REGULARITY OF CAPILLARY SURFACES OVER DOMAINS WITH CORNERS: BORDERLINE CASE

LUEN-FAI TAM
REGULARITY OF CAPILLARY SURFACES OVER
DOMAINS WITH CORNERS: BORDERLINE CASE

LUEN-FAI TAM

Consider the solutions of capillary surface equation with contact angle boundary condition over domains with corners. It is known that if the corner angle 2α satisfies $0 < 2\alpha < \pi$ and $\alpha + \gamma > \pi/2$ where $0 < \gamma \leq \pi/2$ is the contact angle, then solutions are regular. It is also known that no regularity holds in case $\alpha + \gamma < \pi/2$. In this paper we show that solutions are still regular for the borderline case $\alpha + \gamma = \pi/2$ at the corner.

It was proved by Concus and Finn in [1] that the behavior of a capillary surface near a corner over a wedge can change discontinuously. They proved that if the contact angle is $\gamma > 0$ and the interior angle at the corner is 2α, then all solutions for which $\alpha + \gamma > \pi/2$ are bounded near the corner, while all solutions are unbounded if $\alpha + \gamma < \pi/2$. Later in [9], Simon went further and investigated the regularity near the corner.

Let Ω be a domain contained in $B_R = \{x \in \mathbb{R}^2| |x| < R\}$ for some $R > 0$, such that $\partial \Omega$ consists of a circular arc of ∂B_R and two smooth Jordan arcs intersecting at the origin. Each arc makes an angle α with the positive x^1-axis, so that the interior angle at the origin is 2α. See Figure 1. Let u be a bounded function satisfying

\begin{align}
\begin{cases}
\text{div} Tu = H(x, u(x)) & \text{in } \Omega \\
Tu = \frac{Du}{\sqrt{1 + |Du|^2}} & \text{on } \Gamma = (\partial \Omega - \{0\}) \cap B_R \\
Tu \cdot \nu = \cos \gamma & \text{on } \Gamma = (\partial \Omega - \{0\}) \cap B_R
\end{cases}
\end{align}

(0.1)

where $H(x, t)$ is a locally bounded function in $\bar{\Omega} \times \mathbb{R}$, $\pi/2 > \gamma > 0$ is a constant angle and ν is the unit outward normal of Γ. If u is smooth in $(\bar{\Omega} - \{0\})$ and if $\pi/2 > \alpha > \pi/2 - \gamma$, then Simon [9] proved that u actually extends to be a C^1 function in $\bar{\Omega}$. It is known that no regularity holds if $\alpha + \gamma < \pi/2$. Our aim is to examine the borderline case $\alpha + \gamma = \pi/2$. In this case, one cannot expect Du to be continuous or even bounded in $\bar{\Omega}$, as one can easily construct counterexamples. Note also that...
if $2\alpha > \pi$, then there are examples which show that u may be discontinuous at the corner, see [5]. In this paper we want to prove the following theorem:

THEOREM. Let $u \in C^2(\overline{\Omega} - \{0\}) \cap L^\infty(\Omega)$ be a solution of (0.1). If $\alpha + \gamma = \pi/2$, then u and $(Tu, -1/\sqrt{1 + |Du|^2})$ extend to be continuous functions in Ω with values in \mathbb{R} and \mathbb{R}^3 respectively.

Since $H(x, t)$ is locally bounded in $\overline{\Omega} \times \mathbb{R}$ and $u \in L^\infty(\Omega)$, so we may assume that u satisfies:

$$
\begin{cases}
\text{div} \, Tu = H & \text{in } \Omega \\
Tu \cdot \nu = \cos \gamma & \text{on } \Gamma
\end{cases}
$$

for some bounded continuous function $H = H(x)$ in Ω.

1. **Continuity of u at the corner.** Let $(0, a) \in \mathbb{R}^2 \times \mathbb{R} = \mathbb{R}^3$ be any point lying in the closure of the graph of u over Ω.

Define $v(x) = u(x) - a$.

THEOREM 1.1. Under the above assumptions, we have

$$
\lim_{\substack{x \to \Omega \\
x \in \Omega}} \frac{v(x)}{x^1} = -\infty \quad \text{where } x = (x^1, x^2) \in \mathbb{R}^2.
$$
Note that if \(x \) is close enough to the origin, we have \(x^1 > 0 \). Therefore without loss of generality, we may assume that \(x^1 > 0 \) for all \(x \in \Omega \).

Proof. Suppose that (1.1) is not true, then there exists a real number \(M \) and a sequence of points \(x_j \in \Omega \) such that \(\lim_{j \to \infty} x_j = 0 \) and

\[
\frac{v(x_j)}{x_j^1} \geq M.
\]

We want to get a contradiction from this. For this purpose we need several lemmas.

With minor modifications, the proofs of Lemma 1.2–1.6 in the following can be found in the literature. So we shall not prove them, but only give the references. We state them here for the convenience of the reader.

