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Fine homotopy equivalences from s onto complete separable AR’s
are constructed that are analogs of certain cell-like maps defined on
Euclidean space. In particular, (i) there is a fine homotopy equivalence f
from s onto a complete separable AR X such that the collection of
nondegenerate values N; of f is a singleton whose pre-image under f is
a l-dimensional AR widely embedded in s, and (ii) there is a fine
homotopy equivalence g from s onto a complete separable ARY such
that N, is a Cantor set and every nondegenerate fiber of g is a tame
Z-set in s. Neither X nor Y is homeomorphic to s but both become
homeomorphic to s upon multiplication by a certain complete 1-dimen-
sional AR.

1. Introduction. In this paper, we construct examples of ‘decomposi-
tions’ of s = [12,(-1,1); that are analogs in the non-locally compact
setting of s of certain nonshrinkable cell-like upper-semicontinuous de-
compositions of E” (n > 3). In particular, we focus on two types of
examples from the cell-like decomposition theory of E”. The first consists
of examples of cell-like but non-cellular decompositions of E" with
exactly one nondegenerate element and the second consists of the ‘dog
bone’ decompositions of E” into points and tame arcs such that the
associated decomposition spaces are distinct from E” [Bi], [Ea]. Since all
cell-like decompositions of s that yield ANR decomposition spaces are
shrinkable [Mo}, such examples do not exist among the cell-like decom-
positions of s. Consequently, instead of concentrating upon the decom-
positions of E” themselves, we focus upon the properties of the associated
decomposition maps, which are cell-like and hence fine homotopy equiva-
lences [Ha).

In §2, we construct a fine homotopy equivalence f from s onto a
complete separable AR X such that the collection of nondegenerate values
N; of f is a singleton whose pre-image under f is a 1-dimensional AR
wildly embedded in s. X is not homeomorphic to s but there is a
complete 1-dimensional AR 4 such that X X A is homeomorphic to
s X A = s. This example corresponds to standard examples of cell-like
non-cellular decompositions of E” (n > 3) that one obtains by threading
an arc through a wild Cantor set in £” and using the decomposition
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whose only nondegenerate element is that arc. Since the fine homotopy
equivalence f is a UV*-map, it fails to be cell-like only in that its
nondegenerate fiber fails to be compact.

In §3, we construct a fine homotopy equivalence f from s onto a
complete separable AR X such that all the nondegenerate fibers of f are
tame Z-set copies of s and N, is a Cantor set. X is not homeomorphic to
s though X X A4 is homeomorphic to s X 4 = s. This example corre-
sponds to the dog bone decompositions of E”. Again the fine homotopy
equivalence f is a UV®-map and fails to be cell-like only in that its
nondegenerate fibers are not compact.

In §4, we prove a Stabilization Theorem that allows us to prove that
the examples constructed in §§2 and 3 stabilize (i.e., become homeomor-
phic to s) upon multiplication by a 1-dimensional complete AR A. The
Stabilization Theorem also allows us to improve upon our dog bone
example by obtaining such an example where all the nondegenerate fibers
are tame Z-set copies of a 1-dimensional AR. This and further examples
are discussed in §5.

We include an Appendix at the end of the paper that includes
pertinent facts about the Hilbert cube and s-manifolds that we use in the
paper. The results in Part 1 of the Appendix are generally known, but the
author could find no reference for them in the literature and thus short
proofs have been included. We cite references for the standard results
stated in Part 2 of the Appendix. Part 3 of the Appendix contains
statements of results that are as yet unpublished. These results and their
corresponding proofs will appear in [BBMW].

The results of this paper appear as part of the author’s doctoral
dissertation written under the direction of J. J. Walsh at The University of
Tennessee [Bo, ].

Terminology and notation. Generally, all spaces are separable and
metric. A mapping or a map is a continuous function and two maps f and
g from a space X to a space Y are %close, where % is an open cover of
Y, provided {{ f(x), 8(x)}} < x refines %. Fine homotopy equivalence and
UV*>-maps between ANR’s are defined in the Appendix.

2. s modulo z—a ‘cell-like non-cellular decomposition’ of s. For a map
f: X — Y between topologically complete spaces, a point y € Y is a
nondegenerate value of f provided y € Cl,f(X) and either f'(y) = @,
or f~!(y) contains at least two points, or f }(y) = { x} but (%) is not
a basis for x where & is a basis for y. The set of nondegenerate values of
f is denoted by N, and is an F,-subset of Y. Furthermore, if f( X) is dense
in Y, then the restriction of f is a homeomorphism of f~(Y — N,) onto
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Y — N,. In case f is proper, in particular if f is cell-like, N, = { y| f~'(y)
# point}. In the non-locally compact setting of s, generally a fine
homotopy equivalence is not onto, though it has dense image, and points
not in the iamge are necessarily nondegenerate values. See [BBMW]. A
map f: X — Y is a near-homeomorphism provided for every open cover #
of Y, there is a %-approximation 4 to f such that 4 is a homeomorphism.
A closed subset F of an ANR X is a Z-ser provided for every open cover
% of X, thereisamap f: X - X — F %-close to id 4.

