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GLOBAL EXISTENCE AND UNIQUENESS

RESULTS FOR SINGULAR SOLUTIONS

OF THE CAPILLARITY EQUATION

MARIE-FRANCOISE BIDAUT-VERON

We study the singular solutions of the capillarity equation

Hiv Dυ » *>, inR",
l/l + |/>y|2

with a A' < 0. We prove the global existence of a rotationally symmetric
solution. We prove the uniqueness of a symmetric solution negative and
concave near the origin.

Introduction. In this paper we study the existence and uniqueness of
a singular solution of the capillarity equation in R^:

(1) div( £>*;/(/l + \Dv\2) = Kυ9

with a K < 0. The situation is quite different from the case K > 0, where
every isolated singularity is removable [4]. We restrict our attention to the
symmetric case where υ depends only on the distance r from the origin.

Let

Then the equation is equivalent to

(2) \ r u \ , ,

In [1], P. Concus and R. Finn conjectured the global existence and
uniqueness of a singular solution of (2). They proved the local existence of
a function u of the form

0 ) « ( ' - ) - - 7 + 3 + 3 ( )

where ε(r) = o(r) when r goes to 0. Up to the change of u into -w, they
got local uniqueness in a particular class: functions such that ε(r)/rp

(p < 4) and rε'(r) are bounded. The solution has an asymptotic develop-
ment in powers of r but the formal Taylor series is divergent.
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In §1 we write the equation in terms of z(r) = u\r)/ yl -I- u'2(r),
which leads us to a second order nonlinear equation:

(4)

with limit conditions limr_^oz(r) = 1, limr_^oz'(r) = 0.
We give an a priori energy estimate for z and u in §2.
Then, in §3 we improve the results of local existence and uniqueness:

we try to draw the maximum profit from the fixed point method intro-
duced in [1], adapted to the function z. We get the local existence and
uniqueness of functions z such that (z(r) — 1 + (r4/2))/r6 is not too
large, and then of functions u such that (u\r) — 1/r2) is not too large.
This result is an essential tool for uniqueness results of §5.

In §4, from the energy estimate for z, we get global existence in
[0, + oo[ for z, then for u. We study the behavior of w, z for large r. They
are oscillatory and go to zero when r goes to infinity.

In §5, we prove the uniqueness of a solution z nonincreasing near 0,
then the uniqueness of a solution u concave near 0. As the maximum
principle fails, we use local comparison methods to obtain some accurate
estimates near the origin, and prove that such functions z, u are in the
classes of uniqueness defined in §3.

1. New formulation of the problem. Up to the change of u into -w,
we shall deal with the existence and uniqueness of a singular symmetric
solution of (2), negative near the origin. Let us recall the estimates given in
[2]: every singular solution u satisfies near the origin

(5)

+ uΛ(r)

Now we make a change of unknown function.

PROPOSITION 1. The existence and uniqueness of a C2 function w,
singular symmetric solution of (1), is equivalent to the existence and unique-
ness of a C2 function z solution of the second order semilinear elliptic
equation:



EXISTENCE RESULTS FOR THE CAPILLARITY EQUATION 319

with limit conditions

(8) limz(r) = l ; limz'(r) = 0.

Functions u and z are linked by the relations

(9) z(r) = U'{r)

+ u'\r)

(10) z\r) +(N- \)Z-ψ =-(N- l)u(r),

where ψ is the angle between the tangent at (r, u(r)) and the r axis.

Proof. Let u be a singular solution of (2) and z be defined by (9).
Then equation (2) takes the form (10), also equivalent to

(11) z { r ) = - ^

since, from (5), (6), rN~ιu(r) = 0(1), rN~ιz(r) = o{\\ when r goes to 0.
Now (9) is obviously equivalent to

(12) * u'{r) = z{

then we derive (10) and get (7); then (8) using (5), (6). Conversely let z be
a solution of (7), (8) and define u by (10); then u satisfies (12), (9), then
(2), and u(r) - r_+0 - 1/r, so that u is singular.

2. A priori estimates. Now we get an estimate of the energy for z,
which later on will be fundamental.

PROPOSITION 2. Let z be a solution of (7), (8), defined on an interval
[0, R[. Then

<»>

andg'(r) < 0 in ]0,R[. Consequently

(14) o < /l - z\r) < 2r2,

(15) |z'(/-)|<v^3Tmin(r,v/2), in]0,R[.

