ of class C^1 and with compact support (cf. Friedrichs [2], or Fichera [1]).

Now we show that (1.8) implies (**), which will conclude the proof. We shall use the following fact: there exists an open neighbourhood W of Σ in C^n and a retraction $r: W \to \Sigma$ of class C^1 (which means that $r(z) = z$ for each $z \in \Sigma$). This is a special case of a standard theorem in Differential Topology (cf. Munkres [8], p. 51, or Whitney [11], p. 121). If v is any $(n-2)$-form on Σ of class C^1 and with compact support, consider its pull-back r^*v to W. r^*v is a continuous regular $(n-2)$-form on W, and hence we can find a sequence $\{\eta_s\}_{s=1}^{\infty}$ of $(n-2)$-forms of class C^1 on W such that

$$
\lim_{s \to \infty} \eta_s = r^*v, \quad \lim_{s \to \infty} d\eta_s = r^*dv,
$$

both uniformly on compact subsets of W. Moreover, since $\Sigma \cap \text{Supp}(r^*v) = \text{Supp}(v)$ is compact, we can arrange that so too is $\Sigma \cap \text{Supp}(\eta_s)$, for every s. It follows that

$$
\int_{\Sigma} u \wedge dv = \lim_{s \to \infty} \int_{\Sigma} u \wedge (d\eta_s)|_{\Sigma}
$$

\begin{align*}
&= \lim_{s \to \infty} \int_{\Sigma} f dz_1 \wedge \cdots \wedge dz_n \wedge d\eta_s \\
&= (-1)^n \lim_{s \to \infty} \int_{\Sigma} f \bar{\partial} (dz_1 \wedge \cdots \wedge dz_n \wedge \eta_s),
\end{align*}

and hence (1.8) implies $\int_{\Sigma} u \wedge dv = 0$.

5 Clearly, the interest of this fact is in the "if", the "only if" being trivial.

6 If Σ were of class C^2, we could use the more elementary "tubular neighbourhood theorem".
2. Proof of Theorem 1. Let V be an open neighbourhood of K in \mathbb{C}^n and $\sigma: \mathbb{C}^n \to \mathbb{R}$ a C^∞ function such that $0 \leq \sigma(z) \leq 1$ for all z, $\sigma(z) = 1$ for $z \in K$, $\text{Supp}(\sigma)$ is compact and contained in V. For a generic small $\varepsilon > 0$, set $D_\varepsilon = D \cap \{1 - \sigma > \varepsilon\}$, $\Gamma_\varepsilon = \partial D \cap \{1 - \sigma = \varepsilon\}$ and $K_\varepsilon = \overline{D} \cap \{1 - \sigma = \varepsilon\}$. Then D_ε is a subdomain of D, $\partial D_\varepsilon = \Gamma_\varepsilon \cup K_\varepsilon$, Γ_ε and K_ε are compact real hypersurfaces with boundary, of class C^1, such that $\Gamma_\varepsilon \cap K_\varepsilon = \partial \Gamma_\varepsilon = \partial K_\varepsilon$, and Γ_ε is connected. Clearly, D is exhaustible by an increasing sequence of subdomains of this sort, $\{D_s\}_{s=1}^\infty$, say, so that

$$\partial D_s = \Gamma_s \cup K_s \quad (s = 1, 2, \ldots),$$

with obvious meaning of Γ_s, K_s, and

$$D = \bigcup_{s=1}^\infty D_s, \quad \partial D \setminus K = \bigcup_{s=1}^\infty \Gamma_s.$$

We assume that the sequence $\{D_s\}_{s=1}^\infty$ has been chosen once for all.