A standard method for obtaining an example of a cell-like non-cellu-
lar decomposition of E” (n > 3) is to decompose E” into points and an
arc whose complement in E” is not simply connected (thread an arc
through a wild Cantor set). This method produces a map f: E” — X from
E" onto a locally compact AR X, where X is not homeomorphic to E",
with the following properties:

(1) f is cell-like, hence a fine homotopy equivalence;

(2) N, = {x} where f~!(x) is an arc wildly embedded in E";

(3) fxid: E" X E! > X X E! is a near-homeomorphism and X X
E' = E"*! The same technique also produces corresponding examples
for the Hilbert cube I* = [12,[-1,1]; and the n-cell 1" =1, [-1,1],
(n = 3).

Examples similar to those above for s in place of E" cannot be
obtained by “modding out” a wild arc since s contains no wild compact
subsets [Ch]. However, we do obtain such examples for s by threading a
1-dimensional noncompact AR & through a wild 0-dimensional closed
subset of s, and then putting a metric topology on s/z. Let 4 be a
dendrite (compact 1-dimensional AR = uniqely arcwise connected Peano
continuum) whose endpoints are dense and let 4 = 4 — F, for some
dense o-compact collection F, of endpoints of A.

ExAMPLE 1. There is a map #: s = s/2 of s onto a topologically
complete separable AR s5/2 not homeomorphic to s that satisfies:

(1.1) = is a fine homotopy equivalence;

(1.2) N, = {x)} where #7!(x) is a 1-dimensional AR z wildly em-
bedded in s (i.e., 2 is not embedded as a Z set);

(1.3) # X id: s X A = s5/a X A is a near-homeomorphism and s/z X
A=sXA=s.

Construction. Let C be a wild Cantor set in the Hilbert cube I®
whose complement is not simply connected [Wo]. Observe that C = C N s
is a closed 0-dimensional subset of s whose complement in s is not simply
connected. Since the endpoints of A4, denoted E(A), is a dense G-subset
of A, E(A) is homeomorphic to the irrationals [AU];hence, there is an
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embedding e of C into E(A). Extend e~!: e(C) — I® to an embedding
f: A = I* such that f(4) N (I® — s) C C. This is possible since I® — s
is a o-Z-set (countable union of Z-sets) in I°. See Theorem A.1 of the
Appendix for details. Identify f(A) with 4 so that C ¢ 4 I and let
a=ANs. Then CNs=CCa and since A — E(A)CaC A, ais a
1-dimensional closed AR subset of s. Let 1 /A be the quotient space of
the decomposition of I* whose only nondegenerate element is A4 and
denote the decomposition map I® — I® /A by #. Let 7 = 7 |s: s - 7(s)
and denote #(s) by s/a. Observe that s/z — m(2) is not simply con-
nected and hence s/ is not homeomorphic to s. Since B = I® — (s U 4)
is a o-Z-set in I®, #(B) is a o-Z-set in the compact AR I® /A, hence
[To,] guarantees that (I°/A) — #(B) = s/a is a topologically complete
separable ANR. Since there is a deformation {a,} of 1°/4 with a, = id
and ima, C s/a for every ¢t > 0 (use Theorem A.2 of Appendix), s/ is
an AR.

To prove (1.1), it suffices to prove that # is a UV*-map (see
Appendix). Let U be an open neighborhood of 7(2) in 5/2 and let U be
the open neighborhood of # (A4) = 7(&)in I*/A such that U = U N 5/a.
Choose an open neighborhood V of #(A) in I®/A such that 7 4(V)
contracts to a point in 7 X(U) and let f: 7 }(¥) x[0,1] » 7 YU)
denote such a contraction. Since F = (I*° — s) N 7 YU) is a ¢-Z-set in
the I*-manifold #~Y(U) [Ch], there is a deformation g: #~Y(U) X [0,1]
— 7 Y(U) such that g(x,0) = x for all x € #7Y(U) and

g(7Y(0) x(0,1]) c #7Y(U) — F==7'(U).
Let V=V N s/a and define h: =~ }(¥V) X [0,1] > 7 }U) by h(x,t) =
g(f(x,1),t). Then h is a contraction of # %(¥) in 7 }(U) and & is UV™.

(1.2) easily follows from the construction of s/a.

For (1.3), it follows from [To, ] that s X 4 is homeomorphic to s and
we prove in §4 that s/a X A is homeomorphic to s. Thus « X id:
s X A > s/aX A is a fine homotopy equivalence between s-manifolds
and therefore is a near-homeomorphism (see Appendix, [Fe]).