Proof. Multiplying (7) by z'(r), we get

(16) g . ( r ) =-ί^_i



- z2{r)) < 0;
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since z2(r) < 1; multiplying (7) by rV(r) , we get also

(17) (r 2 g) '(r) = -

now from (8) we have limr_fOr2g(r) = 0, then r2g(r) < 0 in ]0, R[; hence
(13) and (14). Then (15) follows from the fact that

(18) 2g(r)-£Q+r1~* {r) -r)
N- 1

Consequences.

(a) We obtain other estimates for z and u in ]0, R[:

(19)

from (8), (15), and

(20) + 1

- 1

from (10), (19).
Now from (14), (19) and (20), we deduce

(21)

(22)

r2 < maxί^ ,
— 1

z(r) > 0 =» u'(r) > 0,

0 0 0.

(b) We can improve the local estimates (5), (6): from (10), (14) and
(15) we get, near the origin,

(23) 1 > z(r) > 1 - ( 2 r 4 + o{r4)),

(24) u{r) + -
r

O(r3).

REMARK. Let us note an estimate of the energy for u, which has often
been used in [2], [3]: let

(25)

then

(26)

N-l

- z2(r)
in]0,R[;
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hence for any r, s e]0, 4- oo[ such that r > s,

2 N-1 - 2 N- 1 e

3. Local existence and uniqueness. From Proposition 1, and (3),
(9), we still obtain the local existence of a solution Z of the problem (7),
(8) of the form

Z(r) = 1 - r4/2 + O(rs),

near the origin. Now we prove a quite more accurate result, based on a
fixed point method analogous to [1],

THEOREM 1. Let M < M0 = (N + 8)/3i/ΛΓ - 1. Then, for Ro suffi-
ciently small, the problem (7), (8) admits a unique C2 solution Z in ]0, i?0]
such that

\\w{r)\<M in]0,Ro].

Proof. Let for any y e ] - l , +1[ and r > 0

/ « \
(29)

Let M < Mo, R > 0, and denote

BM,R = { υ e C ° { [ 0 , R ] ) \ \ \ υ \ \ = m a x \ o ( r ) \ <
v r(=[0,R]

Then one can see as in [1] that the problem is equivalent to a fixed point
problem: find a function w e BM R such that

(30) w = T(w)9

where

(31) T(w)(r)

-<ΛT+8)/2 .r JΛT _ 1 / I 1 \

rL)— I Jo L
 \ Ί

(32) F{w,r)
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Let w e BM R. Then there exists θ(r) e [0,1] such that

Now

32Φ

hence for sufficiently small r,

l5N'+ 3 3

o

o

Then we integrate by parts the first term, cf. [2], and get

T(w)(r) = g/^t Ί / 2 + ° ( r 4 ) + °^2) + i ?^ r) = °^2"> + Λ(r)»

with

As M < Mo, we deduce that there exists i?x = Rλ{M) > 0 such that
T maps 2?M Λ into itself for R < Rv



η(r)
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Moreover, let w, w e BM R then there exists t | , ξ e BM R such that

φ(l - y + / 6u>(/ ), r) - φ | l - y + r6w(/ ), A

1 + | r 4 + O(r6) - 3r2η(r)(l + O(r2)))(w(r) ~ w(r))

- 1)(-1 - 3r\(r) + O(r<))(w(r) - w(r)),

hence

(w(r),r) - F(w(r),r))

= (-3(N - l

\T(w)(r) - T(w)(r)\< ljj-max(\\w\\,\\w\\) + t»(r ' ) l l iw - w||.