Let \(\varepsilon_j = x_j^1 \), then \(\lim_{j \to \infty} \varepsilon_j = 0 \). Define \(v_j(x) = v(\varepsilon_j x)/\varepsilon_j \). Then \(v_j(x) \) satisfies:

\[
\begin{cases}
\text{div} \, T v_j = \varepsilon_j H & \text{in } \Omega_j = \{ x \in \mathbb{R}^2 | \varepsilon_j x \in \Omega \}, \\
T v_j \cdot v_j = \cos \gamma & \text{on } \Gamma_j = \{ x \in \mathbb{R}^2 | \varepsilon_j x \in \Gamma \},
\end{cases}
\]

where \(v_j \) is the unit outward normal of \(\Gamma_j \). Notice that \(v_j \in C^2(\overline{\Omega}_j - \{0\}) \cap L^\infty(\overline{\Omega}_j) \) for all \(j \).

Let \(\Omega_\infty = \lim_{j \to \infty} \Omega_j = \{ x \in \mathbb{R}^2 | |x^2| < (\tan \alpha) x^1 \} \).

As shown in [9] (see also [3] and [10]), noting that \(\varepsilon_j H \) tend to zero everywhere in \(\Omega_\infty \), and \(\varepsilon_j H \) are uniformly bounded, using the terminology in [3] we have:

Lemma 1.2. We can find a subsequence of \(v_j \) which converges locally to a generalized solution \(v_\infty \) in \(\Omega_\infty \) of

\[
\mathcal{F}(w) \equiv \int_{\Omega_\infty} \sqrt{1 + |Dw|^2} - \cos \gamma \int_{\partial \Omega_\infty} w dH_1
\]

where \(H_k \) is the \(k \)-dimensional Hausdorff measure in \(\mathbb{R}^n \), \(k \leq n \). That is to say, if \(V_\infty = \{(x, t) \in \Omega_\infty \times \mathbb{R} | t < v_\infty(x)\} \) is the subgraph of \(v_\infty \), then for any compact set \(K \subset \mathbb{R}^3 \), and for any Cacciopoli set (set of locally finite perimeter) \(E \), such that \(\text{sp}(\varphi_{V_\infty} - \varphi_E) \subset K \), we have

\[
F_K(V_\infty) \leq F_K(E)
\]

where

\[
F_K(W) \equiv \int_{(\Omega_\infty \times \mathbb{R}) \cap K} |D \varphi_W| - \cos \gamma \int_{(\partial \Omega_\infty \times \mathbb{R}) \cap K} \varphi_W dH_2,
\]
and where φ_w denotes the characteristic function of W.

A sequence of functions f_j is said to converge locally to a function f in a domain D, if the characteristic functions of the subgraphs of f_j converge almost everywhere to the characteristic function of the subgraph of f in $D \times \mathbb{R}$.

Note that v_{∞} may take the value ∞ or $-\infty$.

Define

\begin{align}
\mathcal{P} &= \{ x \in \Omega_{\infty} | v_{\infty}(x) = \infty \} \\
\mathcal{N} &= \{ x \in \Omega_{\infty} | v_{\infty}(x) = -\infty \}.
\end{align}

As in [3] (see also [9, 10]), we know that \mathcal{P} minimizes

\begin{equation}
G(A) = \int_{\Omega_{\infty}} |D\varphi_A| - \cos \gamma \int_{\partial\Omega_{\infty} \cap K} \varphi_A \, dH_1
\end{equation}

for Caccioppoli set $A \subset \Omega_{\infty}$. That is, for any compact set $K \subset \mathbb{R}^2$, and any Caccioppoli set with $\text{spt}(\varphi_A - \varphi_P) \subset K$, we have

\begin{equation}
G_K(\mathcal{P}) = \int_{\Omega_{\infty} \cap K} |D\varphi_P| - \cos \gamma \int_{\partial\Omega_{\infty} \cap K} \varphi_P \, dH_1 \leq G_K(A).
\end{equation}

Similarly, \mathcal{N} minimizes

\begin{equation}
G'(A) = \int_{\Omega_{\infty}} |D\varphi_A| + \cos \gamma \int_{\partial\Omega_{\infty}} \varphi_A \, dH_1.
\end{equation}

We want to know the structure of \mathcal{P} and \mathcal{N}, and we have:

Lemma 1.3. If $L \subset \Omega_{\infty}$ minimizes $G(A)$ defined in (1.9), then L equals to Ω_{∞}, \emptyset or some ΔOAB bounded by $\partial \Omega_{\infty}$ and $x^1 = a$ for some $a > 0$. (See Figure 2.)

The proof of the lemma is similar to the proof of Theorem 2.4 for the case $\alpha + \gamma > \pi/2$ in [10]. In that case, the conclusion is that $L = \Omega_{\infty}$ or \emptyset. In our case, it is possible to have $L = \Delta OAB$ described in the lemma because $2\alpha + 2\gamma = \pi$. We shall omit the proof. Similarly we have:

Lemma 1.4. If L minimizes $G'(A)$ defined by (1.11), then L equals to Ω_{∞}, \emptyset or $\Omega_{\infty} - \Delta OAB$ for some ΔOAB described in Lemma 1.3.