3. A dog bone decomposition of s. In [Bi], R. H. Bing constructed the
first example of a decomposition of E? into points and tame arcs such
that the decomposition space is topologically different from E3. This
example has become known as Bing’s dog bone space. Subsequently,
W. T. Eaton [Ea] using an idea of R. D. Anderson constructed such dog
bone decompositions of E” for all n > 3. In this section we produce a
‘decomposition’ of s analogous to the dog bone decompositions of
Euclidean space and in §5 we use the Stabilization Theorem of §4 to
further refine the example of this section.
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A dog bone decomposition of E” provides a map f: E” — X from
E” (n = 3) onto a locally compact AR X, where X is not homeomorphic
to E”, with the following properties:

(1) f is cell-like, hence a fine homotopy equivalence;

(2) N, is a Cantor set and the fibers of f are points and tame arcs;

(3) for every x € N,, there is a near-homeomorphism a: E" - E”
such that N, = { y} where a™}(y) = f~!(x) and there is a cell-like map S:
E" > X suchthat Ny= N, — {x} and f= Bea;

(4) fxid: E" X E' > X X E' is a near-homeomorphism and X X
El ~ En+1‘

ExaMmpLE 2. There is a map #: s — 5. of s onto a topologically
complete separable AR s not homeomorphic to s that satisfies:

(2.1) = is a fine homotopy equivalence;

(2.2) N, is a Cantor set and the fibers of « are points and tame Z-set
copies of s;

(2.3) for every x € N_, there is a near-homeomorphism a: s — s such
that N, = { y} where a}(y) = 7"'(x) and there is a fine homotopy
equivalence B: s — s suchthat Ny = N, — {x} and 7 = Boa;

(2.4) m X id: s X A = s, X A is a near-homeomorphism and s X 4
=sgXA=s.

Construction. Let C be a wild Cantor set in /* whose complement is
not simply connected [Wo] and let s. denote the subspace s U C of I*.
sc is a topologically complete separable AR [To,] and s, — C is not
simply connected. It follows that C is not a Z-set in s. and s, is not
homeomorphic to s.

Since s — C = s — C is an s-manifold, the projection map p: (s —
C) X s = 5. — C is a near-homeomorphism [Sc]. For any metric 4 on s,
let % be any open cover of s — C such that for each U € %, diam ,U <
d(U,C). Let h’: (sc— C) Xs - s — C be a homeomorphism that is
%-close to p. Define h: s X s —>s- by h=h" on (s — C) X s and
h({c} X 5) = c for all ¢ € C. Our choice of % ensures that A is continu-
ous on s- X s and it is obvious that 4 is surjective and that N, = C. Since
eachc € Cisa Z-setin s.,{c} X sisa Z-setin sc X s.

By [To,], sc X s is homeomorphic to s; let 7 = heo g:s — s, where g
is a homeomorphism of s onto s X s and observe that N, = C and the
fibers of # consist of points and tame Z-set copies of s in s, hence (2.2)
holds. For (2.1), it suffices to show that 4 is a UV*®-map. This is a
straightforward consequence of our choice of  and p, for if U is an
open neighborhood in s, of an element ¢ of C, there is a neighborhood W

of ¢ such that W X s € h~}(U). This follows since W X s = p~(W) and
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p is %-close to h. Now choose a neighborhood V of ¢ in s, such that
st(V,%) contracts in W to a point. Observe that

(V) cpst(V,%)) =st(V, %) Xsc Wxsch(U)

and since st(V, %) contracts in W to a point and s is contractible, A~}(V)
contracts in A~}(U) to a point and 4 is UV°.

To prove (2.3), we need some results about “reduced products” and
strong-Z-sets (see §4). The Appendix at the end of the paper lists some of
the pertinent results and the reader is urged to consult [BBMW] for proofs
of these results and details of the following argument. Let x € N, and
denote the product of s. and s reduced at x by (sc X 5) ;. It follows
from [BBMW; Corollary 1.2] and the Strong-Z-set Shrinking Theorem of
[BBMW] that the projection mapping g: s X s = (s¢c X §) (4, 18 a near-
homeomorphism. Let j be a homeomorphism of (sc X 5) ., onto s and
let a =jogog:s—>s and B=hogloj :s > 5. Obviously a is a
near-homeomorphism and N, = { y} where a™'(y) = #7'(x). B is a fine
homotopy equivalence (UV*-map) and N; = N, — { x}. Obviously = =
B ° a and (2.3) holds.

For (2.4), it follows from [To,] that s X A is homeomorphic to s and
we prove in §4 that s X A4 is homeomorphic to s. Thus 7 X id: s X 4 —
sc X A is a fine homotopy equivalence between s-manifolds and therefore
is a near-homeomorphism [Fe].