Then for any ε > 0 there exists Ro = R0(ε, M) < Rλ such that if R < Ro,

\\T(w)-T(w)\\<

and

\\T(w)\\<εM0

\wf

Then ||Γ"(w)|| < vn where vn = εΛf0 + {Ό^-JMQ), V0 = Λf. Now
take ε < min((M/M0

2)(Λf0 - M), 1/6); then ϋn \ λ where λ =
(M0/2)(l - A - 4ε) < 2εM0 < Mo/3. Then

where

Γ Ϊ ( ^ + β); urn

then limn_+ + O0an = 0; hence for large ny Tn is a strict contraction. Then
Γ has a unique fixed point in BM R .
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REMARK. AS in [1], we can prove that the function Z has an
asymptotic development near 0 in powers of r4 whose first terms are

Now from (7)

hence Z', then Z " and all the derivatives of Z have an asymptotic
development near 0, obtained by successive differentiations of the devel-
opment of Z, and Z is in C°°([0, Ro]). Indeed, by recursion the derivatives
cannot have a development with negative powers of r. Then with equation
(7) we obtain by recursion all the terms of the development and deduce
the divergence of the Taylor series. Now observe that

Z\r) = -2r3 + o(r3), Z"(r) = -6r2 + o(r3),

so that Z\r) and Z"(r) are negative near the origin.

Theorem 1 is still an improvement of the results in [1]. Let us apply it
to the function u.

COROLLARY 1. Let M < Mo. Then for Ro sufficiently small, the
problem (2) admits a unique C2 solution U in ]0, Ro], singular, such that

(34)

\ω(r)\<M in]0,R0].

Proof. Let M < Mo and M < M9 and U be the singular solution of
(2) associated with the solution Z defined by (28). Then by calculation

hence for Ro sufficiently small U satisfies (34). Let u be another singular
solution satisfying (34) in ]0, Ro] and z be the solution of (7) (8)
associated to u. Then by calculation

z(r) = U'{r] = 1 - y + r^{r) + o{r*).
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Then for R sufficiently small

, , . M + Mo Ίv ( r ) | < in \0,R\;

hence z(r) = Z(r) near the origin, hence in ]0, Ro].

4. Global existence and asymptotic properties. Here we prove the

existence of global solutions.

THEOREM 2. Each solution z of (7)(8), or equivalently each singular

solution u of (2), admits a unique extension defined on the whole interval

]0, 4- oo[.

Proof. From Proposition 1 we have only to consider z. Let z be a

solution of (7) (8) defined on an interval [0, R). Let x = (z,z'), then

equation (7) takes the form

(35) x'(r) = G(r,x(r)),

where G is a C 1 function on the open set W =]0, +oo[X]-l,+ 1[XR.

Then z admits a unique maximal extension, still called z, defined on an

interval [0 ,ΛJ.

Suppose Rm < + oo. From (15), z' is bounded; hence z(r) has a limit

zm when r ? Rm. From Proposition 2, the energy function g, decreasing

and bounded below by - 1 , has a limit γ < 0. By contradiction this implies

zm Φ + 1 . Then, from (7), z" is bounded near Rm, hence z'(r) has a limit

z^. Then (i? w , zw, z^) e W, hence z admits an extension to an interval

[0,/?m + ε), which is impossible.

Now we make precise the behavior near infinity of any solution:

THEOREM 3. Each solution z of (7), (8) admits a countable number of

zeros, asymptotically separated by a distance of m/ ]/N — 1, and

z\r) + z'\r) c , foranva>0

r * '

(37) lim z(r) = Urn z'(r) = lim κ(r) = lim u'{r) = 0,

(38) M 2 ( r ) t M / 2 ( r ) g ^ ( ] ^ + o o [ ) , /c
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Proof. Let z be a solution of (7), (8) on [0, 4- oo[. From Proposition 2,

the energy function g has a limit γ < 0 when r goes to +oo. By

contradiction, this implies that liminfr_^ + 00 yl — z2(r) > 0. Then there

exists a > 0 such that yl — z2(r) > a for large r.

Let us make the substition z = r-(ΛΓ~1)/2jμ in equation (7); this

equation becomes

(39) y"(r)+p(r)y(r) = 0,

where

(40) p{r)={N-ι)(j=m-^\>
for large r, we have (N - l)/2 < p(r) < (N — l)/α; hence, from the

Sturm comparison theorem, z is oscillatory; moreover, let

0 < r x < r 2 < ••• < r n < r n + 1 < •••

be the zeros of z, simple because of the local uniqueness in (35); then the

distance dn = rn+ι — rn between two consecutive zeros satisfies

— 1

Moreover for any rw such that rn > 1 — if TV = 2 there is no condition

since rx > 1 from (21) — there exists a unique point 5 Ξ]rn, rn + 1[ where

z\sn) = 0: indeed, if not, there would exist a n r e ] r n , r n + 1 [ such that

and then z(r) = 0, which is impossible.