Since \mathcal{P} minimizes $G(A)$ and \mathcal{N} minimizes $G'(A)$, we conclude that

\begin{equation}
\mathcal{P} = \Omega_{\infty}, \emptyset \text{ or } \Delta OAB \text{ which is bounded by } \partial \Omega_{\infty} \text{ and } x^1 = a \text{ for some } a > 0.
\end{equation}
\begin{equation}
(1.13) \quad N = \Omega_\infty, \emptyset \text{ or } \Omega_\infty - \Delta OA'B' \text{ for some } \Delta OA'B' \text{ which is bounded by } \partial \Omega_\infty \text{ and } x^1 = a' \text{ for some } a' > 0.
\end{equation}

It is not hard to see from the proof of Lemma 3.1 in [11] that the following estimates are true. (See also [3].) Let V_j be the subgraph of v_j.

Lemma 1.5. There exists $r_0 > 0$, $C > 0$ not depending on j such that for all $t \in \mathbb{R}$, the following is true:

\begin{equation}
(1.14) \quad \text{if } |V_{j,r}(0,t)| > 0 \text{ for all } r > 0 \text{ then } |V_{j,r}(0,t)| \geq Cr^3 \text{ for all } 0 < r \leq r_0, \text{ where } C_r(x_0,t_0) = \{(x,t) \in \mathbb{R}^3 | |x - x_0| - r_0| < r \text{ and } |t - t_0| < r \} \text{ and } V_{j,r}(0,t) = C_r(0,t) - V_j.
\end{equation}

Lemma 1.6. For any $0 < \tau_1 < \tau_2 < \infty$, there exist positive integer j_0 and positive numbers r_1 and C_1 such that for all $j \geq j_0$ and $(x,t) \in \Omega_j \cap \{ x \in \mathbb{R}^2 | \tau_1 \leq x^1 \leq \tau_2 \}$, the following are true:

\begin{equation}
(1.15) \quad \text{if } |V_{j,r}(x,t)| > 0 \text{ for all } r > 0, \text{ then } |V_{j,r}(x,t)| \geq C_1 r^3, \text{ for all } 0 < r \leq r_1;
\end{equation}

\begin{equation}
(1.16) \quad \text{if } |V_{j,r}(x,t)| > 0 \text{ for all } r > 0, \text{ then } |V_{j,r}(x,t)| \geq C_1 r^3 \text{ for all } 0 < r \leq r_1,
\end{equation}

where $V_{j,r}(x,t) = C_r(x,t) \cap V_j$ and $V_{j,r}(x,t) = C_r(x,t) - V_j$.
Notice that even though we do not have a similar result as (1.15) at the corner (because of the fact that $\alpha + \gamma = \pi/2$), we still have (1.14) since $\cos \gamma > 0$, as one can see from the proof of Lemma 3.1 in [11].

Using the above lemmas, we can prove:

Lemma 1.7. $P = \{ x \in \Omega_\infty | v_\infty(x) = \infty \}$ is empty.

Proof. If $P \neq \emptyset$, then by Lemma 1.3, $P = \Omega_\infty$ or some $\triangle OAB$ which is bounded by $\partial \Omega_\infty$ and $x^1 = a$ for some $a > 0$. In any case, there is $\bar{r} > 0$ such that

$$ (1.17) \quad |V_\infty', (0, 0) | = |C_r (0, 0) - V_\infty | = 0 \quad \text{for all} \quad 0 < r \leq \bar{r}. $$

By Lemma 1.5 and the fact that $(0, 0) \in \mathbb{R}^3$ lies in the closure of the graph of v_j and that v_j is regular in $\bar{\Omega}_j \setminus \{ 0 \}$, we have:

$$ |V_j', (0, 0) | > 0 \quad \text{for all} \quad r > 0, \quad \text{and so} $$

$$ |V_j', (0, 0) | \geq Cr^3 \quad \text{for all} \quad 0 < r \leq r_0. $$

In particular, if we take $r = \min(\bar{r}, r_0) > 0$, then

$$ |V_j', (0, 0) | \geq Cr^3. $$

Let $j \to \infty$, noting that φ_{v_j} converges to φ_{v_∞} almost everywhere in $\Omega_\infty \times \mathbb{R}$, we have

$$ |V_\infty', (0, 0) | \geq Cr^3 > 0. $$

This contradicts (1.17). Therefore P must be empty and the lemma is proved. \(\square\)

Lemma 1.8. If $N = \{ x \in \Omega_\infty | v_\infty = -\infty \}$, then $N = \Omega_\infty$.