4. Stabilizing the examples. Recall that A denotes the complement of
a dense ¢-Z-set F, in a dendrite 4 whose endpoints are dense. A closed
subset F of an ANR X is a strong-Z-set provided for every open cover %
of X, there is a map f: X — X — N(F), where N(F) is an open
neighborhood of F in X, such that f is %-close to id ,. The concept of
strong-Z-set is introduced in [BBMW]. If X is locally compact, then the
concepts of Z-set and strong-Z-set coincide; however, if X is not locally
compact, the two concepts differ. For examples, see [ BBMW].

The following theorem and its corollaries allow us to conclude that
the examples s/2 and s, of §§2 and 3, respectively, become homeomor-
phic to s upon multiplication by the 1-dimensional AR A.

STABILIZATION THEOREM. Let K be a compact subset of a topologically
complete separable ANR X such that X — K is an s-manifold. If K X B is a
strong-Z-set in X X A for each compact subset B of A, then X X A is an
s-manifold.

Before we prove the Stabilization Theorem, we examine some of its
consequences. A closed subset D of an ANR X has infinite codimension
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in X provided H (U,U — D;Z) = 0 for all integers ¢ > 0 and all open
sets U of X (H, denotes singular homology).

COROLLARY 1. Let X = Y — F where F is a (dense) o-Z-set in the
locally compact separable ANRY. If K is a compact subset of X such that
X — K is an s-manifold and K has infinite codimension in X, then X X A is
an s-manifold.

Proof. By [To,], X is an ANR. It suffices to show that K X B is a
strong-Z-set in X X A for every compact subset B of A. First observe
that K X A has infinite codimension in X X A, the proof of which is
exactly the proof of [DW; Lemma 2.2] with the exception that % denotes
the basis of X X A4 consisting of all sets U X J where U is open in X and
J is connected and open in 4. The pertinent property of this basis is that
if J and J’ are connected and open in A4, then so is J N J’, and that each
such J is contractible in itself [Wh]. It follows now that K X B has
infinite codimension in X X A4 for every compact subset B of A [DW,;
Lemma 2.1]. If x € K X B and U is a neighborhood of x in X X A4, then
there exists a neighborhood V of x in X X A such that loops in V' — (K
X B) are contractible in U — (K X B). This follows because one can push
a loop near x that projects to X missing K along an arc in 4 to a nearby
loop that projects to 4 to an endpoint of 4 not in B. This loop then
contracts missing K X B. The precise details involved in this argument
appear in [Bo,]. We have argued that K X B is a 1-LCC subset of X X 4
that has infinite codimension in X X A4 and this implies that K X B is a
Z-setin X X A [DW; Proposition 4.2].

Observe that X X 4 is the complement in ¥ X A4 of the o-Z-set
(FX AYU (Y X F)) in Y X A. The next lemma ensures that the Z-set
K X Bin X X A isastrong-Z-setin X X A.

LEMMA 1. Let X = Y — F where F is a o-Z-set in a locally compact
separable ANRY. If D C X is a Z-set in X, then D is a strong-Z-set in X.

Proof. Let % be an open cover of X and let % be a collection of
open subsets of ¥ such that =N X={UNX|UE ¥}. Let Y =
U{U € %)}. Then (FNY)UD is a o-Z-set in the locally compact
ANR Y [Ch] and there is a proper map f: ¥ —» ¥ whose image misses
F U D that is % -close to id ;. Since f is proper, im f is closed in ¥ and
hence there is a neighborhood N(D) of D in ¥ such that f(¥) N N(D)
= @. Let f=f|X and N(D) = N(D) N X and observe that f: X - X
is %-close to id y and f(X) N N(D) = @&. This completes the proof of
Lemma 1 and Corollary 1.
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Both Corollary 1 and Lemma 1 are false without the assumption that
X is the complement of a o-Z-set in a locally compact separable ANR.
Also, the Stabilization Theorem is false if K X B is assumed only to be a
Z-set rather than a strong-Z-set in X X 4. [BBMW] presents an example
of a topologically complete separable AR X containing a point x such
that {x} is a Z-setin X, X — {x} is homeomorphic to s, but X X 4 is
not homeomorphic to s. Though {x} is a Z-set and has infinite codimen-
sionin X, { x} is not a strong Z-set in X.

PROPOSITION 1. The point w(a) has infinite codimension in s /a and the
compact set C has infinite codimension in s.

Proof. First, since points in s are Z-sets, points in s have infinite
codimension in s. and [DW; Corollary 2.5] then implies that each finite
dimensional closed subset of s, and in particular C, has infinite codimen-
sion in s.. Another application of [DW; Corollary 2.5] shows that & has
infinite codimension in s and since #: s — s/e is a fine homotopy
equivalence, m(«) has infinite codimension in 5s/2z (see Theorem A.7 in
the Appendix).

COROLLARY 2. s/a X A and s- X A are homeomorphic to s.