On the other hand, from (16) we deduce that, for any a > 0, z ' 2 (r)/r

G Lι(]a, + oc[). In the same way, the function / defined in (25) is

decreasing and bounded below by -1/(N — 1); hence it has a limit when

r goes to + oo then from (26) we deduce that

Z v ) r- Γl/Ί ^ • ΓΛ

hence (36).

Now let us prove (37), (38). Suppose first that γ = - 1 ; then
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then l i m r ^ + 0O z\r) = l im r ^ + 00 z(r) = 0. From (11) and (13) we get (37)

and (38).

Suppose now that γ > - 1 ; we will obtain a contradiction. For the

extremal points sn of z on [rn, rn + ι] we have limn_^ + o oyl — z{sn)
2 = -γ

^]0,1[, then limn_ + (>o\z(sn)\ = k e]0, l[ . Let σn be the unique point of

]rn9 sn[ where z ( σ j = z(sn)/2. Then, from (15),

Φn)
= \z(σn)-z(rn)\<J2(N-l)(σn-rn).

Hence with (41) we get for large n

(42) k

Now for any r e[rn,σn], \Jl - z2(r) > /l - z2(sn)/4, then from the

expression of g,

z'\r) λ^lά + ,/j _ '

let μ = γ 4- /γ 2 + 3 /2 > 0; hence for large n

(43) z'2(r)>2(N-l)μ.

From (42), (43) we deduce that for n0 sufficiently large,

dr >
z'\r)

Now from (41), (42), σn = O(rn) = O(n). This is impossible, since z'2(r)/r

is integrable on ]w0, + oo[.

Finally, we have \imr_+ Q0 p(r) = (N — 1), since limr_^ + 00 z(r) = 0.

From the Sturm comparison theorem we get

lim dn -
n -* + oo \ — 1

= 0.

REMARKS.

(i) Obviously the function u admits a countable number of zeros pn,

such that, from (22):

( 4 4 ) 0 < Pl < rx < p 2 < r2 < <pn<rn<

on [pn, pn + ι], u has a unique extremum in rn. From (27) we get |w(rj

|w(rπ + 1 ) | , that is to say \z'(rn)\ > \z\rn+ι)\, for any n.
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Moreover f(rλ) < f{ρλ)\ this or (15) implies, cf. [5]:

(ii) Consider for simplification the case N = 2. The function p

defined by (40) satisfies p(r) > (\ - \r2). In the Bessel equation of order

1,

(46) Γ(r) + £& = ^ " f(r),

we make the substition ξ = r~ι/2ξ; this equation becomes

(47) {"(/•) •

From the Sturm comparison theorem, between two successive zeros in
]0, + oo [ of any Bessel function of order 1, there exists at least one zero of
z; in fact exactly one for large r since the zeros of the Bessel functions are
asymptotically separated by π. Likewise between 0 and the first zero
Rλ Φ 0 of the function Jl9 there exists at least one zero of z (if not, for
any ε e ]0, R[, we would have, with ξ = r1/2/1?

V ~ ίy']*1 = ^ (p(r) ~ 1 + | r 2 ) j ; ( r ) i ( r ) dr > 0;

now^(ε) = O(ε3/2), ^'(ε) = O(ε"1/2), hence \imε_>oξ(ε)y'(ε) = 0;

lΓ(ε) = \imz(ε)ε^2lε^2J{(ε) + ε ^ 2 ^ ] = 0,

hence yiR^^iR^ > 0, which is impossible since j(i?χ) > 0, ξ'(Rι) < 0).
Using (22), we deduce the estimates

(48) ]/2/3 <pι<r1<R1z* 3.8; 4ΐ < rx\

notice that for the solutions Z and U we get numerically ρλ = 1.5,
rλ = 2.8.

It is an open question whether the extremal points of the function z
satisfy (z(sn)) = O(l/ /y^), as is the case for Bessel functions.