Proof. By (1.13) and Lemma 1.7, if $N \neq \Omega_\infty$, then there exists $\tau > 0$ such that v_∞ is finite almost everywhere in $\{ x \in \Omega_\infty | 0 < x^1 < \tau \}$. We claim that there is a positive integer j_0 such that

$$ (1.18) \quad \sup_{j \geq j_0} \sup_{x \in \Omega_j} \lim_{\tau/4 < x^1 < 3\tau/4} |v_j(x) | < \infty. $$

Let j_0, r_1, and C_1 be the constants in Lemma 1.6 corresponding to $\tau_1 = \tau/4$, and $\tau_2 = 3\tau/4$.

Since each v_j is bounded in Ω_j, if (1.18) is not true, then we can find a subsequence of v_j, which we also call v_j, and $\bar{x}_j \in \Omega_j$, $\tau/4 < \bar{x}_j < 3\tau/4$, such that

$$ \lim_{j \to \infty} |v_j(\bar{x}_j) | = \infty. $$
Passing to a subsequence if necessary, we may assume that \(\lim_{j \to \infty} \vec{x}_j = z = (z^1, z^2) \) which is in \(\bar{\Omega}_\infty \), with \(\tau/4 \leq z^1 \leq 3\tau/4 \), and such that

\[
\lim_{j \to \infty} v_j(\vec{x}_j) = \infty, \quad \text{or} \quad \lim_{j \to \infty} v_j(\vec{x}_j) = -\infty.
\]

(1.19)

Suppose that \(\lim_{j \to \infty} v_j(\vec{x}_j) = \infty \). Then for any \(t > 0 \), if \(j \) is large enough, we have

\[|V_{j,r}(\vec{x}_j, t)| > 0 \quad \text{for all } r > 0. \]

Hence by (1.15), if \(j \) is large enough, we have

\[|V_{j,r}(\vec{x}_j, t)| \geq C_1 r^3 \quad \text{for all } 0 < r \leq r_1. \]

Let \(j \to \infty \), we get

\[|V_{\infty,r}(z, t)| \geq C_1 r^3 \quad \text{for all } 0 < r \leq r_1. \]

Since \(t \) can be arbitrarily large, this contradicts the fact that \(P = \emptyset \).

Suppose that \(\lim_{j \to \infty} v_j(\vec{x}_j) = -\infty \), then for any \(t < 0 \), if \(j \) is large enough, we have

\[|V'_{j,r}(\vec{x}_j, t)| > 0 \quad \text{for all } r > 0. \]

By (1.16), we have

\[|V'_{j,r}(\vec{x}_j, t)| \geq C_1 r^3 \quad \text{for all } 0 < r \leq r_1. \]

Take \(\bar{r} = \min(\frac{1}{4} \tau, r_1) > 0 \) and let \(j \to \infty \), we get

\[|V'_{\infty,\bar{r}}(z, t)| \geq C_1 \bar{r}^3 \quad \text{for all } t < 0. \]

Since \(t \) can be arbitrarily small, this contradicts the fact that \(v_\infty \) is finite almost everywhere in \(\{ x \in \Omega_\infty | 0 < x^1 < \tau \} \).

In any case, we have a contradiction. Therefore (1.18) is true.

By Theorem 3 in [7], \(v_\infty \) is regular in \(D = \{ x \in \Omega_\infty | \tau/4 < x^1 < 3\tau/4 \} \) after modification by a set of measure zero. By the results of [6], we have

\[
\begin{cases}
\lim_{j \to \infty} v_j(x) = v(x) \\
\lim_{j \to \infty} Dv_j(x) = Dv(x)
\end{cases}
\]

(1.20)

for \(x \in D \). Integrating \(\text{div} T v_j = \epsilon_j H \) over \(D_j = \{ x \in \Omega_j | 0 < x^1 < \tau/2 \} \), using (1.3) and let \(\eta = (-1, 0, 0) \), we have, for \(j \) large enough:

\[
\int_{\Gamma_j \cap \{0 < x^1 < \tau/2\}} T v_j \cdot v_j dH_1 = \int_{D_j} \epsilon_j H dx + \int_{D_j \cap \{x^1 = \tau/2\}} T v_j \cdot \eta dH_1.
\]
Since \(T v_j \cdot v_j = \cos \gamma \) on \(\Gamma_j \), and \(\lim_{j \to \infty} e_j H = 0 \), if we let \(j \to \infty \), we get

\[
\cos \gamma \cdot H_1 \left(\partial \Omega_\infty \cap \left\{ 0 < x^1 < \frac{\tau}{2} \right\} \right) = \int_{D \cap \left\{ x^1 = \frac{\tau}{2} \right\}} T v_\infty \cdot \eta \, dH_1.
\]

But

\[
\cos \gamma \cdot H_1 \left(\partial \Omega_\infty \cap \left\{ 0 < x^1 < \frac{\tau}{2} \right\} \right) = H_1 \left(D \cap \left\{ x^1 = \frac{\tau}{2} \right\} \right).
\]

Since \(|T v_\infty \cdot \eta| \leq 1 \), we conclude that \(T v_\infty \cdot \eta = 1 \) \(H_1 \)-almost everywhere on \(D \cap \{ x^1 = \tau/2 \} \). This contradicts the fact that \(v_\infty \) is regular in \(D \). Hence we must have \(N = \Omega_\infty \).