Now, let U be an open neighbourhood of \overline{D} and let $\varphi \in \mathcal{O}(U)$. For every positive integer s we set:

$$U_s(\varphi) = \left\{ \xi \in U; \left| \varphi(\xi) \right| > \max_{\overline{D} \setminus D_s} |\varphi| \right\}.$$

Then $U_s(\varphi)$ is an open subset of $U \setminus \overline{D} \setminus D_s$ such that, if $\xi \in U_s(\varphi)$, the level set $L_\xi(\varphi)$ of φ through ξ is all contained in $U_s(\varphi)$. Moreover we set:

$$U(\varphi) = \left\{ \xi \in U; \left| \varphi(\xi) \right| > \max_K |\varphi| \right\}.$$

Since $\{\overline{D} \setminus D_s\}_{s=1}^\infty$ is a decreasing sequence of compact neighbourhoods of K in \overline{D} such that $K = \cap_{s=1}^\infty \overline{D} \setminus D_s$, it follows that $U_1(\varphi) \subset U_2(\varphi) \cdots$, and

$$U(\varphi) = \bigcup_{s=1}^\infty U_s(\varphi). \quad (2.1)$$

Moreover, since $\hat{K}_\overline{D} = \cap_{U \supseteq \overline{D}} \hat{K}_U$ (where U ranges over the open neighbourhoods of \overline{D}), the assumption of Theorem 1 implies:

$$\overline{D} \setminus K \subset \bigcup_{U \supseteq \overline{D}} \bigcup_{\varphi \in \mathcal{O}(U)} U(\varphi). \quad (2.2)$$

Next, for every U, φ, s as above and $h \in \mathcal{O}_\varphi^n(U \times U)$ (cf. (1.1)), consider the complex-valued function F^s_h on $U_s(\varphi) \setminus \partial D$ given by

$$F^s_h(\xi) = \int_{\Gamma_s} f(\omega(\xi)) - \int_{\partial \Gamma_s} f(\Phi_h(\xi)),$$

where $\omega(\xi)$ and $\Phi_h(\xi)$ are the complex-valued functions (2.1) and (2.2). Since $\varphi \in \mathcal{O}(U)$, the identity $\int f(\varphi(\xi)) = \int f(\varphi(\xi))$ holds for every $\xi \in U_s(\varphi)$, and

$$F^s_h(\xi) = \int_{\Gamma_s} f(\omega(\xi)) - \int_{\partial \Gamma_s} f(\Phi_h(\xi)),$$
where $\Phi_h(\zeta)$ is the $\bar{\partial}$-primitive (1.2) of the Martinelli form $\omega(\zeta)$, Γ_s is oriented as a part of ∂D and $\partial \Gamma_s$ as the boundary of Γ_s. Since, for $\zeta \in U_s(\varphi)$ and $z \in \partial \Gamma_s$, $|\varphi(\zeta)| > |\varphi(z)|$ (because $\partial \Gamma_s \subset D \setminus D_s$), the singular set $L_s(\varphi)$ of $\Phi_h(\zeta)$ does not meet $\partial \Gamma_s$, so that $F^s_{\Gamma_s}$ is indeed defined, and real analytic, on $U_s(\varphi) \setminus \Gamma_s = U_s(\varphi) \backslash \partial D$.

Proposition 2.4. Suppose there exists at least a function F as in the statement of Theorem 1. Then, for every U, φ, h, s as above,

$$F = F^s_{\Gamma_s} \text{ on } D \cap U_s(\varphi).$$

As a consequence, on account of (2.1) and (2.2), if such a F actually exists, it is necessarily unique.

Proof. Clearly $D \cap U_s(\varphi) \subset D_s$, and, by assumption, $F \in C^0(\overline{D_s}) \cap \mathcal{O}(D_s)$ and $F = f$ on Γ_s. Therefore, since, by the Martinelli formula, for $\zeta \in D_s$, we have:

$$F(\zeta) = \int_{\Gamma_s} f \omega(\zeta) + \int_{K_s} F \omega(\zeta),$$

we are required to show that, for $\zeta \in D \cap U_s(\varphi)$, we also have:

$$(*) \quad \int_{K_s} F \omega(\zeta) = -\int_{\partial \Gamma_s} f \Phi_h(\zeta).$$