5. Uniqueness under growth conditions. We have seen in §4 that
the solution Z defined in Theorem 1 is a decreasing function for small r.
Differentiating (12), we get

(49) u"(r) = z'(
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so that the solution U is strictly concave for small r. We are going to
prove reciprocally that any solution z nonincreasing for small r is equal
to Z, any solution u concave for small r is equal to U:

THEOREM 4. There is a unique solution z of (7)(8) in ]0, 4- oo[ such that

z is nonincreasing near the origin. There is a unique singular solution u of

(2) in ]0, + oo[ such that u is concave near the origin.

Proof. Step 1. An estimate for z.

Let z be a solution such that z\r) < 0 in an interval ]0, α[; in terms
of w, that means from (49) that w"(r) < 0 in ]0, a[. Let p e ]0, <x[ be fixed.
We are going to compare z to a function w of the form

(50) w(r) = ar2

such that

(51)

We find

br

(52)

a = —
N-l z(p)

N N +

Then from equation (7) we get

(53)

As wr is nonincreasing, we deduce from (51) that

w-z))'(r)<0, in]0,α[,
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{w-z)(r)(r-p)<Q, in]0,o[.

As z is nonincreasing we deduce that

(w(r) - z(p))(r - p) < 0, in]0,α[.

Let k = r/p. Then

(54) (k — l)(w(kp) — z(p)) < 0 in]θ,a/ρ[.

From (50), (52), we obtain

w(kp) - z(p)

kι~N

N
z(p)((N - l)kN - Nk"-1 + l) + pz'(p)(kN -

J V - 1

•Λ-N

N
(k - if

• * ( * )

where

(55)

As z is positive near 0, we obtain the inequalities, for sufficiently small p,

P ( k ) = (ΛΓ - I ) * : " " 2 + ( J V - 2 ) k N ~ 3 + ••• + 2 k + 1 ,

ρ ( f c ) = A : ^ 1 + ) t ^ 2 + ••• + 1 ,

(56)

, i f * e ] 0 , l [ .

Take first k = 1 + p, for sufficiently small p. From the majorization
(16) we obtain

2(N - 1)
1 + - ^ — - P +

2(N - 2)
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hence we get the estimate

(57) ^1 - z2(P) < P2

Now take k = 1 — p. Then we get in the same way the estimate

(58) /l - z2(p) > p2 - 2( i

Hence

(59) /in
so we still sharpen the estimate (14).

Step 2. Improvement of the estimates.
Consider first a point p where z'(ρ) > ~C(ρ3 + o(p3)) for a C > 0.

Take k = 1 4- #p2, where g is a parameter. Then from (56) we get

N(N-\)ίΛ 2(N-2) - , -Λ C, , / , u> V

 2

 ; ( l + V

 3

 }qp2 + o(P

2)j - N-{p2 + o{p2)),

hence, taking q = ftC/{N - 1) for the better estimate, we get

(60) l/l-z 2 (p) < P2 + 4 / ^ γ p4 + o(p4),

and, in the same way, with k = 1 — #ρ2,

(61) A-22(p) > P2 - *{yzr^P4 + O(P4).

Now consider the function φ = ψ , where,

(62) ψ(r) = ^ -

then

-5

Observe that there exists no neighborhood of 0 where ψ(r) < 0: suppose
ψ(r) < 0 in ]0, )8]; from (7) we have

(63) rι-N{rN-ιz')\r) = (N - \)z(ry~l}r' ~" ,
r2/l-z2(r)
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hence, from (8), rN~ιz' would be nondecreasing near 0, then z would be
nondecreasing near 0; hence z{r) = 1, ψ(r) = r~2 near 0, which is
impossible.

Now consider three cases:

First case. There exists a > 0 such that φ'(r) Φ 0, Vr e]0, a\ Then
ψ(r) =£ 0, hence ψ(r) > 0, Vr e]0, a]. Moreover we have φ'(r) > 0, Vr
e]0, α]: if not, we would have φ(r) > φ(α) > 0, hence r 2 — yl — £ 2 (r)
> ψ(α)r4, then from (8), (59) and (63)

near the origin; and integrating twice

which is in contradiction with (23).
Now take p sufficiently small; since ψ'(p) > 0, we have

> -2 P

3 (1

then from (60) (61) we get the estimate

(64)

Second case. For any a > 0 there exists r < a such that ψ(r) = 0.
Then there exists rx < 1 such that ψ(rx) = 0. There exists r2 < rx such
that ψ(r2) > 0. Consider a small p < r2; then there exists r3 < p such that
ψ(r3) = 0. The function φ has a maximum on [r3, rx] in a point p such
that φ(p) > φ(r2) > 0. Then ψr(p) = 0, hence

z\p) = -2p3(l + O(p)),

so that we have the estimate (64) at point p, that is to say

then |ψ(p)| < Ψ(p), hence we get the estimate (64) at the point p.

