Pacific Journal of Mathematics

ON $\mathcal{L}_{p,\lambda}$ SPACES FOR SMALL λ

DALE EDWARD ALSPACH

Vol. 125, No. 2

October 1986

ON $\mathscr{L}_{p,\lambda}$ SPACES FOR SMALL λ

DALE E. ALSPACH

It is shown for $1 \le p \ne 2 < \infty$ that for each $\mathscr{L}_{p,\lambda}$ subspace X of $L_p[0,1]$ with λ sufficiently close to 1 there is a nonlinear projection from L_p onto X which factors through a linear projection on $L_1[0,1]$ with norm close to 1. Some additional results on representation of certain operators on L_1 are also proved.

Introduction. It is well known that for $1 \le p < \infty$ the range of a contractive projection on $L_p(\mu)$ is isometric to $L_p(\nu)$ and conversely if X is a subspace of $L_p(\mu)$ and X is isometric to $L_p(\nu)$ for some measure ν then there is a contractive projection from $L_p(\mu)$ onto X, [8]. If X is a $\mathscr{L}_{p,\lambda}$ subspace of $L_p(\mu)$ and λ is close to one then it is still true that X is complemented in $L_p(\mu)$ and the projection may be chosen to have norm close to one, [12], [2]. However, it is an open question whether such a space X must be isomorphic to $L_p(\nu)$ for some ν .

In this paper we investigate this question and show (Proposition 2.10) that the question is equivalent for all $p, 1 \le p < \infty, p \ne 2$. We also reprove the theorems of Zippin [13] and Dor [5] on $\mathscr{L}_{p,\lambda}$ subspaces of l_p and the result of [2]. We believe our proof clarifies the role of the atomic measure space in these results and the difficulty in the non atomic case.

The paper is divided into three sections. In the first section w^* integral representations are considered for conditional expectations and isometries of L_1 . In the second section the main results are proved and in the third section some ideas about directions for further work are described.

Throughout the paper we will use $L_p = L_p([0, 1], \mathscr{B}, \lambda)$ where \mathscr{B} is the Lebesgue measurable sets, λ is Lebesgue measure and $p \in [1, \infty)$, $p \neq 2$. If \mathscr{G} is a sub- σ -algebra of the Lebesgue measurable sets $\mathscr{E}(\cdot|\mathscr{G})$ will denote the conditional expectation operator with respect to \mathscr{G} . The following theorem summarizes the contractive case:

THEOREM 0.1. [3], [8].

(a) If P is a contractive projection on $L_p[0,1], 1 \le p \ne 2 < \infty$, then the range of P is of the form

$$\left\{ fh: f \in L_p([0,1], \mathscr{G}, |h|^p d\lambda) \right\}$$

where \mathscr{G} is a sub- σ -algebra of \mathscr{B} , $h \in L_p$, and $\mathscr{E}(|h|^p | \mathscr{G}) = 1_{\text{supp } h}$.

(b) If X is a subspace of L_p isometric to $L_p(v)$ for some measure v then X is of the same form as above and the operator Q defined by $Qf = \mathscr{E}(|h|^{p-2}hf|\mathscr{G})h$, for all $f \in L_p$ is a projection onto X, with ||Q|| = 1.

We will also need some results about $\mathscr{L}_{p,\lambda}$ spaces for λ close to one which are summarized in the following theorem:

THEOREM 0.2. Let $p \in [1, \infty)$, $p \neq 2$.

(a) [4] If $\{x_i: i \in \mathbb{N}\}$ is contained in $L_p(\nu)$ for some measure ν , such that for any set of scalars $\{a_i: i \in \mathbb{N}\}$, with finitely many nonzero,

$$(1+\varepsilon)^{-1} \left(\sum |a_i|^p\right)^{1/p} \leq \left\|\sum a_i x_i\right\| \leq (1+\varepsilon) \left(\sum |a_i|^p\right)^{1/p},$$

and if ε is sufficiently small then there exists disjoint measurable sets $\{A_i: i \in \mathbb{N}\}\$ such that $||x_i|_{A_i^c}|| < a_1(p, \varepsilon)$, where A_i^c denotes the complement of A_i . Moreover, $a_1(p, \varepsilon) \to 0$ as $\varepsilon \to 0$.

(b) [12] If $\{x_i: i \in \mathbb{N}\}$ is as in (a) and $\{A_i: i \in \mathbb{N}\}$ is a set of disjoint measurable sets such that

$$\int_{\mathcal{A}_i} |x_i|^P d\nu \ge c \quad \text{for all } i \in \mathbf{N}$$

then

$$\left\|\sum a_i x_i\right|_{\mathcal{A}_i^c} \le a(\varepsilon, c) \left(\sum |a_i|^p\right)^{1/p}$$

for all sets of scalars $\{a_i: i \in \mathbb{N}\}$ with finitely many non-zero, and $a(\varepsilon, c) \rightarrow 0$ as $\varepsilon \rightarrow 0$ and $c \rightarrow 1$.

(c) [9], [2]. Suppose that X is a $\mathscr{L}_{p,\lambda}$ subspace of L_p and that $\{P_n: n \in \mathbb{N}\}$ is a sequence of projections from L_p onto $X_n \subset X$ which on X converge in the strong operator topology to the identity on X. Then if $\sup ||P_n|| = \lambda'$ is close enough to one there is a projection P from L_p onto X with $||P|| \leq K(p,\lambda')$ such that $K(p,\lambda') \to 1$ as $\lambda' \to 1$.

We will use standard notation and facts from Banach space theory as may be found in the books of Lindenstrauss and Tzafriri [3]. We will make one particular abuse of notation which deserves comment. If $f \in L_1$ then f acts a functional on C[0, 1], namely by $\langle f, g \rangle = \int gf d\lambda$ however we will at times simply write f even when we are thinking of the measure $\nu(A) = \int_A f d\lambda$ as an element of $C[0, 1]^*$. Also we will assume that the scalar field is the reals although simple modifications will give the same results in complex case. Finally let us mention a simple inequality for L_p , $p \ge 1$, which we will frequently use without comment

(0.3)
$$\left| \|z\|_{p}^{p} - \|x\|_{p}^{p} \right| \leq p\|z - x\|_{p}, \quad \max(\|x\|, \|z\|) \leq 1.$$

1. Representations of operators. In this section we present a way of looking at the isometric results (Theorem 0.1) that will motivate the approach we take to investigate $\mathscr{L}_{p,\lambda}$ for small λ . The representations that we get are essentially known for general classes of operators but our proofs use some special properties of the operators and allow us to conclude that the vector valued functions involved have special properties.

Our first proposition is about conditional expectation operators. The representation itself is the same as in [6], p. 499, (see also [7]).

PROPOSITION 1.1. Suppose that \mathscr{G} is a sub- σ -algebra of the Lebesgue measurable subsets, \mathscr{B} , of [0,1]. Then, there is a w^* Borel measurable function g: $[0,1] \rightarrow \mathscr{P}$ where \mathscr{P} denotes the probability measures on [0,1] such that

(a)

$$\mathscr{E}(f|\mathscr{G}) = \frac{d}{d\lambda} \int f(\omega)g(\omega) \, d\lambda$$

where

$$\left\langle \int f(\omega)g(\omega)\,d\lambda,\,h\right\rangle = \int f(\omega)\langle g(\omega),\,h\rangle\,d\lambda \quad \text{for all }h\in C[0,1].$$

(b) range g = uvb l₁(Γ) (usual unit vector basis of l₁(Γ)).
(c)

$$\int_{G} g(\omega) d\lambda|_{G} = \int_{G} g(\omega) d\lambda \quad \text{for all } G \in \mathscr{G}.$$

Conversely if g is a \mathscr{G} to w* Borel measurable function from [0,1] to \mathscr{P} satisfying (c) and, for all $G \in \mathscr{G}$, $\int_G g(\omega) d\lambda$ is absolutely continuous with respect to λ then, there is a function $h \in L_1$ such that

$$\mathscr{E}(f|\mathscr{G})h = \frac{d}{d\lambda}\int f(\omega)g(\omega)\,d\lambda \quad \text{for all } f \in L_1.$$

Proof. Let $\mathscr{G}_1 \subset \mathscr{G}_2 \subset \cdots \subset \mathscr{G}_n \cdots$ be a sequence of finite sub- σ -algebras of \mathscr{G} which generate \mathscr{G} and let $\{A_{nk}\}_{k=1}^{k(n)}$ be the atoms of \mathscr{G}_n . Define

$$g_n(\omega) = \sum_{k=1}^{k(n)} 1_{A_{nk}}(\omega) \lambda(A_{nk})^{-1} \lambda|_{A_{nk}}(\omega) \lambda(A_{nk})^{-1} \lambda(A_{nk})^{$$

 (g_n) is a martingale valued in \mathscr{P} and by the Martingale Convergence Theorem $(\langle g_n, h \rangle)$ converges a.e. for each $h \in C[0, 1]$. Because C[0, 1] is separable it follows that the exceptional set may be chosen independent of h and thus (g_n) converges w^* a.e. to a function $g: [0, 1] \to \mathscr{P}$. Clearly g is \mathscr{G} to w^* Borel measurable and thus the operator

$$Tf = \int fg \, d\lambda$$

satisfies $Tf = T\mathscr{E}(f|\mathscr{G})$ for all $f \in L_1$. Now suppose that f is a \mathscr{G}_n measurable function,

$$f = \sum_{k=1}^{k(n)} a_k \mathbf{1}_{A_{nk}}.$$

So

$$Tf = \sum_{k=1}^{k(n)} a_k \int_{A_{nk}} g \, d\lambda = \sum_{k=1}^{k(n)} a_k \lambda |_{A_{nk}}$$

and hence

$$\frac{dTf}{d\lambda} = \sum_{k=1}^{k(n)} a_k \mathbf{1}_{A_{nk}} = f.$$

Because such functions are dense in $L_1(\mathcal{G}, \lambda)$, (a) follows. (c) is an obvious consequence of (a).

To prove (b) we will show that for each *n* there are sets $A'_{nk} \subset A_{nk}$ with $\lambda(A'_{nk}) = \lambda(A_{nk})$ such that if $w_k \in A'_{nk}$, $k = 1, 2, ..., k(n), (g(w_k))$ ~ uvb $l_1^{k(n)}$. Indeed for each $s \in \mathbb{N}$ choose $F_k^{s-1} \subset F_k^s \subset A_{nk}$, a closed subset such that $\lambda(A_{nk} \setminus F_k^s) < 2^{-2}\lambda(A_{nk})$ and let $(f_k^s)_{k=1}^{k(n)}$ be a partition of unity on [0, 1] such that

$$f_k^s(\omega) = \begin{cases} 1, & \omega \in F_k^s, \\ 0, & \omega \in F_{k'}^s, \ k' \neq k, \end{cases}$$

i.e., subordinate to $\{(\bigcup_{k'\neq k} F_{k'}^s)^c: k = 1, 2, \dots, k(n)\}$. We have that

$$\left\langle \int_{A_{nk}} g \, d\lambda, \, f_k^s \right\rangle = \int_{A_{nk}} \langle g(\omega), \, f_k^s \rangle \, d\lambda(\omega) = \lim_l \int_{A_{nk}} \langle g_l(\omega), \, f_k^s \rangle \, d\lambda$$
$$= \lim_l \int_{A_{nk}} \sum_{r=1}^{k(l)} \lambda(A_{lr})^{-1} \int_{A_{lr}} f_k^s \, d\lambda(1_{A_{lr}}) \, d\lambda = \lim_l \sum_{A_{lr} \subset A_{nk}} \int_{A_{lr}} f_k^s \, d\lambda$$
$$\geq \lim_l \sum_{A_{lr} \subset A_{nk}} \lambda(A_{lr} \cap F_k^s) = \lambda(F_k^s) \ge (1 - 2^{-s}) \lambda(A_{nk}).$$

Hence

$$B_k^s = \left\{ \omega \colon \langle g(\omega), f_k^s \rangle > 1 - 2^{-s/2}, \, \omega \in A_{nk} \right\}$$

is a subset of A_{nk} of measure at least $(1 - 2^{-s/2})\lambda(A_{nk})$. If $\omega_k \in \lim_s B_k^s$ for each k then $\langle g(\omega_k), f_k^s \rangle > 1 - 2^{-s/2}$ and necessarily $\sum_{k' \neq k} \langle g(\omega_k), f_{k'}^s \rangle < 2^{-s/2}$ for all s. Thus $(g(\omega_k))$ is one equivalent to the usual unit vector basis of $l_1^{k(n)}$. Clearly $\lambda(\liminf_s B_k^s) = \lambda(A_{nk})$ for each k, proving our claim and (b) because $g(\omega) \neq g(\omega')$ only if there is an n and a k such that $\omega \in A_{nk}$ and $\omega' \notin A_{nk}$. (To be precise we may have to alter g on a set of measure zero.)