Proof. Obviously both s/z and s, are complements of o-Z-sets in
compact AR’s. Since s/2 — {7(2)} and s — C are s-manifolds, Proposi-
tion 1 and Corollary 1 apply to show that s/2 X 4 and s. X A4 are
s-manifolds and since s/z and s. are both AR’s, both s/z X 4 and
s X A must be homeomorphic to s [He].

Finally we are ready to begin the proof of the Stabilization Theorem.
The fundamental tool for recognizing s-manifolds is the characterization
theorem of H. Torunczyk [To,]. See also [BBMW]. Recall that a collection
2 of subsets of a space X is discrete in X provided each x € X has a
neighborhood that meets at most one member of £.

§- MANIFOLD CHARACTERIZATION THEOREM. A topologically complete
separable ANR X is an s-manifold if and only if for each open cover U of X
and map f: @2 1" — X of the countable free union of cells of unbounded
dimension into X, there exists a U-close approximation g: @ 1" — Xtof
such that { g(1")}%_, forms a discrete family in X.

The above approximation property characterizing s-manifolds is re-
ferred to as the discrete approximation property. Our proof of the Stabiliza-
tion Theorem consists of verifying that X X A4 satisfies the discrete
approximation property. The following Lemma is critical to the proof.
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E(A) denotes the endpoints of A. The reader should observe that since
E(A)isadense Gyin 4 and 4 = A — F, where F, is a o-compact subset
of E(A), the Baire property for A guarantees that E(A) is not only
non-empty, but also dense in A4.

LEMMA 2. Let L be a closed subset of A contained in E(A) and let % be
a collection of open subsets of A that covers L. Then there is a countable
-collection ¥~ of ( pairwise disjoint) open subsets of A that refines % and
covers L such that each element of ¥ is a component of the complement of
some point in A and for which {Cl,V |V € ¥} is discrete in A.

Proof. Use the fact that E(A) is 0-dimensional to obtain a countable
pairwise disjoint collection %~ of connected open subsets of A that refines
% and covers L, and assume that each element of #" meets L. For each
W in #, choose an open subset W in A such that W N A = W and let w
be a cutpoint of 4 in W [Wh). Let [w] denote the union of all arcs from w
to points in the frontier of W in A. [w] is a closed subset of A, hence
W — [w] is open in A4 and therefore each component of W — [w] is open
in A. For each component D of W — [w], observe that Fr,D C [w]
(Fr D denotes the topological frontier of D in A). Suppose x, y € Fr, D
and x # y. Since D U { x, y} is arc connected [Wh], the arc [x, y] from x
to y is contained in DU {x, y}. But [x, y]C [x,w]U[w,y]C[w] a
contradiction. Therefore, Fr, D consists of exactly one point. Use the fact
that L is closed in A to obtain a cutpoint a, in D such that L N D is
contained in a component of A — {a,} contained in D. In this way, we
obtain a countable pairwise disjoint collection ¥~ of connected open
subsets of A4 that refines #~ and covers L such that each V' in ¥~ meets L
and is a component of the complement of a cutpoint of A. Moreover, by
our choice of cutpoint a,, corresponding to D, {Cl,V |V € ¥} is pair-
wise disjoint. Now observe that {Cl,V |V € ¥} is discrete in A4 since L
is closed in A4, each V in ¥" meets L, and the fact that A is a locally
connected, uniquely arcwise connected compactum implies that only
finitely many of the Cl,V’s can have diameter greater than any given
positive number.

Proof of the Stabilization Theorem. Let % be an open cover of X X A4
that consists of product open sets V' X W where V and W are open in X
and A, respectively, and let f: @2 I" > XX A4 be a map. Since
A — E(A) is o-compact, our hypothesis implies that K X (4 — E(A)) is
a countable union of strong-Z-sets in X X A (strong-o-Z-set) and thus
there exists a map a: X X A - X X A that is %-close to id y, , that
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satisfies
() [Clyg a(X X A)] N[KX(4 - E(4)] = 2.

Let L(ac° f) denote the limit points of the map ac f, that is, L(ao° f)
consists of all points x in X X 4 such that every neighborhood of x
meets infinitely many sets from {a(f(1"))}5-;. Easily, L(a°f) is a
closed subset of X X 4 and since K is compact, this implies that L =
p((K X A)N L(ac°f)) is a closed subset of 4 where p, denotes the
obvious projection map. By (*), L consists only of endpoints of A4, that is,
L c E(A).

For the moment, fix a € L. Choose finitely many sets V; X
Wi...,Vi X W, in % so that (K X {a})N(V; X W;) # @ for each i
and KX {a} cUL (V, X W). Let V,=V,U --- UV, and W, =W,
N --- NW, and observe that K X {a} C V, X W, and if v € V, and
W c W, then {v} X W C U for some U € %. Obtain such sets V, and
W, for each element a of L.