Since F is continuous on $\overline{D \setminus K}$ and holomorphic on D, the forms $F \omega(\zeta)$, $F \Phi_h(\zeta)$ are both continuous on $(\overline{D \setminus K}) \setminus L_{2s}(\varphi)$, real analytic on $D \setminus L_s(\varphi)$, and on $D \setminus L_s(\varphi)$ satisfy $F \omega(\zeta) = d(F \Phi_h(\zeta))$. Moreover, since $\zeta \in U_s(\varphi)$, it follows that $K_s \subset (\overline{D \setminus K}) \setminus L_s(\varphi)$. Then consider the restrictions $(F \omega(\zeta))|_{K_s}$, $(F \Phi_h(\zeta))|_{K_s}$; these are continuous on K_s, regular on $K_s \setminus \partial K_s$ and on $K_s \setminus \partial K_s$ satisfy $(F \omega(\zeta))|_{K_s} = d[(F \Phi_h(\zeta))|_{K_s}]$. Hence Stokes' theorem for regular forms on a manifold with boundary (cf. Whitney [11], p. 109) implies:

$$\int_{K_s} F \omega(\zeta) = \int_{\partial K_s} F \Phi_h(\zeta).$$

Finally, since $\partial K_s = -\partial \Gamma_s$ (= $\partial \Gamma_s$ with the opposite orientation), ($*$) follows.

The above proposition disposes of the uniqueness’ assertion in Theorem 1 and, further, implies that the proof of the existence of a holomor-

7In this paper we take as the canonical orientation of \mathbb{C}^n and of D the one given by the volume-form $(i/2)^n dz_1 \wedge d\bar{z}_1 \wedge \cdots \wedge dz_n \wedge d\bar{z}_n$.
phic continuation of \(f \) on \(D \) shall be a matter of showing that the \(F_h^s \)'s do in fact define a holomorphic function \(F \) on \(D \) such that, for each \(z^0 \in \partial D \setminus K \), \(F(\xi) \to f(z^0) \) as \(\xi \to z^0 \) in \(D \). In the first place we have:

Proposition 2.5. The functions \(F_h^s \)'s are each other coherent and holomorphic. Hence there is a unique holomorphic function \(F \) on

\[
\left(\bigcup_{U \supset D} \bigcup_{\varphi \in \sigma(U)} U(\varphi) \right) \setminus \partial D
\]

such that, for every \(U, \varphi, h, s \),

\[
F = F_h^s \quad \text{on } U_s(\varphi) \setminus \partial D.
\]

Proof. We first prove the coherence. This means that, for every \(U, \varphi, h, s \) and \(U', \varphi', h', s' \), we have:

\[
(*) \quad F_h^s = F_h^{s'} \quad \text{on } U_s(\varphi) \cap U_s'(\varphi') \setminus \partial D.
\]

We may assume that \(s \geq s' \). Then (*) will be a consequence of the following two equalities:

(i) \(F_h^s = F_h^{s'} \) on \(U_s'(\varphi') \setminus \partial D \);
(ii) \(F_h^{s'} = F_h^s \) on \(U_s(\varphi) \cap U_s'(\varphi') \setminus \partial D \)

(recall that \(U_s(\varphi) \subset U_s'(\varphi) \) and \(U_s'(\varphi') \subset U_s'(\varphi) \)). To prove (i) (in case \(s > s' \)), consider the \((2n-1)\)-chain of \(\partial D \setminus K \), of class \(C^1 \), \(c_{2n-1} = \Gamma_s - \Gamma_s' \). If \(\xi \) is any point in \(U_s'(\varphi') \setminus \partial D \), it is plain that

\[
F_h^s(\xi) - F_h^{s'}(\xi) = \int_{c_{2n-1}} f \omega(\xi) - \int_{\partial c_{2n-1}} f \Phi_h^s(\xi);
\]

moreover, since \(\text{Supp}(c_{2n-1}) \subset D_s \setminus D_s' \subset D \setminus D_s' \) and \(L_\xi(\varphi') \subset U_s'(\varphi') \subset U' \setminus D \setminus D_s' \), it follows that \(\text{Supp}(c_{2n-1}) \) is contained in \(U' \setminus L_\xi(\varphi') \), where \(\omega(\xi) \), \(\Phi_h^s(\xi) \) are both defined and satisfy \(\omega(\xi) = \overline{\partial} \Phi_h^s(\xi) \). Then, if we take a \((n, n-2)\)-form \(\mu \) of class \(C^\infty \) on all of \(C^n \) and equal to \(\Phi_h^s(\xi) \) on an open neighbourhood of \(\text{Supp}(c_{2n-1}) \), we may replace \(\omega(\xi) \), \(\Phi_h^s(\xi) \), in the right side of the above equality, respectively by \(\overline{\partial} \mu \), \(\mu \). Hence Proposition 1.9 gives at once that \(F_h^{s'}(\xi) = F_h^s(\xi) \).