For the converse let $h = (d/d\lambda) \int_{\Omega} g d\lambda$. Clearly the operator $Tf = (d/d\lambda) \int fg d\lambda$ is a norm one operator on L_1 and $Tf = T\mathscr{E}(f|\mathscr{G})$. Suppose that f is \mathscr{G}_n measurable and $f = \sum_{k=1}^{k(n)} a_k \mathbf{1}_{A_{n^k}}$. Then

$$Tf = \sum_{k=1}^{k(n)} a_k \frac{d}{d\lambda} \int_{A_{nk}} g \, d\lambda = \sum_{k=1}^{k(n)} a_k h \mathbf{1}_{A_{nk}} \quad (by (c))$$
$$= \mathscr{E}\left(\sum_{k=1}^{k(n)} a_k \mathbf{1}_{A_{nk}} | \mathscr{G} \right) h,$$

proving the result.

Our interest in the contractive case and thus in conditional expectation operators arises from the results in [1]. There we showed that a subspace X of L_p which is close in the Banach Mazur distance to $L_p(\nu)$ is actually a perturbation of a subspace Y of L_p which is isometric to $L_p(\nu)$. Thus if it is true that a $\mathscr{L}_{p,\lambda}$ subspace of L_p for small λ is isomorphic to $L_p(\nu)$ and the distance goes to one as λ goes to one, then there must be an isometric copy of $L_p(\nu)$ nearby. Moreover the standard projection as in Theorem 0.1(b) would then be an isomorphism on the $\mathscr{L}_{p,\lambda}$ subspace. Hence we are looking for a function g as above and a change of measure and sign (the h in Theorem 0.1(a)).

Our next result shows that functions like g in the previous result play a role in isometries as well. Before stating the result we need to introduce a definition.

DEFINITION. Suppose $g: [0,1] \to C(K)^*$, K compact metric, is w^* Borel measurable and bounded. Then we will say that g is *disjointness* preserving on a σ -algebra \mathscr{G} with respect to a measure μ if for every G_1 and G_2 in \mathscr{G} , $G_1 \cap G_2 = \emptyset$ then

$$\int_{G_1} g\,d\mu \perp \int_{G_2} g\,d\mu.$$

Note that condition (c) of Proposition 1.1 guarantees that the function there is disjointness preserving on \mathscr{G} .

PROPOSITION 1.2. Let X be a subspace of L_1 isometric to $L_1(\nu)$ and suppose that $X = \{f \cdot h | f \in L_1(\mathcal{G}, |h| d\lambda)\}$ where \mathcal{G} is a sub- σ -algebra of \mathcal{B} and $h \in L_1$ such that $\mathscr{E}(|h||\mathcal{G}) = 1_{\text{supp }h}$. Then an operator T: $X \to C(K)^*$, K compact metric, is an isometry if and only if there is a \mathcal{G} to w^* Borel measurable function g: $[0,1] \to C(K)^*$ with ||g(w)|| = 1 a.e. $|h| d\lambda$ such that g is disjointness preserving on \mathcal{G} with respect to $|h| d\lambda$ and

$$Tf = \int f(\operatorname{sgn} h) g \, d\lambda$$

Moreover, range $g = \text{uvb} l_1(\Gamma)$, (except on a set of measure zero) for some index set Γ .

Proof. As in the proof of Proposition 1.1 let (\mathscr{G}_n) be a nested sequence of finite sub- σ -algebras of \mathscr{G} which generate \mathscr{G} and let $(A_{nk})_{k=1}^{k(n)}$ be the atoms of \mathscr{G}_n .

Assume that T is an isometry.

Define $g_n: [0,1] \to C(K)^*$ by

$$g_{n}(\omega) = \sum_{k=1}^{k(n)} \left[\int_{A_{nk}} |h| d\lambda \right]^{-1} T(h \mathbf{1}_{A_{nk}}) \mathbf{1}_{A_{nk}}(\omega).$$

As before (g_n) is a martingale but with respect to $|h| d\lambda$ and thus converges w^* a.e. $|h| d\lambda$ to a function $g: [0, 1] \to C(K)^*$.

Define S: $L_1 \rightarrow C(K)^*$ by

$$Sf = \int (\operatorname{sgn} h) fg \, d\lambda.$$

For each n and k

$$Sh1_{A_{nk}} = \int_{A_{nk}} |h| g d\lambda = \int_{A_{nk}} |h| g_n d\lambda = T(h1_{A_{nk}})$$

and thus $T = S|_X$.

Because

$$||f \cdot h|| = ||T(f \cdot h)|| = ||\int fg(h) d\lambda|| \le \int |f| ||g|| |h| d\lambda,$$

 $||g(\omega)|| = 1$ a.e. $|h| d\lambda(||g(\omega)|| \le 1$ because $||g_n(\omega)|| = 1$ for all $\omega \in [0, 1]$). Finally it is well known that for an isometry T of $L_1(\gamma)$ into $L_1(\mu)$, if $|f_1| \land |f_2| = 0$, $|Tf_1| \land |Tf_2| = 0$. Hence g is disjointness preserving on \mathscr{G} with respect to $|h| d\lambda$.

For the converse suppose that g is given and

$$Tf = \int f(\operatorname{sgn} h) g \, d\lambda.$$

 $\mathscr{L}_{p,\lambda}$ SPACES

Because g is disjointness preserving, if $f = \sum_{k=1}^{k(n)} a_n \mathbf{1}_{A_{nk}}$

$$||Tf|| = \left\| \sum_{k=1}^{k(n)} a_k \int_{A_{nk}} g|h| d\lambda \right\| = \sum_{k=1}^{k(n)} |a_k| \left\| \int_{A_{nk}} g|h| d\lambda \right\|.$$

Thus T will be an isometry if and only if $\|\int_{A_{nk}} g|h| d\lambda \| = \int_{A_{nk}} |h| d\lambda$, for all n and k.

Let $g_n = \mathscr{E}(g|\mathscr{G}_n)$ (the expected value is with respect to $|h| d\lambda$.) $g_n \to g \ w^*$ a.e. $|h| d\lambda$. Because $||g(\omega)|| = 1$ a.e. $|h| d\lambda$, $\lim ||g_n(\omega)|| = 1$ a.e. $|h| d\lambda$.

Let $\varepsilon > 0$ and choose *l* such that

$$\int_{\{\omega: \|g_l(\omega)\|\geq 1-\varepsilon\}\cap A_{nk}} |h| d\lambda \geq (1-\varepsilon) \int_{A_{nk}} |h| d\lambda.$$

Then

$$\begin{split} \left\| \int \mathbf{1}_{A_{nk}} g|h| d\lambda \right\| &= \sum_{A_{lr} \subset A_{nk}} \left\| \int_{A_{lr}} g|h| d\lambda \right\| \\ &= \sum_{A_{lr} \subset A_{nk}} \left\| \int_{A_{lr}} g_{l}|h| d\lambda \right\| = \sum_{A_{lr} \subset A_{nk}} \int_{A_{lr}} \|g_{l}\| \|h| d\lambda \\ &= \int_{A_{nk}} \|g_{l}\| \|h| d\lambda \ge (1-\varepsilon)^{2} \int_{A_{nk}} |h| d\lambda. \end{split}$$

Because ε was arbitrary $\|\int_{A_{nk}} g|h| d\lambda \| = \int_{A_{nk}} |h| d\lambda$, as required.

The "moreover" assertion is proved in a similar manner to the proof of (b) of Proposition 1.1 once we observe that the condition of preserving disjointness implies that there is a nested family (\mathscr{G}'_n) of σ -algebras of subsets of K and atoms $(A'_{nk})_{k=1}^{k(n)}$ of \mathscr{G}'_n such that

$$\int_{A_{nk}} g|h| d\lambda|_{A'_{nk}} = \int_{A_{nk}} g|h| d\lambda$$

for each n, k. We omit the details.

REMARK 1.3. The condition range $g = \text{uvb } l_1$ is not sufficient to guarantee that g is disjointness preserving. Indeed let

$$g(t) = \begin{cases} \lambda, & t \in \left[0, \frac{1}{2}\right], \\ \frac{\delta_t + \delta_{t-1/2}}{2}, & t \in \left[\frac{1}{2}, 1\right]. \end{cases}$$

Then

$$\int_{0}^{1/2} g(t) d\lambda = \frac{\lambda}{2} \text{ and } \int_{1/2}^{1} g(t) d\lambda$$
$$= \frac{1}{2} \left[\int_{1/2}^{1} \delta_{t} d\lambda + \int_{1/2}^{1} \delta_{t-1/2} d\lambda \right] = \frac{\lambda}{2} \Big|_{[1/2,1]} + \frac{\lambda}{2} \Big|_{[0,1/2]} = \frac{\lambda}{2}.$$

REMARK 1.4. An "isomorphic" version of disjointness preserving would be that there exist $\delta > 0$ such that if $G_1, G_2, \ldots, G_n \in \mathscr{G}$, disjoint, then

$$\left\|\sum_{i=1}^{n} \frac{a_i}{\lambda[G_i]} \int_{G_i} g \, d\lambda\right\| \ge \delta \sum_{i=1}^{n} |a_i|$$

for all scalars (a_i) . It follows easily from this that $Tf = \int fg d\lambda$ is an isomorphism of $L_1(\mathcal{G}, \lambda)$ into $C(K)^*$.

Because we are searching for isometric copies of $L_p(\gamma)$ in L_p which are perturbations of \mathscr{L}_p subspaces in L_p there is little difference between the case p = 1 and p > 1. More precisely

PROPOSITION 1.5. Suppose S is an isometry from the subspace $X = \{ fh: f \in L_p(\mathcal{G}, |h|^p d\lambda) \}, \mathscr{E}(|h|^p | \mathcal{G}) = 1, of L_p into L_p(\Omega, \mathcal{F}, \nu).$ Then, (i) the nonlinear bijections

$$V: L_p \to L_1 \text{ and } U: L_1(\Omega, \mathscr{F}, \nu) \to L_p(\Omega, \mathscr{F}, \nu) \text{ defined by}$$
$$(Vg)(\omega) = |g(\omega)|^{p-1} |g(\omega) \text{ and}$$
$$(Ug)(\omega) = |g(\omega)|^{(1-p)/p} g(\omega)$$

are uniformly continuous on bounded sets and

(ii) the operator

 $T = U^{-1}SV^{-1} \text{ is a linear isometry from}$ $X^{p} = \left\{ f \cdot |h|^{p-1}h: f \in L_{1}(\mathscr{G}, |h|^{p} d\mu) \right\} \text{ into } L_{1}(\Omega, \mathscr{F}, \nu).$

(iii) $Qg = U(\mathscr{E}(V(g) \operatorname{sgn} h|\mathscr{G}))V(h)$ is a (nonlinear) projection of L_p onto X.

We believe that this proposition is essentially known although we do not have a suitable reference. We will simply outline the proof: $\mathscr{L}_{p,\lambda}$ SPACES

The uniform continuity of U follows from the simple inequalities

$$|s^p - t^p| \ge |s - t|^p$$
 for $s, t \ge 0, s, t \in \mathbf{R}$

and

$$(|s|+|t|)^{1/p} \ge \frac{|s|^{1/p}+|t|^{1/p}}{2^{(p-1)/p}}$$
 for all $s, t \in \mathbf{R}$.

For V we use another inequality: for any $\varepsilon > 0$ there is a constant K such that

$$K|s-t| \ge ||s|^{p-1}s - |t|^{p-1}t|^{1/p}$$
 for $s, t \in R$

such that $s < (1 - \varepsilon)t$ or $t < (1 - \varepsilon)s$. This inequality can be proved with simple calculus.

To see that T is a linear isometry one checks the result on function of the form $f \cdot |h|^{p-1}h$ where f is simple and one uses the fact that S must send disjoint functions to disjoint functions.

It is easy to verify (iii).