Since L € E(A) is closed in 4 and {W,|a € L} is a cover of L by
sets open in 4, Lemma 2 applies to produce a refinement { W, }3_; of
{W,|a € L} by pairwise disjoint open sets in 4 that cover L and such
that each W, is a component of 4 — {a,} for some cutpoint a, in 4.
Also, if W, = W, U {a,} = Cl,W,, then { W, }7_, is discrete in 4. For
each y, choose some W, so that W, C W, and define V, to be V,. The
collection {{v} X W v e V,, y =1,2,...} refines  and the collection
{V, X W,}%_, is an open cover of (K X 4) N L(a° f) by pairwise dis-
joint open subsets of X X A.

For each positive integer v, choose a sequence { b,(i)};Z, of points in
W, such that {b (i)};, is discrete in A. Since {W, }7_, is discrete,
{b,(i)]v,i=1,2,...} forms a discrete collection in_ A. Fix y and for
each i, let H;: W, X [0,1] - W, be a contraction of W, to the point b (i)
that keeps b, (i) fixed. Choose open subsets Sy(v) and S;(y) in X such
that

(i) K< So(v)C §0('Y) = ClxSp(y) © Si(v) © S_l(Y) =ClySi(v) €V,

@) [S1(v) X {a N [Clyx (X X ] = 2. ,
Let C= (XX A)—(S(y)XW,) and D = Sy(y) X W, and let C" =
(a° f)™X(C) and D’ = (a° f)7(D). For each positive integer i, the sets
C/ = C’ N I'and D = D’ N I' are closed subsets of I’ and since C N D
= So(v) % {a,) misses (ao f)(I), C/ N D/ = @.Let 6;:1' > [0,1] be a
Urysohn function such that 6,(C/) = {0} and 6,(D;) = {1} and define f,
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on I' by the formula

((pxoaef)(x), H((pioaef)(x),6,(x)))
f(x) = 1f(owf)(X) € Si(v) x W,
(aef)(x) if (acf)(x) e C

where p, and p, are the obvious projections. In this way, we obtain a
continuous map f,: @2 I" - X X A. Observe that f, is #close to a° f
since f, differs from a e f only in a movement of the second coordinate
that takes place in W,. We obtain such a map f, for each positive integer
Y.

Define a function g:@® I" > X X A via g(x) = f(x) if
(aOf)(x) € S,(y) X W and g(x) = (a° f)(x) if (a° f)(x) is not in any

S,(v) X W,. We make thxee claims about g.

(1) g is well-defined and %-close to a-o f. Since W N W = & if
Yy # 7Y  and f, = ae° f off §)(y) X W,, there is at most one Value g(x)
assigned to any x. g is %-close to a ° f since each f, is %-close to a e f.

(2) g is continuous. Since { W, }3_, is discrete in 4,

o0
T,= U {S1(Y) X VVY}
y=1
is a closed subset of X X A4, and obviously
o0

L= (Xxd4)= U {S(y) x W)
y=
is a closed subset of X X 4. It is clear that g|(acf)™}(T,) and
g|(a° f)™(T,) are both continuous and agree with each other on
(a° f)"Y(T, N T,). Hence g is continuous.

(3) L(g) N (K X A) = & where L(g) denotes the limit points of the
map g. Recall that L(g) consists of all points in X X A each of whose
neighborhoods meets infinitely many members of {g(I')};. Suppose
that g(y,) = (x,a) € K X A where y, € I*D and k(i) > o as i - co.
If a € W, for some v, then eventually g(y,) € Sy(y) X W, (a neighbor-
hood of (x, a)) and g(y;) = f,(y,). In this case, p,(f,(»))) = b,(k(i)) and
thus b (k(i)) = a as i = oo. This contradicts the fact that {b (i)}i2, is
discrete in A. Suppose then that a & W, for all y. Then eventually, since
{W,}5_, is discrete in A4, p,(g(y)) & W, for all y. Then g(y,) =
(ao f)(y;) and (x,a) € L(ae° f). But then a € L and we reach a con-
tradiction since L is covered by {W,}7_,. Thus, we must have that
a = a, for some y,. Since p,(g(y;) = a, = Fr (W,) and {W | Sl
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discrete, either p,(g(y;)) € W, for infinitely many i or p,(g(y,) € —W_Y
for all y for infinitely many i. In the former case we have g(y,) = f, (1)
for infinitely many i/ and in the latter we have g(y,) = (a° f)(y,) for
infinitely many i. These give rise to the same contradictions exhibited
above and we finally conclude that L(g) N (K X A4) =

Let 4 be any metric for X X 4 and let ¥~ be an open cover of
(X — K) X A4 such that each V' in ¥~ is contained in some U in % and
such that for all V € ¥*, diam,V < d(V, K X A). Let

D,=g'((X—K)xA)nI"

and denote g| &2 | D, by . Since X — K is an s-manifold, [To,] applies
to show that (X K ) X A4 is an s-manifold and since &> D, is a
complete separable metric space, [To,; 2.1] provides a map h: €B = D~
(X — K)x A such that h is ¥<close to g and {h(D,)}>. forms a
discrete family in (X — K) X 4. Define h: @2 1" > X X 4 by h(x) =
h(x) if x € & D, and h(x)= g(x) otherw1se It is clear that A is
A-close to g and our choice of ¥~ guarantees that A is continuous. It is
straightforward to prove that L(h) = @, and this implies that each point
in X X A4 has a neighborhood that meets at most finitely many members
of { h(I™)}_,, hence { h(I")}-, is locally finite in X X 4.