Remark. We may simplify the proof by using the fact that \(V_\infty \) is a cone with vertex at the origin. But in the next section we shall use a similar argument, so we do it this way.

Conclusion of the proof of Theorem 1.1. Using the fact that \(N = \Omega_\infty \) and using (1.15) and similar method of proof of (1.18), we can conclude that

\[
\lim j \to \infty \sup_{x \in \Omega_j} v_j(x) = -\infty.
\]

In particular, we have

\[
\lim_{j \to \infty} \frac{v(x_j)}{x_j^1} = \lim_{j \to \infty} v_j \left(1, \frac{x_j^2}{x_j^1} \right) = -\infty.
\]

This contradicts (1.2), and the proof of Theorem 1.1 is complete.

Now we can prove the continuity of \(u \).

Theorem 1.9. \(u \) extends to be a continuous function in \(\overline{\Omega} \).

Proof. If this is not true, then there exist real numbers \(b > a \), such that \((0, a) \) and \((0, b) \) are both in the closure of the graph of \(u \). Let \(v = u - a \). By Theorem 1.1, we have

\[
\lim_{x \to 0, x \in \overline{\Omega}} \frac{v(x)}{x^1} = -\infty.
\]
In particular, there exists $r > 0$, such that if $x \in \Omega$ and $|x| < r$, then $v(x)/x^1 < 0$. Therefore $u(x) < a$ for such x. Since $(0, b)$ also lies in the closure of the graph of u, we can always find $x \in \Omega$ with $0 < |x| < r$ and $u(x) > a$. This leads to contradiction and the theorem follows. \[\square\]

2. Continuity of the normal. Let us proceed and examine the continuity of the normal of the graph of u over Ω. Since u is continuous at the origin, by adding a constant to u, we may assume that $u(0) = 0$. u still satisfies (0.2). We want to prove:

$$\lim_{x \to 0, x \in \Omega} \left(Tu, \frac{-1}{\sqrt{1 + |Du|^2}} \right) = (-1, 0, 0).$$

Since $u \in C^2(\overline{\Omega} - \{0\})$, it is sufficient to prove that for any sequence $x_j \in \Omega$, converging to 0, we have

$$\lim_{j \to \infty} \left(Tu(x_j), \frac{-1}{\sqrt{1 + |Du(x_j)|^2}} \right) = (-1, 0, 0).$$

First, we shall establish (2.1) for any sequence x_j tending to the origin non-tangentially to $\partial \Omega$. More precisely, we assume that there is ε with $0 < \varepsilon < \tan \alpha$, such that $x_j = (x_j^1, x_j^2)$ lies between the straight lines $x^2 = \pm (\tan \alpha - \varepsilon)x^1$.

Theorem 2.1. Let $x_j = (x_j^1, x_j^2) \in \Omega$ be a sequence of points approaching the origin such that $|x_j^2| < (\tan \alpha - \varepsilon)x_j^1$ for all j for some ε with $0 < \varepsilon < \tan \alpha$. Then (2.1) holds.

Proof. If we can prove that for any subsequence of x_j, we can find a subsequence of the subsequence such that (2.1) is true for that subsequence, then we are done.

Since every subsequence of x_j also satisfies the assumptions of the theorem, so we may assume that the subsequence is $\{x_j\}$ itself.

Since $x_j^1 > 0$ for all j, if we set $\varepsilon_j = x_j^1$ and define

$$u_j(x) = \frac{1}{\varepsilon_j} u(\varepsilon_j x) - \frac{1}{\varepsilon_j} u(x_j),$$

then as in §1, u_j satisfies:

$$\begin{cases}
\div Tu_j = \varepsilon_j H & \text{in } \Omega_j \\
Tu_j \cdot \nu_j = \cos \gamma & \text{on } \Gamma_j.
\end{cases}$$

(2.2)
Also if
\[\bar{x}_j = \left(1, \frac{x_j^2}{\varepsilon_j} \right) = \left(1, \frac{x_j^2}{x_j^1} \right), \]
then
\[(2.3) \quad u_j(\bar{x}_j) = 0. \]

We may also assume that
\[(2.4) \lim_{j \to \infty} \bar{x}_j = z = (1, z_2) \in \Omega_\infty \text{ with } |z_2| \leq \tan \alpha - \varepsilon. \]

As in §1, we can find a subsequence of \(u_j \), which we also call \(u_j \), converging locally to a generalized solution \(u_\infty \) of \(\mathcal{F}(w) \) defined by (1.4). Let
\[P = \{ x \in \Omega_\infty | u_\infty(x) = +\infty \} \]
and
\[N = \{ x \in \Omega_\infty | u_\infty(x) = -\infty \}. \]

As in §1, we know that \(P = \Omega_\infty, \emptyset \) or some \(\triangle OAB \) bounded by \(\partial \Omega_\infty \) and \(x^1 = a \) for some \(a > 0 \); and \(N = \Omega_\infty, \emptyset \) or \(\Omega_\infty - \triangle OAB' \) for some \(\triangle OAB' \) bounded by \(\partial \Omega_\infty \), and \(x^1 = a' \) for some \(a' > 0 \).