2. $\mathscr{L}_{p,\lambda}$ descriptions. In this section we will show that given a nested sequence of finite dimensional subspaces X_n , n = 1, 2, ..., of a $\mathscr{L}_{p,\lambda}$ subspace X of L_p such that $\overline{UX_n} = X$ and $d(X_n, l_p^{\dim X_n}) < \lambda'$ with λ' close to 1 that we can find a sequence of finite dimensional subspaces Y_k , k = 1, 2, ..., of X which are almost nested, $[Y_k: k \in \mathbb{N}] = X$, and the Y_k 's have nicer properties than the X_n 's. The intuition for the arguments is most apparent for the case p = 1, so the reader may find it helpful to assume that p = 1. Let us also note that we will not keep track of the actual values of the estimates which occur in the arguments and we have made no effort to keep them smaller than necessary to achieve qualitative results.

Let us begin by fixing a \mathscr{L}_p description of X which we will use throughout this section. Thus we have for each n a subspace X_n of X with dim $X_n = k(n)$ and $(x_k^n)_{k=1}^{k(n)} \subset X_n$ such that the operator $T_n: l_p^{k(n)} \to X_n$ defined by

$$T_n e_k^n = x_k^n$$
 where $e_k^n = (0, 0, \dots, 0, 1, 0, \dots, 0)$ ("1" in the k th place)

is an isomorphism with $||T_n|| < \lambda_1$, $||T_n^{-1}|| < \lambda_1$, $||x_k^n|| = 1$, for each k and $n, X_n \subset X_{n+1}$, and $\overline{UX_n} = X$.

Our first lemma shows that there are natural descendents of elements on the upper levels on all lower levels. (We will speak of downward as the direction of greater dimension, i.e., (x_k^{n-1}) is above (x_k^n) .) The reader should think of the normalized (in L_p) indicator functions of dyadic intervals in [0, 1] as the ideal case. In that case the descendents are normalized restrictions of upper level functions to smaller sets.

We will adopt the notational convention that indicator functions will be written as the set alone, i.e., $f1_A = fA$ and to prevent confusion we will use capital Roman letters from the first part of the alphabet to denote subsets of [0, 1].

LEMMA 2.1. For each $n \in \mathbb{N}$ and $k \in \{1, 2, ..., k(n)\}$ there is a measurable subset $A_k^n \subset [0, 1]$ and for each l > n there is a subset \mathscr{A}_k^{nl} of $\{1, 2, ..., k(l)\}$ such that

(a) $\inf\{|x_k^n(\omega)|: \omega \in A_k^n\} > 0$ (b) for each $s \in \mathscr{A}_k^{nl}$, there is $\sigma = \pm 1$ such that

$$\left\|x_k^n\left(A_k^n\cap A_s^l\right)-\sigma x_s^l\right\|x_k^n\left(A_k^n\cap A_n^l\right)\right\|\right\| < a_2(\lambda_1)\left\|x_k^n\left(A_k^n\cap A_s^l\right)\right\|$$

and

$$\left\|x_k^n (A_k^n \cap A_s^l)\right\| \neq 0.$$

(c) $||x_k^n(A_k^n \cap \bigcup \{A_s^l: s \in \mathscr{A}_k^{nl}\})|| > 1 - a_2(\lambda_1)$ (d) $a_2(\lambda_1) \to 0$ as $\lambda_1 \to 1$.

Proof. By Theorem 0.2 for each $n \in \mathbb{N}$ there are disjoint measurable sets $A_k^n \subset [0, 1], k = 1, 2, ..., k(n)$ such that

$$\left\|x_k^n(A_k^n)^c\right\| < a_1(p,\lambda_1-1).$$

Clearly we may assume that $\inf |x_k^n(\omega)|$: $\omega \in A_k^n > 0$, by passing to slightly smaller sets.

Suppose $x_k^n = \sum a_s x_s^l$, l > n. By Theorem 0.2(b)

$$\begin{split} \left\| \sum a_{s} x_{s}^{\prime} (A_{s})^{c} \right\| &\leq \left(\sum |a_{s}|^{p} \right)^{1/p} a \left(\lambda_{1} - 1, 1 - a_{1} (p, \lambda_{1} - 1)^{p} \right) \\ &\leq \lambda_{1} a \left(\lambda_{1} - 1, 1 - a_{1} (p, \lambda_{1} - 1)^{p} \right) \end{split}$$

and consequently

$$\begin{aligned} \left\| x_{k}^{n}(A_{k}^{n}) - \sum a_{s} x_{s}^{l}(A_{s}^{l}) \right\| \\ &\leq a_{1}(p,\lambda_{1}-1) + \lambda_{1} a \big(\lambda_{1}-1, \big(1-a_{1}(p,\lambda_{1}-1)^{p}\big)\big) \\ &= b_{1}(p,\lambda_{1}) - \lambda_{1} a_{1}(p,\lambda_{1}-1). \end{aligned}$$

Also

$$\begin{aligned} \left\| x_k^n(A_k^n) - \sum_s a_s x_s^l(A_s^l) \right\| \\ &\geq \left(\sum_s \left\| x_k^n(A_k^n \cap A_s^l) - a_s x_s^l(A_s^l) \right\|^p \right)^{1/p} \\ &\geq \left(\sum_s \left| \operatorname{sgn} a_s \right\| x_k^n(A_k^n \cap A_s^l) \right\| - a_s \right|^p \right)^{1/p} - \lambda_1 a_1(p, \lambda_1 - 1) \\ &\geq \left\| \sum_s \operatorname{sgn} a_s \right\| x_k^n(A_k^n \cap A_s^l) \left\| x_s^l(A_s^l) - \sum a_s x_s^l(A_s^l) \right\| \\ &- \lambda_1 a_1(p, \lambda_1 - 1). \end{aligned}$$

Let $\rho > 0$ and let

$$\mathscr{B}_{\rho} = \left\{ s \colon \left\| x_{k}^{n} (A_{k}^{n} \cap A_{s}^{l}) - (\operatorname{sgn} a_{s}) x_{s}^{l} \right\| x_{k}^{n} (A_{k}^{n} \cap A_{s}^{l}) \left\| \right\| \\ > \rho \left\| x_{k}^{n} (A_{k}^{n} \cap A_{s}^{l}) \right\| \right\}$$

and

$$\mathscr{A}_{k}^{nl} = \left\{ s \colon \left\| x_{k}^{n} \left(A_{k}^{n} \cap A_{s}^{l} \right) \right\| \neq 0 \text{ and } s \notin \mathscr{B}_{\rho} \right\}.$$

We have that

$$2b_{1}(p,\lambda_{1}) \geq \left\| x_{k}^{n}(A_{k}^{n}) - \sum_{s} \operatorname{sgn} a_{s} \right\| x_{k}^{n}(A_{k}^{n} \cap A_{s}^{l}) \left\| x_{s}^{l}(A_{s}^{l}) \right\|$$
$$\geq \left(\sum_{s} \left\| x_{k}^{n}(A_{k}^{n} \cap A_{s}^{l}) - \operatorname{sgn} a_{s} \right\| x_{k}^{n}(A_{k}^{n} \cap A_{s}^{l}) \left\| x_{s}^{l}(A_{s}^{l}) \right\|^{p} \right)^{1/p}$$
$$\geq \rho \left(\sum_{s \in \mathscr{B}_{p}} \left\| x_{k}^{n}(A_{k}^{n} \cap A_{s}^{l}) \right\|^{p} \right)^{1/p}$$
$$- \left(\sum_{s \in \mathscr{B}_{p}} \left\| x_{k}^{n}(A_{k}^{n} \cap A_{s}^{l}) \right\|^{p} \right\| x_{s}^{l}(A_{s}^{l})^{c} \right\|^{p} \right)^{1/p}$$
$$\geq \rho \left(\sum_{s \in \mathscr{B}_{p}} \left\| x_{k}^{n}(A_{k}^{n} \cap A_{s}^{l}) \right\|^{p} \right)^{1/p} - a_{1}(p,\lambda_{1}-1).$$

Thus

$$\begin{split} \left\| x_{k}^{n} \left(A_{k}^{n} \cap \bigcup \left\{ A_{s}^{l} : s \in \mathscr{A}_{k}^{nl} \right\} \right) \right\| &= \left(\sum_{s \in \mathscr{A}_{k}^{nl}} \left\| x_{k}^{n} \left(A_{k}^{n} \cap A_{s}^{l} \right) \right\|^{p} \right)^{1/p} \\ &\geq \left(\sum_{s} \left\| x_{k}^{n} \left(A_{k}^{n} \cap A_{s}^{l} \right) \right\|^{p} \right)^{1/p} - \left(\sum_{s \in \mathscr{B}_{p}} \left\| x_{k}^{n} \left(A_{k}^{n} \cap A_{s}^{l} \right) \right\|^{p} \right)^{1/p} \\ &\geq \left\| x_{k}^{n} \left(A_{k}^{n} \cap \bigcup \left\{ A_{s}^{l} : s = 1, 2, \dots, k\left(l \right) \right\} \right) \right\| \\ &- \frac{\left(2b_{1}(p,\lambda_{1}) + a_{1}(p,\lambda_{1} - 1) \right)}{\rho} \\ &\geq \left\| x_{k}^{n} \right\| - \left(\left\| x_{k}^{n} - \sum_{s} a_{s} x_{s}^{l} \left(A_{s}^{l} \right) \right\| \\ &+ \left\| \sum_{s} a_{s} x_{s}^{l} \left(A_{s}^{l} \right) \\ &- \frac{\left(2b_{1}(p,\lambda_{1}) + a_{1}(p,\lambda_{1} - 1) \right)}{\rho} \\ &\geq 1 - 2b_{1}(p,\lambda_{1}) - \frac{\left(2b_{1}(p,\lambda_{1}) + a_{1}(p,\lambda_{1} - 1) \right)}{\rho}. \end{split}$$

Hence if $\rho = \sqrt{2b_1(p,\lambda_1) + a_1(p,\lambda_1 - 1)}$ and $a_2(\lambda_1) = 2b_1(p,\lambda_1) + \sqrt{2b_1(p,\lambda_1) + a_1(p,\lambda_1 - 1)}$, (b), (c) and (d) will be satisfied.

While this lemma gives us for each level n a nearby isometric copy of $l_p^{k(n)}$ there is no apparent relationship between the sets chosen for one level and those for lower levels. To help understand this difficulty consider the following simple example.

EXAMPLE 2.2. Fix $\varepsilon > 0$ and let (B_n) be an infinite sequence of (stochastically) independent subsets of $[\frac{1}{2} - \varepsilon, \frac{1}{2} + \varepsilon)$ with normalized Lebesgue measure and let $X_1 = [1_{[0,\frac{1}{2}+\varepsilon)}, 1_{[\frac{1}{2}-\varepsilon,1]}]$. If we apply Dor's result (Proposition 0.2(a)) to $x_1 = 1_{[0,\frac{1}{2}+\varepsilon)}, x_2 = 1_{[\frac{1}{2}-\varepsilon,1]}$ any of the pairs of sets $C_1^n = [0, \frac{1}{2} - \varepsilon) \cup B_n$, $C_2^n = [\frac{1}{2} - \varepsilon, 1) \setminus B_n$ satisfy the conclusion. Now suppose that $X_1 \subset X_2 \subset \cdots$ is the first of the spaces in the $\mathscr{L}_{p,\lambda}$ description of X. It is conceivable that in choosing sets A_k^l for the space $X_l, \bigcup \{A_k^l: k \in \mathscr{A}_1^{1l}\} = C_1^l$ and $\bigcup \{A_k^l: k \in \mathscr{A}_2^{1l}\} = C_2^l$. Thus there is no consistency in the choice of sets.

The next proposition is actually the key step in our refinement of the \mathscr{L}_p description of X. It will allow us to fix the shape (change of measure) for X. Thus we will be able to determine a function like h in Theorem 0.1(a). The notation in this lemma is the same as in the previous lemma.