Next we prove (ii). On account of (1.3), (1.4), we have, for each \(\xi \in U_s(\varphi) \cap U_s'(\varphi') \setminus \partial D \):

\[
F_h^s(\xi) - F_h^{s'}(\xi) = \left\{
\begin{array}{ll}
- \int_{\partial \Gamma_s} f \overline{\partial} X_{h,h'}(\xi) & \text{if } n \geq 3,

\frac{1}{(2\pi i)^2} \int_{\partial \Gamma_s} f(z) \frac{(h_1 h'_2 - h_2 h'_1) dz_1 \wedge dz_2}{(\varphi(z) - \varphi(\xi))(\varphi'(z) - \varphi'(\xi))} & \text{if } n = 2.
\end{array}
\right.
\]
In case \(n \geq 3 \), we may replace \(X_{h,h'}(\xi) \), in the integral on the right side, by any \((n, n - 3)\)-form \(\tilde{X} \) of class \(C^\infty \) on all of \(\mathbb{C}^n \) and equal to \(X_{h,h'}(\xi) \) on an open neighbourhood of \(\partial \Gamma_s \). Hence Proposition 1.9 (for \(q = n - 1 \), \(c_{n+q} = \Gamma_s \) and \(\mu = \overline{\partial} \tilde{X} \)) implies that \(F^s_h(\xi) = F^s_{h'}(\xi) \).

In case \(n = 2 \), we have to argue differently. Since \(\xi \in U_s(\varphi) \cap U'_s(\varphi') \) and \(\partial \Gamma_s \subset \overline{D \setminus D_s} \), it follows that, for each \(z \in \partial \Gamma_s \), \(|\varphi(\xi)| > \max_{\overline{D \setminus D_s}} |\varphi| \geq |\varphi(z)| \), and hence \(|\varphi(z)/\varphi'(\xi)| < 1 \). Similarly, \(|\varphi'(z)/\varphi'(\xi)| < 1 \). Therefore we may write, for \(z \in \partial \Gamma_s \):

\[
\frac{1}{(\varphi(z) - \varphi(\xi))(\varphi'(z) - \varphi'(\xi))} = \frac{1}{\varphi(\xi)\varphi'(\xi)} \cdot \frac{1}{(1 - \varphi(z)/\varphi(\xi))(1 - \varphi'(z)/\varphi'(\xi))}
\]

\[
= \frac{1}{\varphi(\xi)\varphi'(\xi)} \sum_{\alpha,\beta}^{0,\infty} \left(\frac{\varphi(z)}{\varphi(\xi)} \right)^\alpha \left(\frac{\varphi'(z)}{\varphi'(\xi)} \right)^\beta,
\]

with the double series absolutely uniformly convergent on \(\partial \Gamma_s \). It follows that

\[
\int_{\partial \Gamma_s} f(z) \frac{(h_1 h'_2 - h_2 h'_1) dz_1 \wedge dz_2}{(\varphi(z) - \varphi(\xi))(\varphi'(z) - \varphi'(\xi))}
\]

\[
= \sum_{\alpha,\beta}^{0,\infty} \frac{1}{(\varphi(\xi))^{\alpha+1}} \left(\frac{\varphi'(\xi)}{\varphi'(\xi)} \right)^{\beta+1} \int_{\partial \Gamma_s} f \mu_{\alpha,\beta},
\]

where

\[
\mu_{\alpha,\beta} = (h_1 h'_2 - h_2 h'_1)(\varphi(z))^{\alpha} (\varphi'(z))^{\beta} dz_1 \wedge dz_2
\]

\((\alpha, \beta = 0, 1, 2, \ldots)\).