Third case. There exists α0 > 0 such that ψ(r) > 0 in ]0, α0], and for
any α > 0, there exists r < a such that ψ\r) = 0. Then there exists
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rι < ao s u c h ^ a t Ψ ( ri) = 0. Consider a small p < rλ; there exists r2 < p
such that φ'(r2) = 0. The function φ has a maximum in [r2, r j in a point
p such that φ'(ρ) = 0, hence ψ'(ρ) = 0. Hence we have again (64) at p,
then at p.

Step 3. Conclusion.

Consequently in any case we have the estimate (64). We deduce easily
that, near the origin:

(65) z(p) - 1 - £ + P6

with

Now let us remember that the constant which defines the class of
uniqueness in § 3 is Mo = (N 4- S)/3jN — 1, and observe that
4/(2/3(Λί - 1)) < Mo for any N > 2. Then from Theorem 1, we deduce
that z is equal to Z, hence w is equal to U, near the origin, and on the
whole interval ]0, + oo[.

REFERENCES

[1] P. Concus and R. Finn, A singular solution of the capillarity equation, I: Existence,
Invent. Math., 29 (1975), 143-148.

[2] , A singular solution of the capillarity equation, II: Uniqueness, Invent. Math.,
29 (1975), 149-160.

[3] , The shape of a pendent liquid drop, Philos. Trans. Roy. Soc. London A, 292
(1979), 307-340.

[4] R. Finn, On partial differential equations whose solutions admit no isolated singularities,
Scripta Math., 26 (1961), 107-115.

[5] , Some properties of capillarity free surfaces, Seminar on Minimal Submani-
folds, Princeton Univ. Press (1983), 323-337.

[6] , On the pendent liquid drop, preprint (1984).
[7] E. Giusti, The pendent water drop. A direct approach, Boll. Un. Mat. Ital., 17A (1980),

458-465.

Received July 2, 1985.

UNIVERSITΈ DE TOURS

PARC DE GRANDMONT

37200 TOURS, FRANCE





PACIFIC JOURNAL OF MATHEMATICS

EDITORS
V. S. VARADARAJAN HERMANN FLASCHKA C. C. MOORE

(Managing Editor) University of Arizona University of California
University of California Tucson, AZ 85721 Berkeley, CA 94720
Los Angeles, CA 90024 RAMESH A. GANGOLLI H. SAMELSON
HERBERT CLEMENS University of Washington Stanford University
University of Utah Seattle, WA 98195 Stanford, CA 94305
Salt Lake City, UT 84112 VAUGHAN F. R. JONES HAROLD STARK
R. FINN University of California University of California, San Diego
Stanford University Berkeley, CA 94720 La Jolla, CA 92093
Stanford, CA 94305 ROBION KlRBY

University of California
Berkeley, CA 94720

ASSOCIATE EDITORS
R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

(1906-1982)

SUPPORTING INSTITUTIONS
UNIVERSITY OF ARIZONA UNIVERSITY OF OREGON
UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAII
MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO
UNIVERSITY OF NEVADA, RENO UNIVERSITY OF UTAH
NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they
are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in
typed form or offset-reproduced (not dittoed), double spaced with large margins. Please do not use built up
fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline
Greek letters in red, German in green, and script in blue. The first paragraph must be capable of being
used separately as a synopsis of the entire paper. In particular it should contain no bibliographic references.
Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate,
may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol.
39. Supply name and address of author to whom proofs should be sent. All other communications should be
addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California 90024.