Note that Lemma 1.6 is still true for the subgraph \(U_j \) of \(u_j \). That is to say for any \(0 < \tau_1 < \tau_2 < \infty \), there exist a positive integer \(j_0 \) and positive numbers \(r_1 \) and \(C_1 \) not depending on \(j \) such that for \(j \geq j_0 \) and for any \((x, t) \in \bar{\Omega}_j \cap \{ x \in R^2 | \tau_1 < x^1 < \tau_2 \} \), (1.15) and (1.16) are still true if we replace \(V_j \) by \(U_j \).

Suppose that \(\Omega_\infty - (P \cup N) \neq \emptyset \), because of the structures of \(P \) and \(N \), there exist \(0 < a < b < \infty \) such that \(u_\infty \) is finite almost everywhere in \(\{ x \in \Omega_\infty | a < x^1 < b \} \). Using (1.15) and (1.16) as in the proof of Lemma 1.8, we shall arrive at a contradiction.

Hence we must have \(\Omega_\infty = P \cup N \).

Let \(U_\infty \) be the subgraph of \(u_\infty \). Since \(u_j(\bar{x}_j) = 0 \) so \((\bar{x}_j, 0) \) belongs to the boundary of \(U_j \). Using (1.15), (1.16), the fact that \(\lim_{j \to \infty} \bar{x}_j = z \), \(u_j \in C^2(\bar{\Omega} - \{0\}) \), and that \(\varphi_U \) converge to \(\varphi_{U_\infty} \) almost everywhere in \(\Omega_\infty \times R \), we have:
\[(2.5) \quad |U_{\infty,r}(z,0)| \geq C_1 r^3, \quad \text{and} \quad |U_{\infty,r}'(z,0)| \geq C_1 r^3 \]
for all \(0 < r \leq r_1 \). Hence \(P \neq \Omega_\infty \) and \(N \neq \Omega_\infty \). Combining this with the fact that \(\Omega_\infty = P \cup N \), we conclude that there is an \(a > 0 \) such that if \(OAB \) is the triangle bounded by \(\partial \Omega_\infty \) and \(x^1 = a \), then \(P = \triangle OAB \) and \(N = \Omega_\infty - \triangle OAB \). So \(U_\infty = \triangle OAB \times R \).
In fact, we must have $a = 1$. Otherwise, as $z = (1, z^2)$, $a < 1$ will give a contradiction to the first inequality of (2.5), while $a > 1$ will give a contradiction to the second inequality of (2.5).

The inward normal of ∂U^c at $(z, 0) \in \mathbb{R}^3$ is $(-1, 0, 0)$, and the inward normal of ∂U^c_j at $(\bar{x}_j, u(\bar{x}_j))$ is $(Tu_j(\bar{x}_j), -1/\sqrt{1 + |Du_j(\bar{x}_j)|^2})$. Since $\lim_{j \to \infty}(\bar{x}_j, u_j(\bar{x}_j)) = (z, 0)$, so by Theorem 3 in [6], we have:

$$\lim_{j \to \infty} \left(Tu_j(\bar{x}_j), \frac{-1}{\sqrt{1 + |Du_j(\bar{x}_j)|^2}} \right) = (-1, 0, 0).$$

From the definitions of u_j and \bar{x}_j, we conclude that

$$\lim_{j \to \infty} \left(Tu(x_j), \frac{-1}{\sqrt{1 + |Du(x_j)|^2}} \right) = (-1, 0, 0). \quad \square$$

Finally, we consider the case when x_j approaches the origin tangentially along $\partial \Omega^c$. We want to prove:

THEOREM 2.2. Under the above assumptions, (2.1) is still true, namely:

$$\lim_{j \to \infty} \left(Tu(x_j), \frac{-1}{\sqrt{1 + |Du(x_j)|^2}} \right) = (-1, 0, 0).$$

Proof. As in Theorem 2.1, it is sufficient to prove that (2.1) is true for a subsequence of x_j.

Define u_j and \bar{x}_j as in Theorem 2.1. We also assume that $\lim_{j \to \infty} \bar{x}_j = z = (1, z^2)$ which lies in $\overline{\Omega}^c$, with $z^2 = \pm \tan \alpha$.

We can extract a subsequence of u_j, which we also denote by u_j, such that u_j converges locally to a generalized solution of $F(w)$ in Ω^c.