PROPOSITION 2.3. There exist a sequence $z_i = x_{k(i)}^{n(i)}$, i = 1, 2, ..., aninfinite subset $M \subset \mathbb{N}$ and for each $i \in \mathbb{N}$ and $l \in M$, $l \ge l(i)$, there is a set $\mathscr{B}_i^l \subset \{1, 2, ..., k(l)\}$ such that

(a) $\mathscr{B}_i^l \cap \mathscr{B}_i^l = \emptyset$ for all $i \neq j, l \in M$

(b) $||z_i(B_i \cap \bigcup \{A_j^l; j \in \mathcal{B}_i^l\})|| > 1 - a_3(\lambda_1)$ for each $i \in N$ and $l \in M$, $l \ge l(i)$ where $B_i = A_{k(i)}^{n(i)}$

(c) for all $f \in X$

$$\overline{\lim_{i \in \mathcal{M}}} d\Big(f, \Big[x_j^i: j \in \mathscr{B}_i^i, i = 1, 2, \dots\Big]\Big) < a_3(\lambda_1) \|f\|$$

(d) if $s \in \mathscr{B}_i^l$ there is a set $B_s^l \subset A_s^l$ such that $||z_i(B_i \cap B_s^l)|| \neq 0$ and

$$\left\|z_i\left(B_i\cap B_s^l\right)-\sigma\right\|z_i\left(B_i\cap B_s^l\right)\left\|x_s^l\left(A_s^l\right)\right\| < a_3(\lambda_1)\left\|z_i\left(B_i\cap B_s^l\right)\right\|$$

where $\sigma = \pm 1$.

(e)
$$a_3(\lambda_1) = a_3(\lambda_1, p) \rightarrow 0 \text{ as } \lambda_1 \rightarrow 1.$$

Proof. We will determine the sequence (z_i) by examining each x_k^n in the order (k, n) < (k', n') if and only if n < n', or k < k' and n = n'. Let $\varepsilon > 0$. (We will place conditions on ε later.)

To begin the process let $z_1 = x_1^l$, $B_1 = A_1^l$ and $\mathscr{C}_1^l = \mathscr{A}_1^{ll}$ for $l = 1, 2, \ldots$, where \mathscr{A}_1^{ll} is as in Lemma 2.1, and $M_1 = \mathbb{N}$. Now suppose that we have chosen z_i for $i = 1, 2, \ldots, j$, $B_i = A_{k(i)}^{n(i)}$, $M_i \subset M_{i-1} \subset \mathbb{N}$ infinite, and $\mathscr{C}_i^l = \mathscr{A}_{k(i)}^{n(i)l}$ for $l \ge l(i)$, $l \in M_i$.

We next consider each x_k^n , (k(j), n(j)) < (k, n) until we find the first (k, n) such that

(1)
$$\overline{\lim}_{l \in M_{j}} \inf \left\{ \left\| x_{k}^{n} - \sum_{i=1}^{j} \sum_{s \in \mathscr{C}_{i}^{j}} \sigma_{s} \right\| x_{k}^{n} (A_{s}^{i} \cap A_{k}^{n}) \left\| x_{s}^{i} (A_{s}^{i} \cap B_{i}) \right\| :$$
$$\sigma_{s} = \pm 1 \right\} > 1 - \varepsilon.$$

Let $z_{j+1} = x_k^n$ (k = k(j + 1), n = n(j + 1)).

If no such x_k^n exists then the sequence (z_i) terminates at j. Assuming we have z_{i+1} let

$$B_{j+1} = A_{k(j+1)}^{n(j+1)}, \quad \mathscr{C}_{j+1} = \mathscr{A}_{k(j+1)}^{n(j+1)l} \setminus \bigcup \left\{ \mathscr{C}_i^l \colon i \leq j \right\}$$

and let $M_{j+1} \subset M_j$ so that the limit in (1) over M_{j+1} exists and equals the limit superior.

Thus we have defined the sequence (z_j) and by a simple diagonalization argument we can find an infinite subset M of N so that $M \setminus M_j$ is finite for each j. Note that the sets \mathscr{C}_j^l , j = 1, 2, ..., are disjoint for each l. We will first prove

(b')
$$\left\|z_i\left(B_i \cap \bigcup\left\{A_j^l: j \in \mathscr{C}_i^l\right\}\right)\right\| > 1 - b_3(\lambda_1)$$

for each *i*, and $l \in M$, *l* sufficiently large, where

 $b_3(\lambda_1) \rightarrow 0$ as $\lambda_1 \rightarrow 1$.

First we estimate

$$\left\| z_i - \sum_{s \in \mathscr{A}_{k(i)}^{n(i)l}} \sigma_s \right\| z_i (B_i \cap A_s^l) \left\| x_s^l (B_i \cap A_s^l) \right\|$$

where $\sigma_s = \pm 1$ is chosen as in Lemma 2.1(b).

$$\begin{aligned} \left\| z_{i} - \sum_{s \in \mathscr{A}_{k(i)}^{n(i)}} \sigma_{s} \| z_{i} (B_{i} \cap A_{s}^{l}) \| x_{s}^{l} (B_{i} \cap A_{s}^{l}) \| \\ \leq \left\| z_{i} - z_{i} (\bigcup \left\{ A_{s}^{l} \colon s \in \mathscr{A}_{k(i)}^{n(i)l} \right\} \cap B_{i}) \right\| \\ + \left(\sum_{s \in \mathscr{A}_{k(i)}^{n(i)l}} \| z_{i} (B_{i} \cap A_{s}^{l}) - \sigma_{s} \| z_{i} (B_{i} \cap A_{s}^{l}) \| x_{s}^{l} (A_{s}^{l}) \|^{p} \right)^{1/p} \\ \leq \left(1 - (1 - a_{2}(\lambda_{1}))^{p} \right)^{1/p} + \left(\sum_{s \in \mathscr{A}_{k(i)}^{n(i)l}} a_{2}(\lambda_{1})^{p} \| z_{i} (B_{i} \cap A_{s}^{l}) \|^{p} \right)^{1/p} \end{aligned}$$
(by Lemme 2)

(by Lemma 2.1)

$$\leq (1 - (1 - a_2(\lambda_1))^p)^{1/p} + a_2(\lambda_1) \leq (p+1)a_2(\lambda_1)^{1/p}$$
(assuming $a_2(\lambda_1) < 1$).

Thus

(2)
$$\left\|z_i - \sum_{s \in \mathscr{A}_{k(i)}^{n(i)l}} \sigma_s \|z_i (B_i \cap A_s^l)\| x_s^l (B_i \cap A_s^l)\right\| \le (p+1)a_2(\lambda_1)^{1/p}$$

and a minor change in the above argument gives

(2a)
$$\left\| z_i(B_i) - \sum_{s \in \mathscr{A}_{k(i)}^{n(i)l}} \sigma_s \right\| z_i(B_i \cap A_s^l) \left\| x_s^l(A_s^l) \right\| \le (p+1)a_2(\lambda_1)^{1/p}.$$

 $\mathscr{L}_{p,\lambda}$ SPACES

Also note that these estimates hold for any x_k^n , A_k^n in place of z_i , B_i . Next suppose that $j \in \mathscr{A}_{k(i)}^{n(i)l} \cap \bigcup_{s=1}^{i-1} \mathscr{C}_s^l$. Then for some $s \in \{1, 2, \ldots, i-1\}$, k = s and i, $\sigma_k = \pm 1$,

(3)
$$\| z_k (B_k \cap A_j^l) - \sigma_k \| z_k (B_k \cap A_j^l) \| x_j^l (B_k \cap A_j^l) \|$$

$$< a_2(\lambda_1) \| z_k (B_k \cap A_j^l) \|$$

and consequently

(4)
$$\left\| x_j^l \left(B_k \cap A_j^l \right) - x_j^l \right\|^p = 1 - \left\| x_j^l \left(B_k \cap A_j^l \right) \right\|^p$$

$$\leq p \left\| \frac{z_k \left(B_k \cap A_j^l \right)}{\left\| z_k \left(B_k \cap A_j^l \right) \right\|} - \sigma_k x_j^l \left(B_k \cap A_j^l \right) \right\| \leq pa_2(\lambda_1)$$

(by inequality 0.3).

Hence

Thus we have

(5)
$$\| \| z_i (B_i \cap A_j^l) \| x_j^l (B_i \cap A_j^l) - \| z_i (B_s \cap A_j^l) \| x_j^l (B_s \cap A_j^l) \|$$

 $\leq 5pa_2(\lambda_1)^{1/p} \| z_i (A_j^l) \| + \| z_i (B_s \cap A_j^l \cap B_i^c) \|.$

Now we are ready to estimate

$$\left\| z_i \left(B_i \cap \bigcup \left\{ A_j^l : j \in \mathscr{C}_i^l \right\} \right) \right\|.$$

For large $l \in M_i \cap M$

$$\begin{split} 1 &- \varepsilon < \left\| z_{i} - \sum_{j=1}^{i-1} \sum_{s \in \mathscr{G}_{j}^{i}} \sigma_{s} \right\| z_{i} (A_{s}^{i} \cap B_{j}) \left\| x_{s}^{i} (A_{s}^{i} \cap B_{j}) \right\| \\ &\leq \left\| z_{i} - \sum_{j=1}^{i-1} \sum_{s \in \mathscr{G}_{j}^{i} \cap \mathscr{G}_{k(i)}^{i(i)}} \sigma_{s} \right\| z_{i} (A_{s}^{i} \cap B_{i}) \left\| x_{s}^{i} (A_{s}^{i} \cap B_{i}) \right\| \\ &+ \left\| \sum_{j=1}^{i-1} \sum_{s \in \mathscr{G}_{j}^{i} \cap \mathscr{G}_{k(i)}^{i(i)}} \sigma_{s} \right\| z_{i} (A_{s}^{i} \cap B_{i}) \left\| x_{s}^{i} (A_{s}^{i} \cap B_{j}) \right\| \\ &- \sum_{j=1}^{i-1} \sum_{s \in \mathscr{G}_{j}^{i} \cap \mathscr{G}_{k(i)}^{i(i)}} \sigma_{s} \left\| z_{i} (A_{s}^{i} \cap B_{j}) \right\| \\ &+ \left\| \sum_{j=1}^{i-1} \sum_{s \in \mathscr{G}_{j}^{i} \cap \mathscr{G}_{k(i)}^{i(i)}} \left\| z_{i} (A_{s}^{i} \cap B_{j}) \right\| x_{s}^{i} (A_{s}^{i} \cap B_{j}) \right\| \\ &\leq \left\| z_{i} - \sum_{s \in \mathscr{G}_{k(i)}^{i(i)}} \sigma_{s} \right\| z_{i} (A_{s}^{i} \cap B_{i}) \left\| x_{s}^{i} (A_{s}^{i} \cap B_{i}) \right\| \\ &+ \left\| \sum_{s \in \mathscr{G}_{k(i)}^{i(i)} \setminus \bigcup (\mathscr{G}_{j}^{i} : j < i)} \sigma_{s} \right\| z_{i} (A_{s}^{i} \cap B_{i}) \left\| x_{s}^{i} (A_{s}^{i} \cap B_{i}) \right\| \\ &+ \left\| \sum_{s \in \mathscr{G}_{k(i)}^{i(i)} \setminus \bigcup (\mathscr{G}_{j}^{i} : j < i)} \sigma_{s} \right\| z_{i} (A_{s}^{i} \cap B_{i}) \left\| x_{s}^{i} (A_{s}^{i} \cap B_{i}) \right\| \\ &+ \left(\sum_{j=1}^{i-1} \sum_{s \in \mathscr{G}_{j}^{i}} \left\| \left\| z_{i} (A_{s}^{i} \cap B_{i}) \right\| \left\| x_{s}^{i} (A_{s}^{i} \cap B_{i}) \right\| \right\|^{p} \right)^{1/p} \\ &+ \left(\sum_{j=1}^{i-1} \sum_{s \in \mathscr{G}_{j}^{i} \setminus \mathscr{G}_{k(i)}^{i(i)}} \left\| z_{i} (A_{s}^{i} \cap B_{j}) \right\| \right\|^{p} \right)^{1/p} \end{split}$$

(by the triangle inequality and the disjointness of the sets A_s^l)

$$\leq (p+1)a_{2}(\lambda_{1})^{1/p} + \left\| \sum_{s \in \mathscr{A}_{k(i)}^{n(i)/} \setminus \bigcup\{\mathscr{G}_{j}^{l}: j < i\}} \sigma_{s} \| z_{i}(A_{s}^{l} \cap B_{i}) \| x_{s}^{l}(A_{s}^{l} \cap B_{i}) \| \right\| \\ + \left(\sum_{j=1}^{i-1} \sum_{s \in \mathscr{G}_{j}^{l}} \left(5pa_{2}(\lambda_{1})^{1/p} \| z_{i}(A_{s}^{l}) \| + \| z_{i}(B_{j} \cap A_{s}^{l} \cap B_{i}^{c}) \| \right)^{p} \right)^{1/p} \\ + \left\| z_{i} \left(\bigcup_{j=1}^{i-1} \bigcup_{s \in \mathscr{G}_{j}^{l} \setminus \mathscr{A}_{k(i)}^{n(i)/}} A_{s}^{l} \cap B_{j} \right) \right\| \quad (by (2) \text{ and } (5)) \\ \leq (p+1)a_{2}(\lambda_{1})^{1/p} + \left\| \sum_{s \in \mathscr{A}_{k(i)}^{n(i)/} \setminus \bigcup\{\mathscr{G}_{j}^{l}: j < i\}} \sigma_{s} \| z_{i}(A_{s}^{l} \cap B_{i}) \| x_{s}^{l}(A_{s}^{l} \cap B_{i}) \right\| \\ + 5pa_{2}(\lambda_{1})^{1/p} + \| z_{i}(B_{i}^{c}) \| + (p+1)a_{2}(\lambda_{1})^{1/p} \\ (we have used (2) \text{ and Lemma 2.1(c)})$$