Now, since every \(\mu_{\alpha,\beta} \) is a holomorphic 2-form on \(U \cap U' \), so that \(\overline{\partial} \mu_{\alpha,\beta} = 0 \), Proposition 1.9 implies:

\[
\int_{\partial \Gamma_s} f \mu_{\alpha,\beta} = 0 \quad (\alpha, \beta = 0, 1, 2, \ldots).
\]

Therefore also for \(n = 2 \) we have: \(F^s_h(\xi) = F^s_{h'}(\xi) \).

It remains to show that every \(F^s_h \) is holomorphic, i.e. that, for each \(\xi \in U_s(\varphi) \setminus \partial D \),

\[
\frac{\partial F^s_h}{\partial \xi_\alpha}(\xi) = 0 \quad (\alpha = 1, \ldots, n).
\]

Clearly, we have:

\[
\frac{\partial F^s_h}{\partial \xi_\alpha}(\xi) = \int_{\Gamma_s} f \frac{\partial \omega}{\partial \xi_\alpha}(\xi) - \int_{\partial \Gamma_s} f \frac{\partial \Phi^s_h}{\partial \xi_\alpha}(\xi);
\]

A THEOREM ON HOLOMORPHIC EXTENSION OF CR-FUNCTIONS 187
further, on account of (1.5), (1.6), (1.7), we may rewrite the right side of this equality as:

\[
\int_{\Gamma_x} f \frac{\partial \Omega_\alpha}{\partial \xi_\alpha}(\xi) - \int_{\partial \Gamma_x} f \frac{\partial \Omega_\alpha}{\partial \xi_\alpha}(\xi) + I,
\]

where

\[
I = \begin{cases}
\int_{\partial \Gamma_x} f \tilde{\Psi}_h^\alpha(\xi) & \text{if } n \geq 3, \\
0 & \text{if } n = 2.
\end{cases}
\]

Since \([\partial \Omega_\alpha/\partial \xi_\alpha]\)(\xi) is defined on all of \(C^n \setminus \xi\), Proposition 1.9 implies that the difference of integrals in (*) is zero. Moreover, by Proposition 1.9 again, I is zero also in case \(n \geq 3\), since \(\Psi_h^\alpha(\xi)\) may be replaced by any \((n, n - 3)\)-form \(\tilde{\Psi}^\alpha\) of class \(C^\infty\) on all of \(C^n\) and equal to \(\Psi_h^\alpha(\xi)\) on an open neighbourhood of \(\partial \Gamma_x\). Hence \([\partial F_h^\alpha/\partial \xi_\alpha]\)(\xi) = 0.

The proof of Proposition 2.5 is then completed.

Next, we have:

Proposition 2.6. Let \(V\) be an open neighbourhood of \(\partial D \setminus K\), contained in \(\bigcup_{U \supset D} \bigcup_{\varphi \in \mathcal{O}(U)} U(\varphi)\), such that \(V \setminus (\partial D \setminus K) = V_+ \cup V_-\), where \(V_+, V_-\) are connected separated open sets and \(V_- \subset C^n \setminus \overline{D}\). Then \(F = 0\) on \(V_-\).

Proof. We first point out that, given an open neighbourhood \(U\) of \(\overline{D}\) and a function \(\varphi \in \mathcal{O}(U)\), if \(\xi\) is a point in \(U\) such that \(|\varphi(\xi)| > \max_{\overline{D}}|\varphi|\) (which obviously implies that \(\xi \in U_1(\varphi) \setminus \overline{D}\)), then \(F(\xi) = 0\). As a matter of fact, if \(h \in \mathcal{O}_{\varphi}^r(U \times U)\), we have:

\[
F(\xi) = F_h^1(\xi) = \int_{\Gamma_1} f \omega(\xi) - \int_{\partial \Gamma_1} f \Phi_h(\xi),
\]

and, since \(\overline{D} \subset U \setminus L_1(\varphi)\), on an open neighbourhood of \(\overline{D}\) \(\omega(\xi)\), \(\Phi_h(\xi)\) are both defined and satisfy \(\omega(\xi) = \overline{\Phi}_h(\xi)\). Hence Proposition 1.9 implies that \(F(\xi) = 0\).