Using similar method as in Theorem 2.1, we can prove that the subgraph U^c_∞ of u_∞ is $\triangle OAB \times \mathbb{R}$ for some $\triangle OAB$ bounded by $\partial \Omega^c_\infty$ and $x^1 = 1$. Up to this point, the proof is exactly the same as the proof in Theorem 2.1. However, in this case $z \in \partial \Omega^c_\infty$ and we cannot apply the results of [6]. So we need some modifications. Before we proceed further, let us prove the following lemma.

LEMMA 2.3. (a) For any $0 < \tau_1 < \tau_2 < 1$, we have

(2.6) $\lim_{j \to \infty} \inf_{x \in \overline{\Omega}_j, \tau_1 < x^1 < \tau_2} u_j(x) = \infty;$ and
(b) For any $1 < \tau_3 < \tau_4 < \infty$, we have

\begin{equation}
\lim_{j \to \infty} \sup_{x \in \Omega_j, \tau_3 < x < \tau_4} u_j(x) = -\infty.
\end{equation}

Proof. We shall prove (a) only, because the proof of (b) is similar.

Suppose that (2.6) is not true. Since $u_j \in C^2(\overline{\Omega}_j - \{0\})$, therefore we can find a real number M, a subsequence of u_j (which we also call u_j) and a sequence of points $y_j \in \Omega_j$, $\tau_1 < y_j < \tau_2$ such that

$$u_j(y_j) \leq M.$$

We may also assume that $\lim_{j \to \infty} y_j = y \in \overline{\Omega}_\infty$. Note that $\tau_1 \leq y \leq \tau_2$.

By (1.16) as before, we have

$$|U_j^r(y_j, M)| \geq C_1r^3$$

for all $0 < r \leq r_1$ if j is large enough, where C_1, and r_1 are positive constants not depending on j. Now let $j \to \infty$, we have

$$|U_j^r(y_j, M)| \geq C_1r^3 \text{ for all } 0 < r \leq r_1.$$

This contradicts the fact that $U_\infty = \Delta OAB \times \mathbb{R}$ and that $0 < \tau_1 < \tau_2 < 1$, bearing in mind the definition of ΔOAB. The lemma is then proved. \qed

We now continue our proof of Theorem 2.2. By Lemma 2.3, since u_j is continuous in $\overline{\Omega}_j - \{0\}$, there exists j_0 such that for every $j \geq j_0$ we can find $y_j \in \partial \Omega_j$ with $u_j(y_j) = 0$ and $\lim_{j \to \infty} y_j = z$.

Let $Y_j = (y_j, u_j(y_j)) = (y_j, 0) \in \mathbb{R}^3$. By the results of [12], there exist $r_2 > 0$, $C_2 > 0$ and $1 > \alpha > 0$ not depending on j such that if $\eta_j(X)$ is the unit inward normal of ∂U_j at the point $X \in \partial U_j \cap \Omega_j$ we have

\begin{equation}
|\eta_j(X) - \eta_j(\overline{X})| \leq C_2|X - \overline{X}|^\alpha
\end{equation}

for any X, \overline{X} belong to $\partial U_j \cap \Omega_j$ and $B_{r_2}(Y_j) = \{X \in \mathbb{R}^3| |X - Y_j| < r_2\}$.

For any $r_2/2 > r > 0$, use Lemma 2.3 again, we can find $z_j \in \Omega_j$ and ε with $\tan \alpha > \varepsilon > 0$ not depending on j such that if j is large enough, we have

\begin{align*}
|z_j^2| < (\tan \alpha - \varepsilon)z_j^1 \\
u_j(z_j) = 0 \\
|z_j - z| < r \\
\lim_{j \to \infty} z_j^1 = 1.
\end{align*}

\begin{align*}
\begin{cases}
|z_j^2| < (\tan \alpha - \varepsilon)z_j^1 \\
u_j(z_j) = 0 \\
|z_j - z| < r \\
\lim_{j \to \infty} z_j^1 = 1.
\end{cases}
\end{align*}
Let \(Z_j = (z_j, u_j(z_j)) = (z_j, 0) \), \(Z = (z, 0) \) and \(\bar{X}_j = (\bar{x}_j, u_j(\bar{x}_j)) = (\bar{x}_j, 0) \).

Then \(\lim_{j \to \infty} Y_j = Z = \lim_{j \to \infty} \bar{X}_j \). If \(j \) is large enough, then we have
\[
|\bar{X}_j - Y_j| < r_2
\]
and
\[
|Z_j - Y_j| \leq |Z_j - Z| + |Z - Y_j| < r + \frac{r_2}{2} < r_2.
\]

By (2.8) we obtain
\[
(2.10) \quad |\eta(Z_j) - \eta_j(\bar{X}_j)| \leq C_2 |Z_j - \bar{X}_j|^{\alpha}.
\]

Since \(\lim_{j \to \infty} z_j^2 = 1 \), and \(|z_j^2| < (\tan \alpha - \epsilon)z_j^2 \), so by Theorem 3 of [6], for any subsequence \(\bar{Z}_j \) of \(Z_j \), we can always find a subsequence \(\bar{Z}_j' \) of \(\bar{Z}_j \) such that \(\lim_{j \to \infty} \eta_j(\bar{Z}_j') = (-1, 0, 0) \).