There are page-charges associated with articles appearing in the Pacific Journal of Mathematics. These
charges are expected to be paid by the author's University, Government Agency or Company. If the author
or authors do not have access to such Institutional support these charges are waived. Single authors will
receive 50 free reprints; joint authors will receive a total of 100 free reprints. Additional copies may be
obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate:
$190.00 a year (5 Vols., 10 issues). Special rate: $95.00 a year to individual members of supporting
institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be
sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers
obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics at P.O. Box 969, Carmel Valley, CA 93924 (ISSN 0030-8730) publishes
5 volumes per year. Application to mail at Second-class postage rates is pending at Carmel Valley, California,
and additional mailing offices. Postmaster: send address changes to Pacific Journal of Mathematics, P.O.
Box 969, Carmel Valley, CA 93924.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Copyright © 1986 by Pacific Journal of Mathematics



Pacific Journal of Mathematics
Vol. 125, No. 2 October, 1986

Dale Edward Alspach, On Lp,λ spaces for small λ . . . . . . . . . . . . . . . . . . . . . . . 257
Jong Sook Bae and Sangsuk Yie, Range of Gateaux differentiable operators

and local expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Hubert Berens and Lothar Hetzelt, On accretive operators on l∞n . . . . . . . . . 301
Marie-Françoise Bidaut-Véron, Global existence and uniqueness results

for singular solutions of the capillarity equation . . . . . . . . . . . . . . . . . . . . . . . 317
Donald M. Davis and Mark Mahowald, Classification of the stable

homotopy types of stunted real projective spaces . . . . . . . . . . . . . . . . . . . . . . 335
Aad Dijksma, Heinz K. Langer and Hendrik S. V. de Snoo, Unitary

colligations in 5κ -spaces, characteristic functions and Štraus
extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

Michel Enock and Jean-Marie Schwartz, Algèbres de Kac
moyennables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Seppo Granlund, Peter Lindqvist and Olli Martio, Note on the
PWB-method in the nonlinear case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

Palle E. T. Jorgensen, Analytic continuation of local representations of Lie
groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Robert P. Kaufman, Plane curves and removable sets . . . . . . . . . . . . . . . . . . . . . 409
José M. Montesinos and Wilbur Carrington Whitten, Constructions of

two-fold branched covering spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
Benedict Seifert, Highly transitive group actions on trees and normalizing

Tits systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
Charles Stuart Stanton, Counting functions and majorization for Jensen

measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
Luen-Fai Tam, On existence criteria for capillary free surfaces without

gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
Zhuocheng Yang, Exposed points of left invariant means . . . . . . . . . . . . . . . . . . 487

Pacific
JournalofM

athem
atics

1986
Vol.125,N

o.2

http://dx.doi.org/10.2140/pjm.1986.125.257
http://dx.doi.org/10.2140/pjm.1986.125.289
http://dx.doi.org/10.2140/pjm.1986.125.289
http://dx.doi.org/10.2140/pjm.1986.125.301
http://dx.doi.org/10.2140/pjm.1986.125.335
http://dx.doi.org/10.2140/pjm.1986.125.335
http://dx.doi.org/10.2140/pjm.1986.125.347
http://dx.doi.org/10.2140/pjm.1986.125.347
http://dx.doi.org/10.2140/pjm.1986.125.347
http://dx.doi.org/10.2140/pjm.1986.125.363
http://dx.doi.org/10.2140/pjm.1986.125.363
http://dx.doi.org/10.2140/pjm.1986.125.381
http://dx.doi.org/10.2140/pjm.1986.125.381
http://dx.doi.org/10.2140/pjm.1986.125.397
http://dx.doi.org/10.2140/pjm.1986.125.397
http://dx.doi.org/10.2140/pjm.1986.125.409
http://dx.doi.org/10.2140/pjm.1986.125.415
http://dx.doi.org/10.2140/pjm.1986.125.415
http://dx.doi.org/10.2140/pjm.1986.125.447
http://dx.doi.org/10.2140/pjm.1986.125.447
http://dx.doi.org/10.2140/pjm.1986.125.459
http://dx.doi.org/10.2140/pjm.1986.125.459
http://dx.doi.org/10.2140/pjm.1986.125.469
http://dx.doi.org/10.2140/pjm.1986.125.469
http://dx.doi.org/10.2140/pjm.1986.125.487

	
	
	