Now, take \(U\) and \(\varphi\) such that \(U(\varphi) \cap D \neq \emptyset\); then \(\max_{\overline{D}}|\varphi| > \max_{K}|\varphi|\), so that \(\varphi\) is not constant on the connected component of \(U\) containing \(\overline{D}\) and, further, any point \(\xi^0 \in \partial D\) where \(|\varphi|\) attains the value

\[\text{Such a } V \text{ does exist, because } \partial D \setminus K \text{ is connected. For example, we may take as } V \text{ a small tubular neighbourhood of } \partial D \setminus K \text{ in } C^n \setminus K.\]
max_D |\varphi| must belong to \partial D \setminus K. One can actually find such a point \xi^0 by the well known “maximum principle”. Then \xi^0 is a limit point of the open set \(W = \{ \xi \in U; |\varphi(\xi)| > \max_D |\varphi| \} \) (by the maximum principle again), and, since \(\xi^0 \in \partial D \setminus K \), this obviously implies that \(W \cap V_- \neq \emptyset \). But we already know that \(F \) is zero on \(W \cap V_- \); it follows that \(F \) is zero on all of \(V_- \), because \(V_- \) is connected.

Finally, we are in a position to prove that \(F \) is a continuous extension of \(f \) to \(\overline{D} \setminus K \), i.e., the following holds:

Proposition 2.7. For every point \(z^0 \in \partial D \setminus K \) we have:

\[
\lim_{\xi \to z^0} F(\xi) = f(z^0),
\]

the limit being evaluated for \(\xi \in D \).

Proof. For every \(w \in \partial D \setminus K \), denote by \(\bar{v}(w) \) the unit vector perpendicular to \(\partial D \setminus K \) at \(w \), inward pointing with respect to \(D \). We first prove that

\[
(*) \quad \lim_{t \to 0^+} F(w + tv(w)) = f(w),
\]

with the limit uniform on compact subsets of \(\partial D \setminus K \). Given \(w \in \partial D \setminus K \), we can find an open neighbourhood \(U \) of \(w \), a function \(\varphi \in \mathcal{O}(U) \) and a positive integer \(s \) such that \(w \in U_s(\varphi) \cap (\Gamma_s \setminus \partial \Gamma_s) \). Then, for \(t > 0 \) small enough, we have:

\[
w + tv(w) \in U_s(\varphi) \cap D, \quad w - tv(w) \in U_s(\varphi) \cap V_-,
\]

with \(V_- \) as in Proposition 2.6, and hence, if \(h \in \mathcal{O}^n(U \times U) \), it follows that

\[
F(w + tv(w)) = F^s_h(w + tv(w)),
\]

\[
F(w - tv(w)) = F^s_h(w - tv(w)) = 0.
\]

Therefore we may write:

\[
F(w + tv(w)) = F^s_h(w + tv(w)) - F^s_h(w - tv(w)) = I_1(w, t) - I_2(w, t),
\]

where

\[
I_1(w, t) = \int_{\Gamma_s} f[\omega(w + tv(w)) - \omega(w - tv(w))],
\]

\[
I_2(w, t) = \int_{\partial \Gamma_s} f[\Phi_h(w + tv(w)) - \Phi_h(w - tv(w))].
\]
Now, it can be shown that, for any \(f \in C^0(\Gamma_s) \) (not necessarily a CR-function) and \(w \in \Gamma_s \setminus \partial \Gamma_s \),
\[
\lim_{t \to 0^+} I_1(w, t) = f(w),
\]
with the limit uniform on compact subsets of \(\Gamma_s \setminus \partial \Gamma_s \). A similar result can be found in Harvey-Lawson [4], pp. 251–252, and the proof given there (based on a suitable estimate for \(||\omega(w + tv(w)) - \omega(w - tv(w))|| \)) works essentially for the present case as well.\(^9\) Next, since the function \(\xi \mapsto \int_{\partial \Gamma_s} f\Phi_h(\xi) \) is defined and real analytic on all of \(U_s(\varphi) \), it is plain that, for \(w \in U_s(\varphi) \cap (\Gamma_s \setminus \partial \Gamma_s) \),
\[
\lim_{t \to 0^+} I_2(w, t) = 0,
\]
with the limit uniform on compact subsets of \(U_s(\varphi) \cap (\Gamma_s \setminus \partial \Gamma_s) \). Hence (*) follows.