Therefore \(\lim_{j \to \infty} \eta_j(Z_j) = (-1, 0, 0) = \eta \).

Also, it is easy to see from (2.9) that
\[
\lim_{j \to \infty} \sup |Z_j - \bar{X}_j| \leq r.
\]

Let \(j \to \infty \) in (2.10), we then have
\[
\lim_{j \to \infty} \sup |\eta - \eta_j(\bar{X}_j)| \leq C_2 r^\alpha.
\]

Now let \(r \to 0 \), we conclude that \(\lim_{j \to \infty} |\eta - \eta_j(\bar{X}_j)| = 0 \). The proof of Theorem 2.2 is then completed. \(\square \)

Combining Theorems 2.1 and 2.2, we get

THEOREM. The unit normal vector \((Tu, -1/\sqrt{1 + |Du|^2}) \) extends to be continuous on \(\bar{\Omega} \). More precisely,
\[
\lim_{x \in \bar{\Omega} - \{0\}} \left(Tu(x), \frac{-1}{\sqrt{1 + |Du(x)|^2}} \right) = (-1, 0, 0).
\]

Acknowledgment. I wish to thank Robert Finn and Brian White for useful discussions.

REFERENCES

Received February 7, 1984.

PURDUE UNIVERSITY
WEST LAFAYETTE, IN 47907
PACIFIC JOURNAL OF MATHEMATICS
EDITORS
V. S. VARADARAJAN
(Managing Editor)
University of California
Los Angeles, CA 90024

HERMANN FLASCHKA
University of Arizona
Tucson, AZ 85721

C. C. MOORE
University of California
Berkeley, CA 94720

HERBERT CLEMENS
University of Utah
Salt Lake City, UT 84112

RAMESH A. GANGOLLI
University of Washington
Seattle, WA 98195

H. SAMELSON
Stanford University
Stanford, CA 94305

R. FINN
Stanford University
Stanford, CA 94305

VAUGHAN F. R. JONES
University of California
Berkeley, CA 94720

ROBION KIRBY
University of California
Berkeley, CA 94720

ASSOCIATE EDITORS
R. ARENS
E. F. BECKENBACH
B. H. NEUMAN
F. WOLF
K. YOSHIDA
(1906–1982)

SUPPORTING INSTITUTIONS
UNIVERSITY OF ARIZONA
UNIVERSITY OF OREGON
UNIVERSITY OF BRITISH COLUMBIA
UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA
UNIVERSITY OF HAWAII
MONTANA STATE UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF NEVADA, RENO
UNIVERSITY OF UTAH
NEW MEXICO STATE UNIVERSITY
WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph must be capable of being used separately as a synopsis of the entire paper. In particular it should contain no bibliographic references. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California 90024.

There are page-charges associated with articles appearing in the Pacific Journal of Mathematics. These charges are expected to be paid by the author’s University, Government Agency or Company. If the author or authors do not have access to such Institutional support these charges are waived. Single authors will receive 50 free reprints; joint authors will receive a total of 100 free reprints. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $190.00 a year (5 Vols., 10 issues). Special rate: $95.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics at P.O. Box 969, Carmel Valley, CA 93924 (ISSN 0030-8730) publishes 5 volumes per year. Application to mail at Second-class postage rates is pending at Carmel Valley, California, and additional mailing offices. Postmaster: send address changes to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Copyright © 1986 by Pacific Journal of Mathematics
Pacific Journal of Mathematics
Vol. 124, No. 2 June, 1986

Philip Lee Bowers, Nonshrinkable “cell-like” decompositions of s 257
Aurelio Carboni and Ross Street, Order ideals in categories 275
Leoni Dalla, Increasing paths on the one-skeleton of a convex compact set in a normed space ... 289
Jim Hoste, A polynomial invariant of knots and links 295
Sheldon Katz, Tangents to a multiple plane curve 321
Thomas George Lucas, Some results on Prüfer rings 333
Pham Anh Minh, Modular invariant theory and cohomology algebras of extra-special p-groups ... 345
Ikuko Miyamoto, On inclusion relations for absolute Nörlund summability ... 365
A. Papadopoulos, Geometric intersection functions and Hamiltonian flows on the space of measured foliations on a surface 375
Richard Dean Resco, J. Toby Stafford and Robert Breckenridge Warfield, Jr., Fully bounded G-rings ... 403
Haskell Paul Rosenthal, Functional Hilbertian sums 417
Luen-Fai Tam, Regularity of capillary surfaces over domains with corners: borderline case ... 469
Hugh C. Williams, The spacing of the minima in certain cubic lattices 483