Hence if $b(\lambda_1) = (7p + 3)a_2(\lambda_1)^{1/p}$

(6)
$$1 - \varepsilon - b(\lambda_1) < \left\| \sum_{s \in \mathscr{A}_{k(i)}^{n(i)} \setminus \bigcup \{ \mathscr{G}_j^{l:} | j < i \}} \sigma_s \| z_i (A_s^l \cap B_i) \| x_s^l (A_s^l \cap B_i) \| \right\|$$
$$(\| z_i (B_i^c) \| < a_1(p, \lambda_1 - 1)).$$

From this we see that

$$(7) |||z_{i}(B_{i} \cap \bigcup \{A_{s}^{l}: s \in \mathscr{C}_{i}^{l}\})|||$$

$$\geq |||\sum_{s \in \mathscr{C}_{i}^{l}} \sigma_{s}||z_{i}(A_{s}^{l} \cap B_{i})||x_{s}^{l}(A_{s}^{l} \cap B_{i})|||$$

$$- |||(z_{i} - \sum_{s \in \mathscr{C}_{i}^{l}} \sigma_{s}||z_{i}(A_{s}^{l} \cap B_{i})||x_{s}^{l}(A_{s}^{l} \cap B_{i})))$$

$$\cdot (B_{i} \cap \bigcup \{A_{s}^{l}: s \in \mathscr{C}_{i}^{l}\})|||$$

$$\geq 1 - \varepsilon - b(\lambda_{1}) - |||z_{i} - \sum_{s \in \mathscr{A}_{k(i)}^{n(i)}} \sigma_{s}||z_{i}(A_{s}^{l} \cap B_{i})||x_{s}^{l}(A_{s}^{l} \cap B_{i})|||$$

$$\geq 1 - \varepsilon - b(\lambda_{1}) - (p + 1)a_{2}(\lambda_{1})^{1/p}.$$

Thus we will need

(*)
$$a_3(\lambda_1) > \varepsilon + b(\lambda_1) + (p+1)a_2(\lambda_1)^{1/p}.$$

The sets \mathscr{C}_i^l are not large enough to guarantee (c). But $\bigcup \mathscr{C}_i^l$ is large enough to have dense linear span as we will next show:

(8)
$$\inf\left\{\|x-y\|: y \in \left[x_k^l: k \in \bigcup_{i=1}^{\infty} \mathscr{C}_i^l, l \in M, l \ge n\right]\right\} = 0$$

for all $x \in X$ and $n \in \mathbb{N}$.

In order to actually satisfy (c) we will need to enlarge the sets \mathscr{C}_i^l .

To prove (8) note that we have for each $k \le k(n)$, $n \in \mathbb{N}$, and $\delta > 0$

$$\left\|x_k^n - \sum_{j=1}^{\infty} \sum_{s \in \mathscr{C}_j^l} a_s x_s^l (A_s^l \cap B_j)\right\| \le 1 - \epsilon + \delta$$

for some (a_s) and for *l* sufficiently large, by (1) or (2), provided

$$(p+1)a_2(\lambda_1)^{1/p} \leq 1-\varepsilon.$$

Because $(x_k^n)_{k=1}^{k(n)}$ is equivalent to the unit vector basis of $l_p^{k(n)}$ Theorem 0.2(a) gives us disjoint sets $\mathscr{D}_k \subset \{1, 2, \dots, k(l)\}$ such that $||T_l^{-1}x_k^n(\mathscr{D}_k^c)|| < a_1(p, \lambda_1^2 - 1)$. Thus if $x = \sum b_k x_k^n$ then

$$\begin{split} \left| x - \sum_{k} b_{k} \sum_{j=1}^{\infty} \sum_{s \in \mathscr{G}_{j}^{j} \cap \mathscr{D}_{k}} a_{s} x_{s}^{j} \right| &= \left\| \sum b_{k} \left(x_{k}^{n} - \sum_{j} \sum_{s \in \mathscr{G}_{j}^{j} \cap \mathscr{D}_{k}} a_{s} x_{s}^{j} \right) \right\| \\ &\leq \left\| T_{l} \right\| \left\| \sum b_{k} \left(T_{l}^{-1} x_{k}^{n} - \sum_{j} \sum_{s \in \mathscr{G}_{j}^{j} \cap \mathscr{D}_{k}} a_{s} e_{s}^{j} \right) \right\| \\ &\leq \lambda_{1} \left[\left\| \sum b_{k} \left(T_{l}^{-1} x_{k}^{n} - T_{l}^{-1} x_{k}^{n} (\mathscr{D}_{k}) \right) \right\| \\ &+ \left\| \sum b_{k} \left(T_{l}^{-1} x_{k}^{n} (\mathscr{D}_{k}) - \sum_{j} \sum_{s \in \mathscr{G}_{j}^{j} \cap \mathscr{D}_{k}} a_{s} e_{s}^{j} \right) \right\| \right] \\ &\leq \lambda_{1} a \left(\lambda_{1}^{2} - 1, 1 - a_{1} \left(p, \lambda_{1}^{2} - 1 \right)^{p} \right) \left(\sum |b_{k}|^{p} \right)^{1/p} \\ &+ \lambda_{1} \left(\sum |b_{k}|^{p} \right)^{1/p} \max_{k} \left\| \left(T_{l}^{-1} x_{k}^{n} - \sum_{j} \sum_{s \in \mathscr{G}_{j}^{j}} a_{s} e_{s} \right) (\mathscr{D}_{k}) \right\| \\ &\leq \lambda_{1}^{2} a \left(\lambda_{1}^{2} - 1, 1 - a_{1} \left(p, \lambda_{1}^{2} - 1 \right)^{p} \right) \| x \| + \lambda_{1}^{3} \| x \| (1 - \varepsilon + \delta) \end{split}$$

Consequently if

(**)
$$1 > \gamma = \lambda_1^2 \left(a \left(\lambda_1^2 - 1, 1 - a_1 \left(p, \lambda_1^2 - 1 \right)^p \right) + (1 - \varepsilon + \delta) \lambda_1 \right)$$

the standard proof of the Open Mapping Theorem, e.g., [11], shows (8).

We have yet to define the sets \mathscr{B}_i^l but to do so we will first introduce sets \mathscr{D}_i^l which will not be disjoint for fixed l but will be related to the sets \mathscr{B}_i^l by $\mathscr{B}_i^l \subset \mathscr{D}_i^l$ for each i and l and $\bigcup_i \mathscr{B}_i^l = \bigcup_i \mathscr{D}_i^l$.

Note that for each $k \in \mathscr{C}_i^n$ we have

$$\begin{aligned} \left\| x_k^n (A_k^n \cap A_s^l) - \sigma_s \right\| x_k^n (A_k^n \cap A_s^l) \left\| x_s^l (A_s^l) \right\| \\ & < a_2(\lambda_1) \left\| x_k^n (A_k^n \cap A_s^l) \right\| \quad \text{for all } s \in \mathscr{A}_k^{nl} \end{aligned}$$

and

$$\left\|z_i(A_k^n\cap B_i)-\sigma\|z_i(A_k^n\cap B_i)\|x_k^n(A_k^n)\| < a_2(\lambda_1)\|z_i(A_k^n\cap B_i)\|.$$

Let

$$\mathcal{D}_{i}^{l} = \left\{ s: \text{ there exist } A \subset A_{s}^{l} \text{ such that} \\ \left\| z_{i}(A \cap B_{i}) - \sigma \right\| z_{i}(A \cap B_{i}) \left\| x_{s}^{l}(A_{s}^{l}) \right\| \\ \leq (p+2)a_{2}(\lambda_{1})^{1/2p} \left\| z_{i}(A \cap B_{i}) \right\|,$$

for some $\sigma = \pm 1$ and $||z_i(A \cap B_i)|| \neq 0$.

(Note that $\mathscr{D}_i^l \supset \mathscr{A}_{k(i)}^{n(i)l}$.)

The two inequalities we sighted above suggest that \mathscr{D}_i^l will contain much of $\bigcup_{k \in \mathscr{Q}_i^n} \mathscr{A}_k^{nl}$ and our next argument will make this more precise. $a_2(\lambda_1) \| z_i(A_k^n \cap B_i) \| \ge \| z_i(A_k^n \cap B_i) - \sigma \| z_i(A_k^n \cap B_i) \| x_k^n(A_k^n) \|$ $\ge \| z_i(A_k^n \cap B_i) - \sigma \| z_i(A_k^n \cap B_i) \| \sum_{s \in \mathscr{A}_k^{nl}} \sigma_s \| x_k^n(A_s^l \cap A_k^n) \| x_s^l(A_s^l) \|$ $- \| z_i(A_k^n \cap B_i) \| \| x_k^n(A_k^n) - \sum_{s \in \mathscr{A}_k^{nl}} \sigma_s \| x_k^n(A_s^l \cap A_k^n) \| x_s^l(A_s^l) \|$ $\ge \left(\sum_{s \in \mathscr{A}_k^{nl}} \| z_i(A_k^n \cap B_i \cap A_s^l) - \sigma \sigma_s \| z_i(A_k^n \cap B_i) \|$ $\times \| x_k^n(A_s^l \cap A_k^n) \| x_s^l(A_s^l) \|^p \right)^{1/p}$ $- \| z_i(A_k^n \cap B_i) \| a_2(\lambda_1)^{1/p} (p+1)$

(by (2a) but for x_k^n rather than z_i).

Hence

$$\geq (p+2)a_2(\lambda_1)^{1/2p} \| z_i \Big(\bigcup \Big\{ A_k^n \cap B_i \cap A_s^l \colon s \in \mathscr{A}_k^{nl} \setminus \mathscr{D}_i^l \Big\} \Big) \| \\ - \| \Big[z_i (A_k^n \cap B_i) - \sigma \| z_i (A_k^n \cap B_i) \| x_k^n (A_k^n) \Big] \cup \Big\{ A_s^l \colon s \in \mathscr{A}_k^{nl} \Big\} \|.$$

Rearranging and estimating the last term by $a_2(\lambda_1)^{1/p} ||z_i(A_k^n \cap B_i)||$ we have

(9)
$$2a_{2}(\lambda_{1})^{1/2p} ||z_{i}(A_{i}^{n} \cap B_{i})|| \\ \geq ||z_{i}(\bigcup \{A_{k}^{n} \cap B_{i} \cap A_{s}^{\prime}: s \in \mathscr{A}_{k}^{n} \setminus \mathscr{D}_{i}^{\prime}\})||.$$

Above we used only those s for which the inequality in the definitions of \mathscr{D}_k^l fails for $A = A_k^n \cap A_s^l$. Denote by $\tilde{\mathscr{D}}_i$ the subset of \mathscr{D}_i^l for which this inequality holds for $\sigma = \sigma_s$ and $A = A_k^n \cap A_s^l$. Next we will see that x_k^n is close to $[x_s^l(A_s^l): s \in \mathscr{A}_k^{nl} \cap \tilde{\mathscr{D}}_i^l]$ and thus is close to $[x_s^l(A_s^l): s \in \mathscr{A}_k^{nl} \cap \tilde{\mathscr{D}}_i^l]$.

$$\begin{aligned} \left\| x_k^n(A_k^n) - \sum_{s \in \mathscr{A}_k^{n'} \cap \tilde{\mathscr{A}}_i^{l'}} \sigma_s \right\| x_k^n(A_s^l \cap A_k^n) \left\| x_s^l(A_s^l) \right\| \\ \leq \left\| x_k^n(A_k^n) - \sum_{s \in \mathscr{A}_k^{n'}} \sigma_s \right\| x_k^n(A_k^n \cap A_s^l) \left\| x_s^l(A_s^l) \right\| \\ + \left\| \sum_{s \in \mathscr{A}_k^{n'} \setminus \tilde{\mathscr{A}}_i^{l}} \sigma_s \right\| x_k^n(A_k^n \cap A_s^l) \left\| x_s^l(A_s^l) \right\| \end{aligned}$$

$$\leq (p+1)a_2(\lambda_1)^{1/p} + \left(\sum_{s \in \mathscr{A}_k^n \setminus \tilde{\mathscr{Q}}_i^l} \left\| x_k^n (A_k^n \cap A_s^l) \right\|^p \right)^{1/p}$$