Given f, we have found a map A that is st*> %close to f for which
{h(I™)}y-, is locally finite. Since this implies that compact subsets of
X X A are Z-sets, we may assume by a further small adjustment that
{ h(I™)}-, is both pairwise disjoint and locally finite, hence discrete. The
s-manifold Characterization Theorem then implies that X X 4 is an
s-manifold.

5. Further examples. The Stabilization Theorem provides a refinement
of our dog bone example by exhibiting such an example where all the
fibers of « are points and tame Z-set copies of the 1-dimensional AR A.

ExaMPLE 3. There is a map 7: s — s that satisfies (2.1) through (2.4)
of Example 2 with the exception that the nondegenerate fibers of = are
tame Z-set copies of the 1-dimensional AR A.

Construction. Since s. — C = s — C is an s-manifold, the projection
map p: (sc — C) X4 — s. — C is a near-homeomorphism (see Appen-
dix). Construct # from p using exactly the method used in Example 2.
This produces a surjective map h:s. X 4 = s. such that N, = C and
such that {c} X 4 is a Z-set in 5. X A4 for all ¢ € C. By Corollary 2 of
§4, s X A is homeomorphic to s; let # = hog:s - 5. where g is a
homeomorphism of s onto s. X 4. Then #: s — s satisfies (2.1) through
(2.4) except that 77Y(c) is a Z-set copy of 4 in s for each ¢ € C. The
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verification of (2.1) through (2.4) is exactly as in Example 2 with 4 in
place of s where pertinent.

In [BBMW], various examples of complete separable AR’s not ho-
meomorphic to s are constructed that possess the following properties: (i)
each example contains a point that is a Z-set but not a strong-Z-set and
the complement of this point is homeomorphic to s, (ii) each example
satisfies various weaker versions of the discrete approximation property,
(iii) none of the examples has a “nice” ANR local compactification in the
sense that the examples do not arise as complements of o0-Z-sets in locally
compact ANR’s (this follows either from [Bo,] or from (i) and Lemma 1
of §4), (iv) none of the examples stabilize upon multiplication by any
finite product of A4 with itself (this is proved in [Be]). The question arises
as to whether or not (iv) is independent of (i), (ii), and (iii); in particular,
is (iv) an intrinsic property of complete separable AR’s that have no nice
ANR local compactification? The example s/z can be used to construct
an example that satisfies (i) through (iii) and which becomes homeomor-
phic to s upon multiplication by 4, thus answering the above question
negatively.

ExAMPLE 4. There is a fine homotopy equivalence f: s = X where X
is a complete separable AR not homeomorphic to s that satisfies:

(41) N,={x} is a Z-set in X but not a strong-Z-set in X and
X — {x} is homeomorphic to s;

(4.2) X satisfies the discrete 1-cells property and the discrete carriers
property, but not the discrete 2-cells property (see [BBMW] for defini-
tions);

(4.3) X necessarily does not have a nice ANR local compactification;

(44) fXid: s X A - X X A is a near-homeomorphism and X X A4
= s XA=s.

We delete the construction of Example 4 since Bestvina [Be], using
different techniques, produces examples having the properties of Example
4.

Examples 1 through 4 are examples of complete separable AR’s not
homeomorphic to s but which become homeomorphic to s upon multipli-
cation by 4. On the other hand, the examples of [BBMW] are complete
separable AR’s not homeomorphic to s and which do not become
homeomorphic to s upon multiplication by any finite product of 4 with
itself. The following question arises.

Question. If X is a complete separable AR and X X 4" is homeomor-
phic to s for some positive integer n, where A” denotes the n-fold product
of A with itself, is X X 4 homeomorphic to s?
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If X has a nice ANR local compactification, then the answer is yes
and appears in [Bo,]. The question remains open in the general case,
though Bestvina [Be] constructs, modulo the construction of certain
examples in homotopy theory, an example for each n of a space X, such
that X, X A" is not homeomorphic to s while X, X 4"*! is homeomor-
phic to s.

APPENDIX.

1. Adjusting maps into /*. A closed subset F of an ANR X is a Z,-set
for some non-negative integer n provided for every € > 0 and map
f:I" - X of the n-cell into X, there is a map g:I" — X — F that is
e-close to f. An embedding into X is a Z, -embedding provided its image is
a Z,-set.