After that, it is easy to prove Proposition 2.7. Given \(\varepsilon > 0 \), let \(N_{z^0} \) be an open neighbourhood of \(z^0 \) in \(\partial D \setminus K \) such that \(|f(w) - f(z^0)| < \varepsilon/2 \), for every \(w \in N_{z^0} \), and \(N_{z^0} \subset \partial D \setminus K \). Further, let \(t_0 > 0 \) be such that \(|F(w + tv(w)) - f(w)| < \varepsilon/2 \), for every \(t \leq t_0 \) and \(w \in N_{z^0} \). Clearly, if \(\xi \) is a point of \(D \) close enough to \(z^0 \), there exist exactly a point \(w \in N_{z^0} \) and a positive number \(t \leq t_0 \) such that \(\xi = w + tv(w) \). It follows that
\[
|F(\xi) - f(z^0)| \leq |F(w + tv(w)) - f(w)| + |f(w) - f(z^0)| < \varepsilon,
\]
which proves Proposition 2.7.

Now the proof of Theorem 1 is completed.

REFERENCES

\(^9\) The parallel result for \(n = 1 \) and \(\omega(\xi) = (1/2\pi i) \cdot dz/(z - \xi) \) (the Cauchy kernel) goes back to Plemelj (cf. Muskhelishvili [9], pp. 43–45).

Received October 22, 1984.

ISTITUTO MATEMATICO “GUIDO CASTELNUOVO”
UNIVERSITÀ DI ROMA “LA SAPIENZA”
00185 ROMA

\(^\text{10}\)Added in proof.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinetsu Abe and Martin Andrew Magid</td>
<td>Relative nullity foliations and indefinite isometric immersions</td>
<td>1</td>
</tr>
<tr>
<td>Erik P. van den Ban</td>
<td>A convexity theorem for semisimple symmetric spaces</td>
<td>21</td>
</tr>
<tr>
<td>Bo Berndtsson and Thomas Joseph Ransford</td>
<td>Analytic multifunctions, the $\overline{\partial}$-equation, and a proof of the corona theorem</td>
<td>57</td>
</tr>
<tr>
<td>Brian Boe and David H. Collingwood</td>
<td>Intertwining operators between holomorphically induced modules</td>
<td>73</td>
</tr>
<tr>
<td>Giuseppe Ceresa and Alessandro Verra</td>
<td>The Abel-Jacobi isomorphism for the sextic double solid</td>
<td>85</td>
</tr>
<tr>
<td>Kun Soo Chang, Jae Moon Ahn and Joo Sup Chang</td>
<td>An evaluation of the conditional Yeh-Wiener integral</td>
<td>107</td>
</tr>
<tr>
<td>Charles Dale Frohman</td>
<td>Minimal surfaces and Heegaard splittings of the three-torus</td>
<td>119</td>
</tr>
<tr>
<td>Robert M. Guralnick</td>
<td>Power cancellation of modules</td>
<td>131</td>
</tr>
<tr>
<td>Kenneth Hardy and Kenneth S. Williams</td>
<td>On the solvability of the Diophantine equation $dV^2 - 2eVW - dW^2 = 1$</td>
<td>145</td>
</tr>
<tr>
<td>Ray Alden Kunze and Stephen Scheinberg</td>
<td>Alternative algebras having scalar involutions</td>
<td>159</td>
</tr>
<tr>
<td>W. B. Raymond Lickorish and Kenneth Millett</td>
<td>The reversing result for the Jones polynomial</td>
<td>173</td>
</tr>
<tr>
<td>Guido Lupaccioli</td>
<td>A theorem on holomorphic extension of CR-functions</td>
<td>177</td>
</tr>
<tr>
<td>William Schumacher Massey and Lorenzo Traldi</td>
<td>On a conjecture of K. Murasugi</td>
<td>193</td>
</tr>
<tr>
<td>Dinakar Ramakrishnan</td>
<td>Spectral decomposition of $L^2(N \backslash GL(2), \eta)$</td>
<td>215</td>
</tr>
<tr>
<td>Steven L. Sperber</td>
<td>On solutions of differential equations which satisfy certain algebraic relations</td>
<td>249</td>
</tr>
</tbody>
</table>