(by (2a) applied to x_k^n rather than z_i)

$$= (p+1)a_{2}(\lambda_{1})^{1/p} + \left\|x_{k}^{n}\left(A_{k}^{n}\cap\bigcup\left\{A_{s}^{l}:s\in\mathscr{A}_{k}^{nl}\setminus\tilde{\mathscr{D}}_{i}^{l}\right\}\right)\right\|$$

$$\leq (p+1)a_{2}(\lambda_{1})^{1/p}$$

$$+ \left\|\left(x_{k}^{n}\left(A_{k}^{n}\right) - \frac{\sigma z_{i}\left(A_{k}^{n}\cap B_{i}\right)}{\left\|z_{i}\left(A_{k}^{n}\cap B_{i}\right)\right\|}\right)\left(\bigcup\left\{A_{s}^{l}:s\in\mathscr{A}_{k}^{n}\setminus\tilde{\mathscr{D}}_{i}^{l}\right\}\right)\right\|$$

$$+ \frac{\left\|z_{i}\left(A_{k}^{n}\cap B_{i}\cap\bigcup\left\{A_{s}^{l}:s\in\mathscr{A}_{k}^{nl}\setminus\tilde{\mathscr{D}}_{i}^{l}\right\}\right)\right\|}{\left\|z_{i}\left(A_{k}^{n}\cap B_{i}\right)\right\|}$$

$$\leq (p+1)a_{2}(\lambda_{1})^{1/p} + a_{2}(\lambda_{1}) + 2a_{2}(\lambda_{1})^{1/2p}$$
(because $k \in \mathscr{C}_{i}^{n}$ and by (9) and the remark following (9)).

So if $k \in \mathscr{C}_i^n$

(10)
$$d\left(x_k^n(A_k^n), \left[x_s^l(A_s^l): s \in \mathscr{A}_k^{nl} \cap \mathscr{D}_i^l\right]\right) \le (p+4)a_2(\lambda_1)^{1/2p}$$

Now we will prove (c). Let $f \in X$. By the proof of (8) for any $n \in \mathbb{N}$ there are integers $l(i) \in M$, $n \leq l(1) \leq l(2) \leq \cdots$ and

$$x_i \in \left[x_k^{l(i)}: k \in \mathscr{C}_j^{l(i)}, j = 1, 2, \dots\right]$$

such that $||f - \sum_{i=1}^{N} x_i|| < \gamma^N ||f||$ and $||x_i|| \le (\gamma^{i-1} + \gamma^i) ||f||$.

Suppose that $x_i = \sum_{m \in \bigcup \mathscr{C}_j^{l(i)}} a_m^i x_m^{l(i)}$. Then by (10) and Theorem 0.2 for any *l* sufficiently large there is an element

$$y_m^i \in \left[x_k^l(A_k^l): k \in \mathscr{D}_m^l \cap \mathscr{A}_m^{l(i)l}\right]$$

such that $||x_m^{l(i)}(A_m^{l(i)}) - y_m^i|| < (p+5)a_2(\lambda_1)^{1/2p}$ for each $m \in \bigcup \mathscr{C}_j^{l(i)}$ and the y_m^i 's are disjointly supported. Thus

$$\begin{aligned} \|x_{i} - \sum a_{m}^{i} y_{m}^{i}\| \\ &\leq \left[a(\lambda_{1} - 1, 1 - a_{1}(p, \lambda_{1} - 1)^{p}) + (p + 5)a_{2}(\lambda_{1})^{1/2p}\right]\lambda_{1}\|x_{i}\|. \\ &\text{Let} \\ &\alpha = \lambda_{1}\left[a(\lambda_{1} - 1, 1 - a_{1}(p, \lambda_{1} - 1)^{p}) + (p + 5)a_{2}(\lambda_{1})^{1/2p}\right]. \end{aligned}$$

Then

$$\left\| f - \sum_{i=1}^{N} \sum_{m} a_{m}^{i} y_{m}^{i} \right\| \leq \left\| f - \sum_{i=1}^{N} x_{i} \right\| + \sum_{i=1}^{N} \left\| x_{i} - \sum_{m} a_{m}^{i} y_{m}^{i} \right\|$$

$$\leq \gamma^{N} \| f \| + \alpha \sum_{i=1}^{N} (\gamma^{i-1} + \gamma^{i}) \| f \| \leq \left(\gamma^{N} + \alpha \frac{1+\gamma}{1-\gamma} \right) \| f \|.$$

Hence if

(***)
$$a_3(\lambda_1) > \alpha\left(\frac{1+\gamma}{1-\gamma}\right)$$

(c) will be satisfied.

Finally to choose the sets \mathscr{B}_i^l note that $\mathscr{D}_i^l \supset \mathscr{A}_{k(i)}^{n(i)l} \supset \mathscr{C}_i^l$ and the \mathscr{C}_i^l are disjoint and satisfy (7). So to satisfy (b) we need only choose $\mathscr{B}_i^l \supset \mathscr{C}_i^l$ by allocating $\bigcup \mathscr{D}_i^l \setminus \bigcup \mathscr{C}_i^l$ among the \mathscr{B}_i^l so that $\mathscr{D}_i^l \supset \mathscr{B}_i^l$.

It is easy to see that ε and $a_3(\lambda_1)$ can be chosen to satisfy (*), (**) and (***), completing the proof.

REMARK 2.4. The condition (b) in the statement of Proposition 2.3 also can be made to hold for $\bigcup \{B_j^l: j \in \mathscr{B}_i^l\}$ in place of $\bigcup \{A_j^l: j \in \mathscr{B}_i^l\}$ with perhaps a slight change of $a_1(\lambda_1)$ to $\tilde{a}_3(\lambda_1)$ which also tends to zero as λ_1 goes to one. Indeed if $j \in \mathscr{B}_i^l$, (d) and Lemma 2.1(b) show that

$$\begin{split} \left\| z_i \Big(B_i \cap \bigcup \Big\{ A_j^l \colon j \in \mathscr{B}_i^l \Big\} \Big) - z_i \Big(B_i \cap \bigcup \Big\{ B_j^l \colon j \in \mathscr{B}_i^l \Big\} \Big) \right\| \\ &\leq \left(\sum_{j \in \mathscr{B}_i^l} \Big\| z_i \Big(B_i \cap A_j^l \Big) - z_i \Big(B_i \cap B_j^l \Big) \Big\|^p \right)^{1/p} \\ &\leq \left(\sum_{j \in \mathscr{B}_i^l} \Big[a_3(\lambda_1) + a_2(\lambda_1) \Big]^p \Big\| z_i \Big(B_i \cap A_j^l \Big) \Big\|^p \right)^{1/p} \\ &\leq a_3(\lambda_1) + a_2(\lambda_1). \end{split}$$

From this point on we can use the elements

$$z_i(B_i \cap B_s^l) / \| z_i(B_i \cap B_s^l) \|, \qquad l \in M, \, s \in \mathscr{B}_i^l$$

in place of the original (x_k^n) . Indeed Proposition 2.3(d) guarantees that $x_s^l \sim \sigma z_i (B_i \cap B_s^l) ||z_i (B_i \cap B_s^l)||^{-1}$ and (c) guarantees that the closed spans are close together. Because for each $n \in M$, each $k \leq k(n)$ belongs to at most one \mathscr{B}_i^n we will without loss of generality assume that the sign σ in Proposition 2.3(d) is 1. One could produce a projection on X by observing that a weak operator limit (p > 1) of projections on

$$\left[z_i(B_i \cap B_s^l) / \|z_i(B_i \cap B_s^l)\| : s \in \mathscr{B}_i^l, i = 1, 2, \dots\right]$$

is an isomorphism from X onto its range. However this does not give us any new information. We will instead produce natural associated operators on L_1 .

First we need to refine our family of functions a little more. For each *i* consider the sequence $(a_{il})_{l \in M}$ where $a_{il} = \lambda(B_i \cap \bigcup\{B_s: s \in \mathscr{B}_i^l\})$. By passing to a subsequence we may assume that $\lim_{l \to \infty} \sum_{j=i}^{\infty} a_{jl} = a_i$ exists for i = 1, 2, ...

Note that

(11)
$$\lim_{i} a_{il} = a_i - a_{i+1} > 0$$

because $||z_i(B_i \cap \bigcup \{B_s^l: s \in \mathscr{B}_i^l\})|| > 1 - \tilde{a}_3(\lambda_1)$ by Remark 2.4. Define $f_l: [0,1] \to C[0,1]^*$ by

$$f_{l}(\omega) = \sum_{i=1}^{\infty} \sum_{j \in \mathscr{B}_{i}^{l}} \frac{V(z_{i})(B_{i} \cap B_{j}^{l})}{\left\|V(z_{i})(B_{i} \cap B_{j}^{l})\right\|} \mathbf{1}_{B_{i} \cap B_{j}^{l}}(\omega) \operatorname{sgn} z_{i}(\omega).$$

(We have omitted the $d\lambda$.) Where $Vf = |f|^{p-1}f$ as in Proposition 1.5. Because $\mathscr{B}_i^l \neq \emptyset$ for at most finitely many *i*, f_l is a simple function.

LEMMA 2.5. If I is a measurable subset of [0, 1], $(\int_I f_I d\lambda)$ is uniformly absolutely continuous with respect to Lebesgue measure. Consequently the sequence of operators (T_I) , $T_I f = \int ff_I d\lambda$, $f \in L_1$ is relatively compact in the weak operator topology.

Proof. Let $\varepsilon > 0$. choose i(o) such that $a_{i(o)} < \varepsilon/2$. For each i < i(o) there is a $\delta_i > 0$ such that if $A \subset [0,1]$ is measurable and $\lambda(A) < \delta_i$, $\int |z_i|^p(A) d\lambda < (\rho_i^p)\varepsilon/2i(o)$ where $\rho_i = \inf\{z_i(w): w \in B_i\} > 0$, (by Lemma 2.1(a)). Now let $\delta = \min \delta_i$. If $A \subset [0,1]$ and $\lambda(A) < \delta$ then

$$\begin{split} \left| \left[\int_{I} f_{l} d\lambda \right] (A) \right| &\leq \sum_{i=1}^{\infty} \sum_{j \in \mathscr{R}_{i}^{l}} \frac{\lambda \left(B_{i} \cap B_{j}^{l} \cap I \right) \int_{A} |V(z_{i})| \left(B_{i} \cap B_{j}^{l} \right) d\lambda}{\left\| V(z_{i}) \left(B_{i} \cap B_{j}^{l} \right) \right\|} \\ &\leq \sum_{i=i(o)}^{\infty} \lambda \left(B_{i} \cap \bigcup \left\{ B_{j}^{l} \colon j \in \mathscr{R}_{i}^{l} \right\} \cap I \right) \\ &+ \sum_{i=1}^{i(o)-1} \sum_{j \in \mathscr{R}_{i}^{l}} \frac{\lambda \left(B_{i} \cap B_{j}^{l} \cap I \right)}{\rho_{i}^{p} \lambda \left(B_{i} \cap B_{j}^{l} \right)} \int_{A \cap B_{i} \cap B_{j}^{l}} |V(z_{i})| d\lambda \\ &\leq \sum_{i=i(o)}^{\infty} a_{il} + \sum_{i=1}^{i(o)-1} \rho_{i}^{-p} \int_{A} |V(z_{i})| d\lambda \leq \frac{\varepsilon}{2} + \sum_{i=1}^{i(o)-1} \rho_{i}^{-p} \left(\rho_{i}^{p} \frac{\varepsilon}{2i(o)} \right) < \varepsilon \end{split}$$

for large enough l, proving the lemma.

We are now in a position to prove a result of this author and W. B. Johnson [2].

COROLLARY 2.6. There is a constant λ_0 such that if $\lambda < \lambda_0$ and X is a $\mathscr{L}_{1,\lambda}$ subspace of L_1 then X is complemented in L_1 .