THEOREM A.l. Let (D, D,) be a compact metric pair of dimension at
most n and let f: D — I* be a map such that f | D, is a Z,-embedding where
n is some non-negative integer. Then for every & > 0, there exists an
embedding g:D — I® such that g|D, = f|D, and g is e-close to f. Fur-
thermore, if B is a o-Z-set in I®, g may be chosen so that g(D — D,) N B
= .

Proof. The space C(D,I*) of maps D — I* with the sup-norm
metric is complete [Du]. Let d be a metric for /* and for § > 0 define

Cs(D,I*) = {ge C(D,I*)|d(g(a), f(a)) < 8 forall a € D,},

Go(D,17) = {g € C(D,I%)|g|Dy = f| D }.

Then for each § > 0, Cy(D, I*) is open in C(D, I*) and since Cy(D, I®)
=N, C (D, I?), Co(D, I*) is a Gysubset of a complete space, hence
C,(D, I*) is a Baire space.

Let {(D,, D/)}{2, be a countable collection of pairs of compact
subsets of D — D, such that (i) Int, D, # @ # Int, D/, (ii) D,N D/ = &
for all i, and (iii) for each x, y € D — D, with x # y, there exists an i
such that x € D, and y € D/. For each i, let

U={g< C(D,1*)[8(D,) ng(D}) = 2
and g(D,U D]) Nng(D,) = 2}.
Easily U, is open in Cy( D, I*°) and since f | D, is an Z,-embedding and D
is at most n-dimensional, U, is dense in Cy( D, I®).

Let B = U%, B, where B, is a Z-set in I® and let D — D, = U2, C,
where each C; is compact. Define

V.,={g€ (D, I?)|g(C)nB; =2}, i,j=12...
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Each V, ; is open and dense in Cy(D, I%), hence (N;U) N(N,;V; ;) is
dense in Co(D, I*). Any g in (N,U) N(N,,V, ;) is an embedding with
g|Dy=f|Dyand g(D — D) N B = O.

THEOREM A.2. Let (D, D,) be a compact pair and let B be a o-Z-set in
I*. Then for every map f: D — I* and for every € > 0, there exists a map
g: D — I* e-close to f such that g| D, = f | D, and g(D — D)) "B = &.

The proof of A.2 is contained in the proof of A.1.

2. Fine homotopy equivalence, UV *-maps, and near-homeomorphisms.
Let f: X — Y be a map between complete separable ANR’s. f is a fine
homotopy equivalence provided for every open cover % of Y, there is a
map g:Y — X such that fog is %homotopic to id, and gof is
f~}(%)-homotopic to id. f is a UV*®-map if for every y € Y and
neighborhood U of y, there exists a neighborhood V of y such that
f~YV) contracts to a point in fU). f is a near-homeomorphism
provided for every open cover # of Y, there exists a homeomorphism 4:
X — Y that is %-close to f. The following sresults are used in this paper.

THEOREM A.3. [Ko]. fis a fine homotopy equivalence if and only if f is a
UV*>®-map.

COROLLARY A4. If f;: X, — Y, and f,: X, = Y, are fine homotopy
equivalences, then f, X f,: X; X X, = Y, X Y, is a fine homotopy equiva-
lence.

THEOREM A.5. [Fe]. A fine homotopy equivalence between s-manifolds is
a near-homeomorphism.

THEOREM A.6. [Sc), [To,]. The projection mapping p: M X X - M
where M is an s-manifold and X is a complete separable AR is a near-homeo-
morphism.

Proof. By [To,], M X X is an s-manifold and easily p is a UV *-map.
Theorems A.3 and A.5 imply that p is a near-homeomorphism.

THEOREM A.7. If f: X = Y is a fine homotopy equivalence and K is a
compact subset of Y such that f (K has infinite codimension in X, then K
has infinite codimension in Y.

3. Strong-Z-sets and reduced products. Below, we list two results that
will appear in [BBMW] and that are used in this paper. Strong-Z-sets are
defined in §4. Given spaces Z and F and a closed subset L C Z, the
product of Z and F reduced about L, or the reduced product of Z and F, is
the space [(Z — L) X F]U L equipped with the topology generated by



272

PHILIP L. BOWERS

open subsets of (Z — L) X F and sets of the form (UN L) U (U — L) X
F, where U C Z is open. The reduced product is denoted by (Z X F),.

THEOREM A.8. [BBMW; Corollary 1.2). A closed subset L of an
ANR Z is a strong-Z-set in Z if and only if L is a strong-Z-set in (Z X s),.

THEOREM A.9. [BBMW,; Strong-Z-set Shrinking]. If f:M°* — X is a
fine homotopy equivalence from an s-manifold to a topologically complete
separable ANR and Cly N, is a strong-Z-set in X, then f is a near-homeo-
morphism.
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