Proof. With the notation above we have a sequence of operators T_l on L_1 defined by $T_l f = \int ff_l d\lambda$ with $||(T_l - I)|_{[x'_k: k \in \bigcup \mathscr{R}'_l]}|| \le b(\lambda)$ where $b(\lambda) \to 0$ as $\lambda \to 1$. Indeed

$$T_l x_k^l = \sum_{i=1}^{\infty} \sum_{j \in \mathscr{B}_i^l} \int_{B_i \cap B_j^l} (\operatorname{sgn} z_i) x_k^l d\lambda \frac{z_i (B_i \cap B_j^l)}{\left\| z_i (B_i \cap B_j^l) \right\|}.$$

Because

$$\left\| x_k^l \left(A_k^l \right) - \frac{z_s \left(B_s \cap B_k^l \right)}{\left\| z_s \left(B_s \cap B_k^l \right) \right\|} \right\| \le a_3(\lambda_1) \quad \text{for some } s,$$
$$\left| \int_{B_s \cap B_k^l \cap A_k^l} \left(\operatorname{sgn} z_s \right) x_k^l - 1 \right| \le a_3(\lambda_1) \quad \left(B_k^l \subset A_k^l \right).$$

Hence

$$\left\|T_{l}x_{k}^{\prime}-\frac{z_{s}(B_{s}\cap B_{k}^{\prime})}{\left\|z_{s}(B_{s}\cap B_{k}^{\prime})\right\|}\right\|\leq a_{3}(\lambda_{1})+\left\|x_{k}^{\prime}(B_{s}\cap B_{k}^{\prime})^{c}\right\|\leq 2a_{3}(\lambda_{1})$$

(by Proposition 2.3(d))

and thus $||T_l x_k^l - x_k^l|| \le 4a_3(\lambda_1)$, proving our assertion. $((x_k^l)$ is equivalent to the uvb l_1^d .)

The previous lemma shows that (T_l) has a weak operator limit point T. If $x \in X$, Proposition 2.3(c) implies that for each l sufficiently large there is an element $y_l \in [x_k^l: k \in \bigcup \mathscr{B}_i^l]$ such that $||x - y_l|| \le 2a_3(\lambda_1)$. Therefore

$$\|Tx - x\| \leq \overline{\lim_{l}} \left[\|T_{l}x - T_{l}y_{l}\| + \|T_{l}y_{l} - y_{l}\| + \|y_{l} - x\| \right]$$

$$\leq 8\lambda_{1}a_{3}(\lambda_{1}).$$

Also if $z \in \text{range } T$ then $z = w \lim T_i y$ for some $y \in L_1$. Then $T_i y \in [z_i(B_i \cap B_j^l): j \in \bigcup \mathscr{B}_i^l]$ and thus $d(T_i(y), X) \leq 2\lambda_1 a_3(\lambda_1)$. Because $z \in \text{co } T_i y, d(z, X) \leq 2\lambda_1 a_3(\lambda_1)$ as well.

It follows that if λ_1 is close enough to one T is an isomorphism of X onto the range of T and that $Q = (T|_X)^{-1}T$ is a projection onto X.

$\mathscr{L}_{p,\lambda}$ SPACES

Our next lemma states that an operator T which is a weak operator limit of operators T_i on L_1 is representable in the sense of Proposition 1.1 and that the vector-valued function is an average of the f_i .

LEMMA 2.7. Suppose that (T_l) is a sequence of operators on L_1 of the form $T_l f = \int ff_l d\lambda$, where $f_l: [0, 1] \rightarrow C[0, 1]^*$, which converges in the weak operator topology to an operator T. Then there is a function $g: [0, 1] \rightarrow C[0, 1]^*$ such that $Tf = \int fg d\lambda$ for all $f \in L_1$ and necessarily

$$\int_{A} g d\lambda = w \lim \int_{A} f d\lambda, \quad \text{for all measurable sets } A.$$

We omit the proof of this lemma which follows from general representation theorems, [6]. Let us remark that it is also possible to prove this lemma by considering the functions $g_j = \sum_{k=1}^{2^j} [\lim_l \int_{I_{jk}} f_l d\lambda] 1_{I_{jk}}$ where I_{jk} is the *k*th dyadic interval of length 2^{-j} , and then using the Martingale Convergence Theorem as we did in the proof of Proposition 1.1.

Next we will show that if X is a $\mathscr{L}_{p,\lambda}$ space for p > 1 the arguments used in Corollary 2.6 also apply to V(X).

PROPOSITION 2.7. Let $T_l f = \int ff_l d\lambda$ for all $f \in L_1$, $l \in M$, and let T be a weak operator limit of T_l . Then there is an infinite subset $K \subset M$ such that

(i) for each $l \in K$

$$\left\| (I-T) \right\|_{[V(x_s^m):s \in \bigcup \{\mathscr{B}_j^m: j=1,2,\dots\}]} \le a_4(\lambda_1) \quad \text{for all } m \in K, \ m \le l$$

and $T_l|_{[V(x_i^l): s \in \bigcup \{\mathscr{B}_j^l: j=1,2,...\}]}$ is an isomorphism onto range T_l with $||T_l^{-1}|| \le 1 + a_4(\lambda_1)$, if λ_1 is close enough to one.

(ii) $||(I - T)|_{\operatorname{range} T}|| < a_4(\lambda_1)$ (iii) for all $l \in K$,

$$\left\| (I-T) \right\|_{[V(x'_s): s \in \bigcup \{\mathscr{B}'_j: j=1,2,...\}]} \le a_4(\lambda_1)$$

(iv) $a_4(\lambda_1) \rightarrow 0$ as $\lambda_1 \rightarrow 1$.

Proof. Fix $l \in M$ and note that

$$\frac{V(x_s^l)(B_s^l \cap B_j)}{\|V(x_s^l)(B_s^l \cap B_j)\|}, \qquad s \in \bigcup \mathscr{B}_j^l$$

is 1-equivalent to $uvb l_1^r$ where r is the cardinality of $\bigcup_i \mathscr{B}_i^l$ and thus

 $(V(x_s^l))$ is also equivalent to uvb l_1^r . Suppose that $s \in \mathscr{B}_t^l$. (Here $\|\cdot\|$ is the L_1 norm.)

$$\begin{split} \|V(x_{s}^{l}) - T_{l}V(x_{s}^{l})\| &= \left\|V(x_{s}^{l}) - \int f_{l}V(x_{s}^{l}) \, d\lambda\right\| \\ &\leq \left\|V(x_{s}^{l}) - \frac{V(z_{t})(B_{t} \cap B_{s}^{l})}{\|V(z_{t})(B_{t} \cap B_{s}^{l})\|} \int_{B_{t} \cap B_{s}^{l}} V(x_{s}^{l}) \operatorname{sgn} z_{t} \, d\lambda\right\| \\ &+ \sum_{i \neq t} \sum_{j \in \mathscr{R}_{i}^{l}} \|V(x_{s}^{l})(B_{i} \cap B_{j}^{l})\| + \sum_{\substack{j \in \mathscr{R}_{i}^{l} \\ j \neq s}} \|V(x_{s}^{l})(B_{i} \cap B_{j}^{l})\| \\ &\leq \left\|V(x_{s}^{l}) - \frac{V(z_{t})(B_{t} \cap B_{s}^{l})}{\|V(z_{t})(B_{t} \cap B_{s}^{l})\|}\right\| \\ &+ \left|1 - \int_{B_{t} \cap B_{s}^{l}} V(x_{s}^{l}) \operatorname{sgn} z_{t} \, d\lambda\right| + \|V(x_{s}^{l})(B_{t} \cap B_{s}^{l})^{c}\| \\ &\leq 4\rho(a_{3}(\lambda_{1})) \end{split}$$

where ρ is the modulus of continuity of V on B_{L_p} . Because $V(x_s^l)$ is $(1 - \rho(a_3(\lambda_1)))^{-1}$ equivalent to the uvb l_1^m we have that

$$\|y - T_i(y)\| \le (1 - \rho(a_3(\lambda_1)))^{-1} \rho(a_3(\lambda_1)) \|y\|$$

for any $y \in \left[V(x_s^l): s \in \bigcup \left\{\mathscr{B}_j^l, j = 1, 2, \dots\right\}\right].$

Thus if λ_1 is close enough to one $T_{l|_{[V(x'_{l});s \in \bigcup \mathscr{B}'_{l}]}}$ is an isomorphism. The other assertion in (i) follows from Proposition 2.3(c) and the uniform continuity of V if we choose a suitable subset K of M. Indeed, if $x_s^m = \sum a_i x_i^l$

$$\begin{aligned} \left\| V(x_s^m) - \sum a_j V(x_u^l) \right\| &\leq \rho \Big(\left\| x_s^m - \sum a_j x_j^l (A_j^l) \right\| \Big) \\ &+ \left\| \sum a_j \Big[V(x_j^l) - V(x_j^l (A_j^l)) \Big] \right\|. \end{aligned}$$

Now use (c) to make the first term small. The inequality for the span follows from the fact that $(V(x_s^m))$ is equivalent to $uvb l_1^q$ where q is the cardinality of $\bigcup \mathscr{B}_{i}^{m}$.

The proofs of (ii) and (iii) are similar to the last part of the proof of Corollary 2.6 and we leave the details to the reader.

$\mathscr{L}_{p,\lambda}$ SPACES

We are now ready to prove our nonlinear factorization theorem.

THEOREM 2.8. For each $p, 1 , there is a <math>\lambda_p$ such that if X is a $\mathscr{L}_{p,\lambda}$ subspace of L_p , $\lambda < \lambda_p$, then there is a linear projection Q defined on L_1 and a continuous nonlinear projection W from L_p onto X such that

(i) $||UQVx - x|| < a_5(\lambda)||x||$ for all $x \in B_X$, $a_5(\lambda) \to 0$ as $\lambda \to 1$ (ii) $W = PUQV(PUQV|_X)^{-1}$

(II) W = P U Q V (P U Q V)

where

$$Uf = |f|^{(1-p)/p} f, \qquad Vf = |f|^{p-1} f,$$

and P is a bounded linear projection of L_p onto X.

(iii) $||P|| < 1 + a_6(\lambda)$, $||Q|| < 1 + a_6(\lambda)$ where $a_6(\lambda) \rightarrow 0$ as $\lambda \rightarrow 1$.

Proof. Proposition 2.7(ii) implies that if Y = range T, $Q = (T|_Y)^{-1}T$ is a projection onto Y, if λ is close enough to 1.

If $x \in X$, ||x|| = 1 then for $l \in K$ sufficiently large there is a $z \in [V(x_s^l): s \in \bigcup \mathscr{B}_j^l]$, ||z|| = 1 such that $||V(x) - z|| < 4(1 - \rho(a_3(\lambda_1)))^{-1} = b(\lambda_1)$.

By Proposition 2.7(iii),

$$\begin{aligned} \|V(x) - QV(x)\| &\leq \|V(x) - z\| + \|z - Qz\| + \|Qz - QV(x)\| \\ &\leq b(\lambda_1) + \|z - Tz\| + \|Tz - (T_{|_Y}^{-1})Tz\| + \|Q\|b(\lambda_1) \\ &\leq b(\lambda_1) + a_4(\lambda_1) + \frac{1}{1 - a_4(\lambda_1)}(a_4(\lambda_1) + b(\lambda_1)) = b_1(\lambda_1) \end{aligned}$$

and thus

$$||x - UQVx|| = ||UV(x) - UQVx|| \le \delta(b_1(\lambda_1))$$

where δ is the modulus of continuity of U on B_{L_1} . Now observe that UQV is positive homogeneous. Indeed, if $\gamma > 0$, $UQV\gamma x = UQ\gamma^p Vx = U\gamma^p QVx = \gamma UQVx$. Hence for any $x \in X$

$$||x - UQVx|| \le \delta(b_1(\lambda_1))||x||.$$

Because X is a $\mathscr{L}_{p,\lambda}$ subspace of L_p and λ is close to one there is a projection P of L_p onto X with $||P|| \le 1 + b_2(\lambda)$ where $b_2(\lambda) \to 0$ as $\lambda \to 1$.

Hence

$$||x - PUQVx|| = ||P(x - UQVx)|| \le (1 + b_2(\lambda))\delta(b_1(\lambda_1))||x||$$

and I - PUQV maps X to itself. Thus if λ (and thus λ_1) is close enough to one, PUQV has a continuous inverse $(\sum_{n=0}^{\infty} (I - PUQV)^n = (PUQV)^{-1}$ converges uniformly on bounded sets.)

Next we want to observe that the results of Zippin [13] and Dor [5] follow from our results.

COROLLARY 2.9. For each $p, 1 \le p < \infty$, $p \ne 2$, there is a constant λ_p such that if X is a $\mathscr{L}_{p,\lambda}$ subspace of l_p , $\lambda < \lambda_p$, then X is isomorphic to l_p and $d(X, l_p) \rightarrow 1$ as $\lambda \rightarrow 1$.

Proof. We may assume that $X \,\subset L_p(\mathscr{B}_1)$ where \mathscr{B}_1 is a purely atomic sub σ -algebra of \mathscr{B} . We may also assume that the sets in the conclusion of Proposition 2.3 are all \mathscr{B}_1 measurable and thus the operators T_l have range in $L_1(\mathscr{B}_1) = l_1$. By Lemma 2.5, (T_l) has a w operator limit T. Because l_1 has the Schur property [6], p. 295, T is also a strong operator limit. Each of the operators T_l is a contractive projection and therefore T is a contractive projection as well $((T_l^2)$ converges to T^2). Hence by Theorem 0.1 the range of T is isometric to l_1 and is of the form

$$\{f \cdot h: f \in L_1(\mathscr{B}_2, |h| d\lambda)\}$$
 where $\mathscr{B}_2 \subset \mathscr{B}_1$ and $\mathscr{E}(|h| |\mathscr{B}_2) = 1_{\mathrm{supp}\,h}$.

Now observe that z = U(range T) is a closed subspace of $L_p(\mathscr{B}_1, \lambda)$ which is isometric to l_p . Moreover the projection P as in the previous theorem must be an isomorphism of Z onto X.

Our final result is that the solution of our problem for all p would be consequence of a solution for any p.

PROPOSITION 2.10. Suppose that for some $p, 1 \le p < \infty, p \ne 2$, there is a function $\rho(\lambda)$: $[1, 1 + \varepsilon] \rightarrow \mathbf{R}$, $\lim_{\lambda \to 1} \rho(\lambda) = 1$, such that if X is a $\mathscr{L}_{p,\lambda}$ subspace of L_p , $\lambda \le 1 + \varepsilon$, then there is a measure ν such that $d(X, L_p(\nu)) < \rho(\lambda)$. Then for each $r, 1 \le r < \infty, r \ne 2$, the same result holds.

Proof. We will show first that if the hypothesis holds for p > 1, the result holds for r = 1. Let X be a $\mathscr{L}_{1,\lambda}$ subspace of L_1 . Let $(z_i), (B_i)$ and (B_s^l) be as in the conclusion of Proposition 2.3. Consider the projections

on L_p defined by

$$S_{l}f = \sum_{i=1}^{\infty} \sum_{s \in \mathscr{B}_{i}^{l}} \int_{B_{i} \cap B_{s}^{l}} |z_{i}|^{p-2} z_{i}f d\lambda \frac{z_{i}(B_{i} \cap B_{s}^{l})}{\left\| z_{i}(B_{i} \cap B_{s}^{l}) \right\|_{p}}.$$

Each S_l is a contractive projection and because p > 1 we may assume that (S_l) converges in the weak operator topology to an operator S on L_p .

We claim that $||(S - I)|_{range S}|| < c(\lambda)$ where $c(\lambda) \to 0$ as $\lambda \to 1$. We will omit the proof of this claim because the proof is similar to that of Proposition 2.7.

It now follows that if $c(\lambda)$ is sufficiently small that $Q = (S|_{\text{range }S})^{-1}S$ is a projection onto Y = range S and that Y is a $\mathscr{L}_{p,\alpha}$ subspace of L_p and $\alpha = \alpha(\lambda) \to 1$.

If λ is close enough to one then $d(Y, L_p(\nu)) < \rho(\alpha)$ for some ν . Moreover there is a subspace Z of L_p such that Z is isometric to $L_p(\nu)$ and Z is a perturbation of Y, [1]. Hence V(Z) is isometric to $L_1(\nu)$ and is a perturbation of X.

Now assume that the hypothesis holds for p = 1 and that X is a $\mathscr{L}_{r,\lambda}$ subspace of L_r . By Theorem 2.8 there is a projection Q on L_1 with range Q a $\mathscr{L}_{1,\alpha(\lambda)}$ subspace of L_1 where $\alpha(\lambda) \to 1$ as $\lambda \to 1$. If $\alpha(\lambda)$ is small enough there is a subspace Z of L_1 which is isometric to $L_1(\nu)$ for some measure ν and which is a perturbation of range Q. It follows that U(Z) is isometric to $L_r(\nu)$ and is a perturbation of X.

3. Final remarks and open questions. The results of the last section provide some evidence for the conjecture that $\mathscr{L}_{p,\lambda}$ spaces are L_p spaces for λ small enough and suggest that $\mathscr{L}_{1,\lambda}$ spaces may be the easiest point to begin. The results of section one indicate that it may be possible to obtain results in this case by examining the representing functions.

Question 1. Suppose (E_i) is a sequence of conditional expectation operators, i.e., $E_i = \mathscr{E}(\cdot | \mathscr{G}_i)$, and w. op $\lim_i E_i = T$. What conditions on (E_i) will guarantee that there is a conditional expectation operator E with ||E - T|| small? In particular, what if ||T - P|| is small for a projection P?

This is a special case of what we need to solve the general problem. However, it may be that an extreme point argument, applied to the representing functions would be an approach.

Question 2. If X is a $\mathscr{L}_{1,\lambda}$ space, λ near one, is there a sequence of conditional expectation operators (E_i) such that X is isomorphic to range w op lim E_i , i.e., can the problem be reduced to Question 1?

Proposition 2.3 almost proves this. We have there reduced the "shapes" to that of the z_i 's but we would need either a single function z or equivalently to have *disjoint* sets B_i as in Proposition 2.3 to obtain this result. At first glance it might seem that

$$z = w \lim \sum_{i=1}^{\infty} \sum_{s \in \mathscr{B}_{i}^{l}} \lambda (B_{i} \cap B_{s}^{l}) \frac{z_{i} (B_{i} \cap B_{s}^{l})}{\|z_{i} (B_{i} \cap B_{s}^{l})\|}$$

would be satisfactory. However trivial sign changes could result in z vanishing on important sets and even the weak limit of the absolute values does not seem to guarantee that the span of $(z(B_i \cap B_s^l))$ is appropriate. Again what we need is not an average but an extremal element. Another equivalent viewpoint on this question and Proposition 2.3, is that we need to decompose the $\mathscr{L}_{1,\lambda}$ space into an l_1 sum of subspaces each with an appropriate z_i .

Finally let us note that it may be possible to obtain at least a qualitative result by showing that if X is not isomorphic to l_1 then $[z_i(B_i \cap B_s^l): s \in \mathscr{B}_i^l, l = 1, 2, ...]$ must contain an isomorph of L_1 for some *i* and thereby avoid the decomposition difficulty.

Added in proof. Proposition 1.5 is essentially due to Mazur. S. Mazur, Une remarque sur l'homéomorphism de champs fonctionnels, Studia Math., 1 (1930), 83-85.

References

- [1] D. E. Alspach, Small into isomorphisms on L_p spaces, Illinois J. Math., 27 (1983), 300–314.
- [2] D. E. Alspach and W. B. Johnson, *Projections Onto* \mathscr{L}_1 Subspaces of $L_1(\mu)$, Lecture Notes in Math. 995, Springer Verlag, Berlin, 1983.
- [3] T. Ando, Contractive projections in L_n spaces, Pacific J. Math., 17 (1966), 391-405.
- [4] L. Dor, On projections in L₁, Ann. of Math., **102** (1975), 463-474.
- [5] _____, On good \mathscr{L}_p subspaces of l_p , Israel J. Math., 44 (1983), 303–316.
- [6] N. Dunford and J. T. Schwartz, *Linear Operators I: General Theory*, Pure and Appl. Math., vol. 7, Interscience, New York, 1958.
- [7] N. J. Kalton, The endomorphisms of L_p , $0 \le p \le 1$, Indiana Univ. Math. J., 27 (1978), 353-381.
- [8] E. Lacey, *The Isometric Theory of Classical Banach Spaces*, Springer-Verlag, New York, 1974.
- [9] J. Lindenstrauss and A. Pelczynski, Absolutely summing operators in \mathscr{L}_p spaces and their applications, Studia Math., **29** (1968), 275–326.
- [10] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, I, II, Springer-Verlag, Berlin, 1977.

- [11] H. L. Royden, Real Analysis, Macmillan, New York, 1968.
- [12] G. Schechtman, Almost isometric L_p subspaces of $L_p[0,1]$, J. London Math. Soc., 20 (1979), 516–528.
- [13] M. Zippin, \mathscr{L}_1 subspaces of l_1 , Israel J. Math., 22 (1975), 110–117.

Received May 21, 1985. Research supported in part by a grant of the National Science Foundation.

OKLAHOMA STATE UNIVERSITY STILLWATER, OK 74078

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

V. S. VARADARAJAN (Managing Editor) University of California Los Angeles, CA 90024 HERBERT CLEMENS University of Utah Salt Lake City, UT 84112 R. FINN Stanford University Stanford, CA 94305 HERMANN FLASCHKA University of Arizona Tucson, AZ 85721 RAMESH A. GANGOLLI University of Washington Seattle, WA 98195

VAUGHAN F. R. JONES University of California Berkeley, CA 94720 ROBION KIRBY University of California Berkeley, CA 94720 C. C. MOORE University of California Berkeley, CA 94720 H. SAMELSON Stanford University Stanford, CA 94305 HAROLD STARK University of California, San Diego La Jolla, CA 92093

ASSOCIATE EDITORS

R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA (1906–1982)

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA	UNIVERSITY OF OREGON
UNIVERSITY OF BRITISH COLUMBIA	UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY	STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA	UNIVERSITY OF HAWAII
MONTANA STATE UNIVERSITY	UNIVERSITY OF TOKYO
UNIVERSITY OF NEVADA, RENO	UNIVERSITY OF UTAH
NEW MEXICO STATE UNIVERSITY	WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY	UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph must be capable of being used separately as a synopsis of the entire paper. In particular it should contain no bibliographic references. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be 34dressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California 90024.

There are page-charges associated with articles appearing in the Pacific Journal of Mathematics. These charges are expected to be paid by the author's University, Government Agency or Company. If the author or authors do not have access to such Institutional support these charges are waived. Single authors will receive 50 free reprints; joint authors will receive a total of 100 free reprints. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: \$190.00 a year (5 Vols., 10 issues). Special rate: \$95.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics at P.O. Box 969, Carmel Valley, CA 93924 (ISSN 0030-8730) publishes 5 volumes per year. Application to mail at Second-class postage rates is pending at Carmel Valley, California, and additional mailing offices. Postmaster: send address changes to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION Copyright © 1986 by Pacific Journal of Mathematics

Pacific Journal of Mathematics Vol. 125, No. 2 October, 1986

Dale Edward Alspach, On $\mathcal{L}_{p,\lambda}$ spaces for small λ	57
Jong Sook Bae and Sangsuk Yie, Range of Gateaux differentiable operators	
and local expansions	39
Hubert Berens and Lothar Hetzelt, On accretive operators on l_n^{∞})1
Marie-Françoise Bidaut-Véron, Global existence and uniqueness results	
for singular solutions of the capillarity equation	17
Donald M. Davis and Mark Mahowald, Classification of the stable	
homotopy types of stunted real projective spaces	35
Aad Diiksma, Heinz K. Langer and Hendrik S. V. de Snoo, Unitary	
colligations in Π_{ν} -spaces, characteristic functions and Štraus	
extensions	17
Michel Enock and Jean-Marie Schwartz, Algèbres de Kac	
movennables	53
Seppo Granlund, Peter Lindqvist and Olli Martio, Note on the	
PWB-method in the nonlinear case	31
Palle E. T. Jorgensen, Analytic continuation of local representations of Lie	
groups) 7
Robert P. Kaufman, Plane curves and removable sets)9
José M. Montesinos and Wilbur Carrington Whitten. Constructions of	
two-fold branched covering spaces	15
Benedict Seifert. Highly transitive group actions on trees and normalizing	
Tits systems	17
Charles Stuart Stanton, Counting functions and majorization for Jensen	
measures	59
Luen-Fai Tam. On existence criteria for capillary free surfaces without	
gravity	59
Zhuocheng Yang, Exposed points of left invariant means	37